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Abstract: Nanotechnology has played a prominent role in biomedical engineering, offering innovative
approaches to numerous treatments. Notable advances have been observed in the development of
medical devices, contributing to the advancement of modern medicine. This article briefly discusses
key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors
and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a
better understanding, selection, and technical approach to nanomaterials for biomedical purposes,
including biological risks, security, and biocompatibility criteria.

Keywords: nanomaterials; tissue engineering; polymer; controlled drug release

1. Introduction

Biomedical engineering combines principles from engineering, biological sciences,
and medicine to develop technological solutions in healthcare. With various applications in
medical imaging, diagnostic systems, rehabilitation, and more [1–3], scientific research has
been driving the interest in optimizing advanced medical devices, personalizing medicine,
integrating health data, and innovative therapies. For this, a clear intersection with nan-
otechnology is observed.

The use of nanotechnology in the field of biomedical engineering has emerged as
a promising approach with the potential to develop more effective treatments and offer
a deeper understanding of biological processes at the molecular level. By manipulating
materials and devices at the nanoscale, researchers and engineers create structures with
exceptional properties and functionalities that remain elusive at larger scales. This remark-
able ability to engineer materials and devices at such a precise level has unfolded a vast
spectrum of applications in the biomedical field [4–7], such as controlled drug delivery,
biomarker detection, targeted therapies, advanced imaging, biosensors and monitoring,
and tissue engineering (Figure 1).

In tissue engineering, one of the most promising areas is the development of artificial
blood vessels. Nanomaterials have unique properties due to the surface-to-volume ratio of
the structures [8–10], which increases the nutrition of cells and the viability of regenerated
tissues. Nanotechnological materials such as three-dimensional matrices are suitable for cell
growth and differentiation as well as the formation of new tissue. For example, nanofibers,
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nanoparticles, or nanocomposites can improve tissue adhesion and vascularization by
mimicking the extracellular matrix [11,12].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 41 
 

 

 
Figure 1. Primary applications of nanotechnology in the field of biomedical engineering. 

In tissue engineering, one of the most promising areas is the development of artificial 
blood vessels. Nanomaterials have unique properties due to the surface-to-volume ratio 
of the structures [8–10], which increases the nutrition of cells and the viability of regener-
ated tissues. Nanotechnological materials such as three-dimensional matrices are suitable 
for cell growth and differentiation as well as the formation of new tissue. For example, 
nanofibers, nanoparticles, or nanocomposites can improve tissue adhesion and vasculari-
zation by mimicking the extracellular matrix [11,12]. 

In drug delivery systems, nanoparticles and nanocarriers provide means to encapsu-
late drugs, vitamins, therapeutics, and particles in general, protecting them from degra-
dation and enabling targeted delivery to specific cells or tissues [4,13,14]. Consequently, 
this results in increased treatment efficacy and reduced side effects. Additionally, the func-
tionalization of the surface of nanoparticles further increases their specificity for targeted 
drug delivery [15]. 

Nanometric surface modifications can improve the biocompatibility of materials, 
stimulating cell adhesion, preventing bacterial colonization, and modulating immune re-
sponses [16–18]. The application of these coatings and modifications, based on nanotech-
nology, promotes a significant improvement in the functionality and overall longevity of 
implants, ranging from orthopedic devices [19] to cardiovascular stents [20] and dental 
implants [21]. 

The application of nanotechnology in diagnostics and imaging in biomedical engi-
neering has also brought about significant changes. Using nanoparticles and nanometric 
materials can improve imaging methods’ sensitivity, resolution, and detectability, such as 
magnetic resonance imaging, computed tomography, and fluorescence imaging [22–24], 
allowing for early disease detection, more accurate images, and the real-time monitoring 
of physiological parameters. In addition, nanotechnology enables the development of 
highly sensitive and specific nanosensors and nanoprobes to detect biomarkers, greatly 
expanding diagnostic possibilities [25]. 

In general, nanotechnology and biomedical engineering are interdisciplinary fields 
with significant impacts on health. The design, maintenance, and development of devices, 
including the manipulation of matter at the nanoscale, bring innovative therapeutic 

Figure 1. Primary applications of nanotechnology in the field of biomedical engineering.

In drug delivery systems, nanoparticles and nanocarriers provide means to encapsu-
late drugs, vitamins, therapeutics, and particles in general, protecting them from degrada-
tion and enabling targeted delivery to specific cells or tissues [4,13,14]. Consequently, this
results in increased treatment efficacy and reduced side effects. Additionally, the function-
alization of the surface of nanoparticles further increases their specificity for targeted drug
delivery [15].

Nanometric surface modifications can improve the biocompatibility of materials,
stimulating cell adhesion, preventing bacterial colonization, and modulating immune
responses [16–18]. The application of these coatings and modifications, based on nanotech-
nology, promotes a significant improvement in the functionality and overall longevity of
implants, ranging from orthopedic devices [19] to cardiovascular stents [20] and dental
implants [21].

The application of nanotechnology in diagnostics and imaging in biomedical engi-
neering has also brought about significant changes. Using nanoparticles and nanometric
materials can improve imaging methods’ sensitivity, resolution, and detectability, such as
magnetic resonance imaging, computed tomography, and fluorescence imaging [22–24],
allowing for early disease detection, more accurate images, and the real-time monitoring of
physiological parameters. In addition, nanotechnology enables the development of highly
sensitive and specific nanosensors and nanoprobes to detect biomarkers, greatly expanding
diagnostic possibilities [25].

In general, nanotechnology and biomedical engineering are interdisciplinary fields
with significant impacts on health. The design, maintenance, and development of devices,
including the manipulation of matter at the nanoscale, bring innovative therapeutic ap-
proaches and advances in applications. The use of nanomaterials in tissue engineering,
drug delivery, diagnostics, imaging, and surface modifications has opened new pathways
for personalized medicine and targeted therapies, reducing side effects and damage to
healthy tissues. This mini-review presents an overview of the most recent advances in
nanotechnology and its application in biomedical engineering (drug delivery, imaging,
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and diagnosis, etc.) as well as specific information on nanomaterials in tissue engineering
through the development of nanoemulsions, nanowires, and carbon nanotubes. Electrospin-
ning and chemical vapor deposition were presented as potential technological strategies
for manufacturing nanomaterials. Mechanisms of nanomaterials in the intracellular en-
vironment were also discussed with an analysis of their biological risks and the need to
study biocompatibility.

2. Nanomaterials and Tissue Engineering

Nanotechnology is a multidisciplinary field of science and engineering that deals
with designing, synthesizing, manipulating, and applying materials and devices with
at least one dimension at the nanoscale [26], which makes their physical and chemical
properties different from the macroscale, producing unique properties and substantial
benefits [27]. Still, as a challenging and growing field, it has potential in several segments.
Nanotechnology offers new opportunities for controlled drug release in health with drug
delivery directly to specific cells or tissues [28]. And it has allowed the creation of new
implants and prostheses with significant advances in medicine and regenerative tissue
engineering [29,30].

Tissue engineering creates solutions to regenerate, replace, or repair damaged tissues
or organs. Biomaterials, cells, and growth factors are important in this area. Through
these, it is possible to develop designed structures and a controlled environment for cell
culture and differentiation, aiming to form a new tissue [31]. The structures, known as
scaffolds, play an important role, acting as a physical, chemical, and mechanical support
for cells, guiding cell growth [32]. Some of their fundamental characteristics are their
three-dimensional structure, porosity and interconnectivity, controlled degradability, sur-
face suitable for cell adhesion, and biocompatibility [33]. Depending on the application,
scaffolds can be manufactured from different biomaterials (natural, synthetic, hybrid, com-
posite, etc.), designed with other technologies, or chemically modified on the surface to
adapt to the application (bone regeneration, cartilage, skin, muscle, etc.) or increase the
efficacy and functioning of implants [34]. Thus, continuous technological advances bring
new strategies for manufacturing scaffolds as environments conducive to forming func-
tional tissues, driving innovations in regenerative medicine and health. A fundamental
advantage of nanotechnology in tissue engineering lies in its ability to design materials
with customized mechanical and biological characteristics similar to those found in natural
tissues [27]. However, it is crucial to ensure the human biosafety assessment of nanomate-
rial products before using them in clinical settings. To date, most available data concerning
nanomaterial products in nanomedicine are based on in vitro cell culture or in vivo experi-
ments with animals. For nanomaterial products to be adopted clinically, human clinical
trials are the most important stage. Nevertheless, since clinical translation in nanomedicine
is a protracted, challenging, and resource-intensive process, it is unlikely that a successful
transition will occur, as emphasized by Satalkar et al. (2016) [35].

2.1. Nanoparticles and Nanowires

Nanoparticles are one of the most used types in tissue engineering, as they provide the
controlled release of bioactive growth factors and adhesion molecules while also improving
cell adhesion and viability, stimulating the regeneration of damaged tissues, or promoting
the formation of new tissues [36].

For the direction and delivery of stem cells, nanoparticles are designed to act as
transport vehicles, carrying the stem cells to the target site. The modulation of endogenous
adult stem cell niches has been explored for tissue regeneration and the treatment of cellular
abnormalities [37]. The dynamics of stem cell differentiation after exposure to nanoparticle
formulations were investigated, providing valuable insights into the modulation of the stem
cell niche [38]. The authors demonstrated that the release of retinoic acid from polymeric
nanoparticles promotes the differentiation of neural stem cells in vivo through interactions
with the retinoic acid receptor and activation of signaling pathways.
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Nanoparticles can also monitor and modulate cellular interactions during regenerative
therapy. Nanometric sensors can be incorporated into nanoparticles to monitor cellular
activity, immune response, and levels of relevant biomarkers [39,40], allowing the real-time
monitoring of therapy progress and adapting treatment strategies if necessary [41].

On the other hand, nanowires have a filamentary structure, with a solid and con-
tinuous shape, and generally refer to electrically conductive materials. Their conductive
potential allows them to emerge as enabling tools for electronic communication with bio-
logical systems, opening new perspectives for bioelectronic devices [42–44] and playing a
crucial role in the interface between nanotechnology and tissue engineering. As scaffolds,
they can provide electrical signals to cells, promoting cell communication. If functionalized
with bioactive molecules, they can be used in controlled release systems and applied in
tissue engineering for organs such as the liver, heart, and bone [45,46]. In addition, conduc-
tive nanowires are interesting for regenerating nervous and muscular tissues by creating
electrochemical interfaces with cells [47]. As biomimetic sensors, they can monitor the con-
centration of biomarkers and cell activity, among others, being of paramount importance
for studies of tissues in vitro or in vivo [48,49].

2.2. Nanofibers

Nanofibers are elongated and thin structural units characterized by their reduced
dimensions (1 to 10 nm) and significant length. They are typically made of polymers
and proteins and can interact at nanometric scales with complex biological systems [50].
One of the main advantages of their use is the flexibility to adjust the chemical composi-
tion, size, and morphology, which directly impact their physicochemical and biological
properties [51,52]; this provides a vast field of possibilities in applications such as tissue
regeneration, the controlled release of therapeutic agents, and cellular targeting [53–55].

In tissue engineering, nanofibers are capable of guiding cell growth [51] and providing
adequate structural support for cells [56], promoting adhesion, proliferation, and cellular
differentiation [57] as well as allowing the diffusion of nutrients and the elimination of
waste. As scaffolds, they are interesting materials [58] due to their high surface area, poros-
ity, surface, and biomimetic characteristics, replicating the extracellular matrix’s structure.
Still, they can have modulable mechanical and chemical properties and functionalization
with growth factors and signaling molecules, among other properties [59]. In addition, they
can mimic the structure and organization of collagen fibers in tissues such as skin, bones,
and cartilage [60], establishing a platform for the regeneration of complex tissues.

One of the techniques for producing these nanomaterials as scaffolds is electrospinning,
which allows the controlled production of nanofibers in terms of size and composition.
In this method, the application of electric fields causes the extrusion of polymer solu-
tions, resulting in the formation of nanofibers with precisely controlled dimensions [61].
The evolution of chemical vapor deposition (CVD) methodologies can also be addressed,
highlighting the potential for production with advanced levels of precision. That is, the
deposition of materials at the atomic scale results in structures with exquisite accuracy and
uniformity [62]. However, there are still challenges to overcome with nanofibers as scaf-
folds, such as the production scale, fiber uniformity, and use of toxic solvents, depending
on the manufacturing technique. Modifications and functionalization on the surface of
nanofibers are, therefore, decisive in improving cell interactions, adhesion, proliferation,
and differentiation.

The perspective of customization through surface modifications, exemplified by Mozaf-
fari et al. (2021) [63], emerges as a highlight. The ability of targeted functionalization to
enhance interaction with target cells or confer specific properties is possible for nanofibers.
One approach is chemically modifying the surface by linking functional groups that mimic
extracellular matrix components or have an affinity for specific cells [64]. These modifi-
cations can include the introduction of bioactive molecules, such as proteins, peptides,
or growth factors, that promote targeted cellular interactions and appropriate signaling
for tissue development and regeneration [65]. A study investigated the modification of
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biodegradable nanofibers by plasma to improve the adhesion and proliferation of mesenchy-
mal stem cells (MSCs) [66]. The fibers with a high CO2:C2H4 ratio showed a well-defined
actin microfilament network in the MSCs, while the threads with a low CO2:C2H4 ratio
showed inferior cell adhesion and survival. These results highlighted Ar/CO2/C2H4
plasma polymerization as a promising tool for modulating MSC viability.

Composite scaffolds of E7 peptide and silk fibroin modified with polydopamine
showed improved hydrophilicity, proliferation, and cell adhesion as well as an increased
osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) [67]. There-
fore, by modifying the surface of scaffolds or biomaterials, it is possible to improve cell
interactions, promoting the adhesion, proliferation, and differentiation of cells relevant to
the tissue under regeneration. In addition, surface modification can increase the biocom-
patibility of biomaterials, reduce the immune response, and improve integration with the
surrounding tissue [65].

2.3. Nanoemulsions

Nanoemulsions are nanomaterials characterized by their small droplet size and col-
loidal stability. Composed of immiscible liquids, such as oil and water, along with an
emulsifier, they have droplets in the range of 20 to 200 nanometers [68], and their general
characteristics resonate within biomedical and tissue engineering [69].

Understanding the characteristics of nanoemulsions interferes with the final con-
figurations of the nanometric architecture. Changes in pH, temperature, or other con-
ditions can trigger changes in the properties of nanoemulsions, allowing adaptive and
programmed responses [70]. Precision in controlling particle size, size distribution, compo-
sition, and stability is vital for functionalizing their intrinsic properties [71]. The reduced
size of the particles is one of the most distinctive characteristics. These dimensions allow
for homogeneous dispersion and a high surface area, which are essential for bioactivity
interactions [72].

Stability is influenced by the choice of emulsifiers, which act as maintenance agents
between the phases, preventing any unwanted coalescence of the particles. This stability
guarantees a prolonged shelf life and consistent long-term efficacy [73]. In addition, na-
noemulsions offer compositional versatility, encompassing the study of hydrophobic and
hydrophilic substances. There is the flexibility to incorporate a variety of active ingredients,
such as drugs and therapeutic agents [74]. These combined characteristics make controlled
and targeted release more feasible, allowing the properties of nanoemulsions to be adjusted
to release bioactive substances gradually and precisely at the desired target [75].

The formation of nanoemulsions requires specific knowledge and skills involving
high-energy processes, such as ultrasound, cavitation devices, or high-pressure homog-
enization [76–78], which break larger droplets into smaller droplets, resulting in a stable
emulsion [79]. It also requires low-energy methods, such as spontaneous emulsification
and phase inversion. In the low-energy emulsification method, a gentle agitation is used
to break the particles, which is usually applied to sensitive substances [80]. Kumar et al.
(2021) [81] obtained a nanoemulsion system for drug delivery by phase inversion. This
method explores the change in affinity of lipophilic and hydrophilic components in re-
sponse to changes in conditions, such as pH or temperature. However, it is also possible
to obtain nanoemulsions from other methods, such as complex coacervation that uses
polymers and surfactant agents to form coacervates [82]. Surface modifications of na-
noemulsions, with coating polymers, are still exciting approaches to personalize them with
specific ligands for applications in various biomedical fields.

Nanoemulsions have the potential for diagnostic applications. Their ability to carry
contrast agents, such as in medical imaging exams, expands the boundaries of precise
diagnosis [83]. Joga et al. (2022) [84] describe the use of various functionalized oil-in-
water nanoemulsions as pharmacological vehicles with potential for theranostics in cancer
treatment, incorporating components such as vitamin E, oleic acid, sphingomyelin, ligands
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for functionalization, contrast agents, and therapeutic biomolecules, and the results showed
the adequate physical stability of the formulation.

By incorporating these substances into nanoemulsions, it is possible to optimize the
regeneration of complex tissues, directing their transport to specific parts of the body
and controlling the release rate. Systems of α-tocopherol encapsulated in curcumin na-
noemulsions showed improved collagen deposition and prevented bacterial contamination,
accelerating wound healing in diabetic animals [85].

Nanoemulsion delivery systems can also carry various bioactive compounds, such as
vitamins and even probiotics, to incorporate them into food [86]. Similarly, gel systems of
nanoemulsions loaded with resveratrol can act on UV-induced oxidative damage in the
skin [87].

2.4. Nanotubes

Nanotubes are cylindrical hollow nanostructures characterized by diameters that
vary in the nanometer range and have exceptional potential to positively influence a wide
range of biomedical applications. Especially in tissue engineering, nanotubes emerge as
versatile and multifunctional components capable of addressing complex challenges. Their
intrinsic characteristics offer the ability for precise interaction at nanometric scales and
have revealed unique properties that open up avenues for innovations in diagnostics [88],
therapeutics [89], and tissue regeneration [90]. In addition, nanotubes have influenced
cell adhesion, proliferation, and differentiation. Their unique morphology and modifiable
surface enable the creation of three-dimensional scaffolds capable of guiding cell growth
and promoting the formation of functional tissues [91].

Carbon nanotubes reveal a fascinating structural diversity, presenting chiral, armchair,
or zigzag arrangements [92]. These unique structures give them chemically inert properties,
resisting unwanted chemical reactions and preserving their integrity when interacting
with complex biological environments [93]. Additionally, the singularity of their chirality
stands out, as it influences their intrinsic electronic and mechanical properties [94], and
the stability of these properties is remarkable, allowing reliable performance even in
challenging conditions [95]. In addition, the number of graphene walls and the diameter of
these nanotubes emerge as crucial factors, directly shaping their conductivity [96]. This
fine tuning between structure and functionality makes them ideal building blocks for
nanoelectromechanical sensors (NEMSs), enabling the precise detection of mechanical
phenomena, such as displacements and vibrations in biological systems [97].

The high tensile strength of carbon nanotubes, combined with their exceptional surface-
to-volume ratio, also confers robustness to them at the nanoscale [98]. This unique com-
bination of characteristics culminates in a tremendous electrocatalytic activity, providing
a versatile platform for complex biochemical reactions [99] and becomes an essential tool
in biomedical engineering. Thus, the hollow structure of some nanotubes allows for the
controlled release of growth factors, optimizing the regeneration process [100], and this
can be applied from detecting biomolecules to creating high-sensitivity devices for precise
monitoring and diagnosis.

Due to their large surface area and accessibility to the internal area of the tube, carbon
nanotubes are a highly suitable platform for the loading and controlled delivery of bioactive
molecules [101]. In addition, they can be functionalized with specific ligands, allowing the
creation of highly selective delivery systems capable of interacting with specific biological
targets [102]. By designing specific immobilization surfaces for the enzyme glucose oxidase,
nanotubes become highly sensitive and selective measurement tools capable of quanti-
fying glucose levels in various body fluids [103]. This innovative approach overcomes
the limitations of traditional monitoring techniques, offering more accurate and faster
detection of glucose level variations. Also, the intrinsic ability of nanotubes to conduct
electricity provides a promising platform for the creation of advanced biosensors, enabling
the multiplex detection of multiple biomolecules simultaneously [104].
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As for nanotube production techniques, they have evolved considerably to meet
the demands of biomedical engineering. Chemical vapor deposition (CVD) synthesis and
anodization are notable examples. The former involves material deposition on substrates by
chemical reactions in the gas phase, making it possible to obtain nanotubes with precision
and control [105]. Anodization, on the other hand, is an electrochemical method that allows
the controlled formation of nanotubes on metal surfaces, offering a versatile approach to
creating nanometric structures [106].

3. Nanomaterials in Biosensing and Monitoring

The field of biosensors and monitoring has made significant advances, using precise,
reliable, and portable tools to track processes or detect biological substances in real time
and remotely. Nanomaterials have been widely used for this purpose, aiming to identify
and quantify biological molecules, pathogens, and other species of interest [107]. Thus,
integrating nanotechnology with the biosensing system gives rise to nano-biosensors [108]
with specific surface and chemical attributes. Their advantages include flexibility, rapid
detection, accuracy, reproducibility, versatility, and high electrical conductivity [109]. In ad-
dition, nano-biosensors improve the immobilization of recognizable molecules (adsorption,
microencapsulation, entrapment, covalent bonding, and cross-linking) [110].

Nano-biosensors, combined with biological elements (enzymes, antibodies, and nu-
cleic acids) and sensitive detection platforms, convert biomolecular interactions into mea-
surable signals [111]. They can be applied in biomedical engineering as medical diagnostic
devices. In general, nano-biosensors can be classified based on their material components,
the specific targets they detect, and the signals they use to transmit information [112].
Bioreceptors and transducers are their main components (Figure 2). Bioreceptors comprise
biomolecules that detect biochemical interactions or the analyte [113]. The transmission of
the biological signal as an electrical signal is carried out by the transducer, which can be
calorimetric, potentiometric, amperometric, or optical, among others [114]. More specifi-
cally, biochemical signals are converted into electrical signals due to the interaction of the
bioreceptor with the analyte [115].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 41 
 

 

 
Figure 2. Components of a nano-biosensor. 

Applications of Nano-Biosensors in Healthcare 
The combination of nanotechnology with biosensors has allowed for a new type of 

biomolecular analysis with high sensitivity [110], remote monitoring, and compact and 
small-scale manufacturing, which has led to a new range of possibilities in the environ-
mental and health field, such as the improvement of diagnostics, imaging, monitoring, 
detection, and regenerative medicine [116]. Regarding energy, the nanosensors can still 
be sustainable [117]. Shu et al. (2020) [118] developed lead and silver sulfide fluorescence 
quantum dots as H2O2 biosensors. With high sensitivity and selective potential, the nano-
material can result in smaller, longer-lasting batteries, reducing the disposal of electro-
chemical batteries. 

Implantable, compact, and flexible nanosensors also have been used to monitor vital 
signs [119]. Electrical, acoustic, optical, or magnetic signals send real-time measurements 
to a monitoring system [120], which is essential for helping patients who need continuous 
monitoring to detect risk factors. In addition, these devices can provide comfort and re-
mote monitoring [121]. In the case of some types of cancer (breast, lung, prostate, and 
others), nano-biosensors can enable early diagnosis [122] so that treatment can be carried 
out with the highest possible efficiency and efficacy. Diagnosis can be made by detecting 
circulating tumor cells and specific biomarkers [112]. 

When detecting blood glucose to assess diabetes, it is also possible to use nano bio-
sensors. In this sense, some devices are made of glucose oxidase enzymes, which are di-
vided into three generations: (1) glucose detection by the reduction in the consumption of 
hydrogen peroxide as a substrate; (2) detection through redox mediators with specificity 
and selectivity to the oxygen present in the medium; and (3) direct electron exchange at 
the electrode with enzymes [123]. 

One of the nanomaterials used is graphene. It is interesting because it has a large 
surface area-to-volume ratio, performs satisfactorily with other functional groups, and has 
good electron transfer. In addition, it is also low cost [114], representing an adequate al-
ternative to detecting and monitoring blood sugar levels in patients with diabetes. 

Figure 2. Components of a nano-biosensor.

Applications of Nano-Biosensors in Healthcare

The combination of nanotechnology with biosensors has allowed for a new type of
biomolecular analysis with high sensitivity [110], remote monitoring, and compact and
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small-scale manufacturing, which has led to a new range of possibilities in the environmen-
tal and health field, such as the improvement of diagnostics, imaging, monitoring, detection,
and regenerative medicine [116]. Regarding energy, the nanosensors can still be sustain-
able [117]. Shu et al. (2020) [118] developed lead and silver sulfide fluorescence quantum
dots as H2O2 biosensors. With high sensitivity and selective potential, the nanomaterial can
result in smaller, longer-lasting batteries, reducing the disposal of electrochemical batteries.

Implantable, compact, and flexible nanosensors also have been used to monitor vital
signs [119]. Electrical, acoustic, optical, or magnetic signals send real-time measurements
to a monitoring system [120], which is essential for helping patients who need continuous
monitoring to detect risk factors. In addition, these devices can provide comfort and remote
monitoring [121]. In the case of some types of cancer (breast, lung, prostate, and others),
nano-biosensors can enable early diagnosis [122] so that treatment can be carried out with
the highest possible efficiency and efficacy. Diagnosis can be made by detecting circulating
tumor cells and specific biomarkers [112].

When detecting blood glucose to assess diabetes, it is also possible to use nano biosen-
sors. In this sense, some devices are made of glucose oxidase enzymes, which are divided
into three generations: (1) glucose detection by the reduction in the consumption of hy-
drogen peroxide as a substrate; (2) detection through redox mediators with specificity and
selectivity to the oxygen present in the medium; and (3) direct electron exchange at the
electrode with enzymes [123].

One of the nanomaterials used is graphene. It is interesting because it has a large
surface area-to-volume ratio, performs satisfactorily with other functional groups, and
has good electron transfer. In addition, it is also low cost [114], representing an adequate
alternative to detecting and monitoring blood sugar levels in patients with diabetes.

For detecting SARS-CoV-2, it is possible to use biomarkers in association. The ideal
device for this application involves high sensitivity, selectivity, rapid real-time response,
and easy use [124].

A study demonstrated the use of nanosensors for detecting the virus in clinical samples,
where the sensor was fabricated with graphene films equipped with the specific antigen of
the SARS-CoV-2 S protein [125]. However, there is a limitation associated with this method,
where the selectivity, accuracy, and reliability of these tests are in question due to the
possibility of cross-reaction of the antibodies used, which could lead to false positives [126].

In tissue engineering, nano-biosensors can be used to monitor the performance of artifi-
cial tissues and their biological interactions. In the case of wound healing, some biomarkers
are essential to regulate the increase in cytokines [127]. Moreover, nano-biosensors can help
detect such factors, preventing wound healing from occurring unsuccessfully. In addition,
nano-biosensors can determine cellular metabolic activity (signals, responses, behavior,
and functionalities) [128]. More specifically, these devices can detect glucose inefficiency by
measuring it in the blood and understanding stages of the wound-healing process, such as
inflammation or infection [129].

4. Delivery Drug

Nanotechnology can be used for drug delivery systems to vectorize drugs or other
bioactive compounds directed to specific cellular or molecular targets. Within the vari-
ous nanosystems designed for encapsulating bioactive compounds and facilitating drug
delivery, noteworthy examples are lipid nanoparticles, such as liposomes and exosomes,
nanostructured lipid carriers, polymeric nanoparticles, such as polymeric nanocapsules
and nanospheres, and metallic nanoparticles, such as iron, gold and silver nanoparticles
(Figure 3). The small particle size associated with using biodegradable materials makes
nanoparticles a great delivery vehicle since they can significantly increase the solubility
and bioavailability of the actives in biological fluids, facilitating drug uptake by cells and
penetration through biological barriers [130–132].
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4.1. Lipid Nanoparticles
4.1.1. Liposomes

Liposomes are spherical particles composed of phospholipids arranged in a lipid
bilayer to form spherical vesicles encapsulating an aqueous core. Depending on the produc-
tion method, these particles can be obtained on a nanometric scale—from
50 nanometers—or a micrometric scale [133]. If the bioactive compound is hydrophilic, it
will be encapsulated within the aqueous core; if it is a lipophilic agent, it will be dispersed in
the lipid bilayer [134]. Because they are mostly composed of lipids, their main advantages
are biocompatibility and biodegradability. In addition, liposomes are well-known and
studied systems; they are still the most used vehicles for drug delivery, either encapsu-
lating drugs or transporting DNA or proteins. Despite this, liposomes have mostly low
encapsulation capacity compared to other nanosystems. They cannot release the drug at
the desired reduced rate, in addition to being unable to penetrate cells effectively, releasing
its contents only into the extracellular environment [135,136].

To significantly prolong the period of permanence of liposomes in the bloodstream
and inhibit their absorption by the reticuloendothelial system, their surface can be coated
with polyethylene glycol (PEG). Desired drugs can also be incorporated into the aqueous
phase of liposomes using an ammonium sulfate gradient to counterbalance unwanted
rapid release, allowing for more efficient encapsulation and minimal drug loss into the
bloodstream [137].

The liposomes’ physical–chemical characteristics can help them penetrate specific
biological barriers; their surface can also be manipulated to reach the desired organs
or tissues by modifying the charge, the shape of the particle, or the ligands conjugated.
Methods have been developed, for example, to make liposomes hydrophobic or create
electrostatic charges, such as magnetic cationic liposomes [138], which allows fast and
improved gene delivery to epithelial THLE-3 cells in the liver.

PEG-coated liposomal doxorubicin (Doxil®) was the first nanomedicine approved by
the Food and Drug Administration (FDA), being used to improve the treatment of breast
cancer, increasing the effective concentration of the drug without enhancing the total dose
of the medicine (avoiding more side effects), and decreasing cardiotoxic effects [134,139].
Gemcitabine, another chemotherapeutic, was also incorporated into unilamellar liposomes
coated with PEG, showing higher rates of apoptosis and inhibition of cell proliferation
compared to the free drug [140].
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Another drug successfully encapsulated in liposomes is dexamethasone, which is
widely used to treat various diseases. Liposomal dexamethasone was effective against an
advanced model of myeloma, remaining for a prolonged time in the bloodstream, whereas
free dexamethasone was ineffective at the same dosage [141]. In addition, liposomal
carfilzomib presented greater efficacy and less systemic toxicity for the same type of tumor.
A combined drug therapy generally tends to have a synergistic therapeutic action in the
body. A combination of liposomal carfilzomib with doxorubicin was also developed, which
resulted in a synergistic action superior to that of the combination of the same two drugs in
their free forms [142,143].

Still, within the scope of anticancer activity, Franca et al. (2022) [144] observed that
liposomes could be used to deliver β-lapachone to cancer cells. For this purpose, liposomes
coated with Concanavalin A were designed, which were more internalized by MCF-7 cells, be-
ing considered adequate for treating breast cancer. In the study by Lotfabadi et al. (2018) [145],
a novel formulation of cationic liposomes loaded with miRNA was prepared to act against
bone marrow cancer cells. The liposomes produced showed cytotoxicity approximately 12%
higher than pure miRNA-101 in these cells, reduced toxicity in healthy cells and could be
considered a novel gene therapy system.

Regarding cardiovascular health applications, drug delivery through liposomes is
effective, especially in preventing platelet aggregation, atherosclerosis, and thrombosis.
The administration of a liposome system carrying prostaglandin E-1 (PGE-1) (Liprostin™)
has been undergoing clinical trials to improve the treatment of various cardiovascular
diseases, such as restenosis after angioplasty, as PGE-1 induces vasodilation, inhibits
platelet aggregation and decreases inflammation. In addition, liposomes of cyclic arginyl-
glycyl-aspartic acid peptide (cRGD) encapsulated with the thrombolytic drug urokinase
have been studied to generate a more selective binding to GPIIb/IIIa receptors, which
has been shown to improve the thrombolytic efficacy of the drug by almost four times
compared to its free form [146].

Liposomes loaded with therapeutic agents can effectively reach and remain in the is-
chemic myocardium, especially if coated with PEG. In this regard, Hwang et al. (2016) [147]
sought to determine whether PEGylated liposomes effectively improve the treatment of
myocardial ischemia. It was seen that the uptake of liposomes was significantly greater
when they were 100 nm rather than 600 nm in diameter, with the addition of PEG signifi-
cantly increasing the myocardial uptake of liposomes. These nanoparticles loaded with
angiogenic peptides improved myocardial perfusion defects and increased vascular density.
Silica hybrid liposomes were produced by Lee et al. (2018) [148] for the controlled release
of Citrus unshiu extract. After 10 h, the silicified liposomes were able to retain 89% of the
extract and obtained good release kinetics. The maximum release of the controlled release
profile is 41.4%, being considered effective antioxidants.

Liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl frag-
ment have also been prepared for the transdermal delivery of non-steroidal anti-inflammatory
drugs. Kuznetsova et al. (2021) [149] reported an encapsulation efficiency of ketoprofen and
meloxicam ranging from 75 to 99% and ex vivo transdermal diffusion with a total amount
passed through the skin during 51 h from 140 to 162 µg/cm2. Resveratrol was also encapsu-
lated by Lafarge et al. (2022) [150]; its transdermal passage in excised human skin drastically
increased with encapsulation (about 73% after ten hours of incubation). While the free drug
underwent cis isomerization, the liposomes protected it for up to 9 h before undergoing any
chemical changes.

Cationic lipid-based transfection reagents, such as lipofectamine, are widely used to
transfect cultured cells in vitro. However, they are incompetent for in vivo use due to the
high toxicity of cationic lipids and low transfection efficiency of in vivo tissues because of
a massive interaction with anionic cellular membranes. Therefore, there have been many
attempts to modify the lipid-based vectors to provide safer and greater efficiency [151].
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4.1.2. Exosomes

Exosomes are a subgroup of nanometric extracellular vesicles enveloped by a lipid
bilayer membrane and secreted by most eukaryotic cells. They represent an intercellular
communication route and participate in a wide variety of physiological and pathological
processes. The biological functions of exosomes depend on their bioactive cargoes, includ-
ing proteins, nucleic acids, and lipids, which are delivered to target cells. As they possess
high stability, low immunogenicity, biocompatibility, and good biomembrane penetration
ability, they function as natural nanocarriers [152].

They stand out due to their efficient potential to deliver molecules to cells through
direct membrane fusion, receptor-mediated endocytosis, macropinocytosis, or phagocy-
tosis [153]. Its highly asymmetric lipid bilayer may be advantageous for interacting with
target cells [152]. These properties led researchers to explore its usefulness as a drug
delivery vehicle for the treatment of a variety of diseases, especially cancer, since tumor
cell-derived exosomes have surface receptors similar to tumor cells, which facilitates the
entry of these drug-containing nanoparticles into tumor cells [154].

Furthermore, the use of exosomes from other living beings, such as cattle, has been
highlighted on the world stage. Studies prove that bovine milk can be a scalable source of
exosomes, acting as carriers for chemotherapeutic or chemopreventive agents. Drug-loaded
exosomes showed significantly greater efficacy than free drugs in cell culture studies and
against lung tumor xenografts in vivo. Tumor-targeting ligands, such as folate, also increase
the targeting of exosomes to cancer cells, resulting in increased tumor shrinkage [155].

The production of exosomes is not limited to the animal kingdom either, as these
particles were first discovered in fungi and plants. As exosomes are products of living cells,
there is always a risk of changing the composition and/or content of these vesicles when
they are produced in an artificial environment [156].

Exosomes, combined with their inherent loading capacity and versatility, can be
engineered to specifically target cancer cells, thereby minimizing off-target effects and
increasing the effectiveness of cancer therapy. Exosomal formulations attenuated the
toxic effects of various drugs in murine cancer models [157]. To make them a viable
nanodispersion and drug delivery platform for cancer therapy, they must be isolated in
large quantities and with a high degree of purity. Exosomes derived from U-87 glioma cells
can be used for the administration of paclitaxel, significantly increasing its cytotoxicity and
being considered a suitable system for the administration of drugs for the treatment of
glioblastoma [158].

Another promising application for the use of exosomes is in the treatment of type
1 diabetes mellitus. Nojehdehi et al. (2018) [159] proved that exosomes derived from
adipose tissue-derived mesenchymal stem cells have immunomodulatory effects on the
inflammatory response of T cells. Thus, they promote the reduction in clinical symptoms
in induced type 1 diabetes mellitus by streptozotocin, having a significant increase in the
levels of interleukins (IL-4, IL-10) and a decrease in the levels of IL-17 and interferon-γ in
agreement with the significant increase in Treg to cell proportion in splenic MNCs.

Alzheimer’s disease can also potentially be treated with the help of nanotechnology
since there is still a lack of effective therapeutic approaches due to the inability of com-
mon drugs to cross the blood–brain barrier. Wang et al. (2019) [160] produced exosomes
containing curcumin to prevent neuronal death in vitro and in vivo, minimizing disease
symptoms. The exosomes were able to improve the solubility and bioavailability of cur-
cumin, increasing the penetration of the drug in the blood–brain barrier and preventing the
death of neurons through the phosphorylation of the Tau protein through the activation of
the AKT/GSK-3β pathway.

Furthermore, exosomes partake in organotropism, are bioavailable and have low toxic-
ity and low immune responses [161]. As exosomes secreted by monocytes and macrophages
can avoid entrapment in mononuclear phagocytes and, at the same time, improve drug
delivery to target cells, they can be used to treat Parkinson’s disease. Thus, Haney et al.
(2015) [162] developed exosomes loaded with catalase, which showed high encapsulation
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efficiency, sustained release, and preservation of catalase against protease degradation. The
nanoparticles were readily absorbed by neuronal cells in vitro, and a considerable amount
was also detected in the brains of mice with Parkinson’s after intranasal administration.
The nanosystem provided significant neuroprotective effects, having the potential to be a
versatile strategy in the treatment of inflammatory and neurodegenerative disorders.

4.1.3. Nanostructured Lipid Carriers

Nanostructured lipid carriers are composed of a mixture of solid and liquid lipids,
which results in a less organized lipid matrix with imperfections in the crystalline structure,
which can lead to a greater accommodation of molecules. These nanoparticles share the
advantages of traditional solid lipid nanoparticles, and the drug release profile can be easily
modulated by varying the composition of the lipid matrix. Despite the presence of liquid
lipids, the carrier’s matrix is solid at room and body temperature [163].

Nanostructured lipid carriers have the benefits of other carrier systems, such as
physical stability, protection against degradation, and the controlled release of incorporated
drugs (hydrophobic drugs are encapsulated, while hydrophilic ones can be dispersed on
their surface). Additionally, this system has advantages over other nanoplatforms available
for drug delivery, such as its easy scaling, absence of organic solvents in its composition
(which guarantees greater safety), compatible constituents for parenteral administration,
and low toxicity [164–167]. Compared to liposomes, for example, they guarantee greater
stability of the encapsulated drug in addition to releasing the drug for a longer period due
to its more crystalline structure [166].

One of the advantages of using these systems is that their nanometric size allows for
better interaction with the stratum corneum, the outermost layer of the epidermis, which
is made up of layers of dead cells. In addition, these carriers prevent the absorption of
the active drug, forming an occlusive film that increases skin hydration by preventing
water loss. They are even good candidates for encapsulating antioxidants, as they protect
the molecule from degradation from light or oxygen, thus being indicated for developing
topical drugs [168]. According to Li et al. (2018) [169], lipid carriers produced for the
cotransport of lapachone and doxorubicin were able to overcome breast cancer multidrug
resistance in MCF-7 tumor cell lines and tumor-bearing mice when compared to the same
nanosystems carrying only one of the drugs or even the drugs in their free form.

Highly biocompatible nanostructured lipid carriers capable of co-administering pacli-
taxel and indocyanine for combined chemotherapy have also been successfully formulated.
It was demonstrated in the study by Ding et al. (2017) [170] that the carriers could ef-
fectively protect the drugs and deliver them to tumor cells. They significantly increased
drug stability, induced increased intracellular absorption of encapsulated drugs, and in-
creased cytotoxicity in cancer cells thanks to the synergistic effects of co-administration.
In hepatocellular carcinomas, different signaling pathways are deregulated, such as the
epidermal growth factor receptor (EGFR) expression pathway. In the study proposed
by Bondì et al. (2014) [171], a lipophilic low molecular weight EGFR inhibitor, which acts
mainly on liver tumor cells, was encapsulated in nanostructured lipid carriers in order to
overcome its low solubility and thus improve its anticancer activity.

Nanostructured lipid carriers, liposomes, and polymeric nanoparticles can also be
modified to obtain reduced immunogenicity, greater bioavailability, and a better pharma-
cokinetic profile. One example is PEG coating for the parenteral administration of oridonine
or docetaxel, which ensured greater drug targeting to the tumor site [172,173]. As there
is a strong correlation between food and disease prevention, new technologies, including
nanotechnology, are being introduced to enrich and produce more functional foods through
isolation studies of their bioactive compounds [174]. The most important types of bioactive
lipids that need to be supplied through food, for example, are fatty acids, carotenoids,
antioxidants (such as tocopherols and polyphenols), and vitamins A and D, which are
lipophilic [175]. In addition, omega-3s, the main essential fatty acids, are susceptible to
oxidative deterioration; therefore, they require stabilization in an aqueous medium and
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protection. Thus, the encapsulation of omega-3 fatty acids appears as an alternative to
reduce oxidation in fortified foods significantly [176]. Lipid carriers have encapsulated
curcumin, quercetin, astaxanthin, vitamin C, vitamin A palmitate, α-lipoic acid, and green
tea extract [177].

Essential oils are volatile constituents composed mainly of terpenes, which give
aromatic plants their characteristic odor and provide pharmacological activities, including
antitumor, antimicrobial, and anti-inflammatory. However, when administered, they have
some difficulties regarding solubility in biological fluids and bioavailability due to their
physicochemical properties. Therefore, delivering these oils to their targets is challenging,
making their encapsulation in nanoparticles convenient [178].

To seek better forms of treatment for diabetes mellitus, Vieira et al. (2020) [179]
proposed the production of nanostructured lipid carriers encapsulating sucupira essential
oil using the high-pressure hot homogenization technique. Encapsulation efficiency was
99.98% with the optimized formulation following a modified release profile. In vitro cy-
totoxicity studies were also carried out in Caco-2 cells, demonstrating the nanosystem’s
non-cytotoxic profile. The essential oil of Piper aduncum, an aromatic plant from the Ama-
zon region with inherent anti-inflammatory activity, was encapsulated by Carneiro et al.
(2022) [180] in nanostructured lipid carriers through the high-pressure homogenization
technique to develop a cutaneous administration of its bioactive compounds. In the end,
the particles obtained a size of around 130 nm, bioadhesive characteristics, and a controlled
release profile with low irritant potential on the chorioallantoic membrane.

Another study sought to develop carriers containing pitavastatin together with the
essential oil of the leaf of Pinus densiflora, which has antineoplastic properties, aiming to
improve the treatment against oral squamous cell carcinoma, which is the most common
epithelial tumor of the oral cavity. The optimized nanosystems had a particle size of 98 nm
and a stability index of 89% with a synergistic effect between oil and pitavastatin in gingival
cancer cells [181]. Furthermore, phospholipids, cholesterol, and PEGylated lipids may
be added to these nanoparticles to improve their properties, including particle stability,
biodistribution, safety, and delivery efficiency to the desired tissues or cells [182].

4.2. Polymeric Nanoparticles

Polymeric nanoparticles are generally biodegradable and biocompatible nanosystems
that have high encapsulation efficiency, which are characteristics that make them great
choices for drug delivery [183]. To be even more biocompatible, modified natural poly-
mers have been used, such as synthetic polyesters and chitosan, which are non-toxic to
the human body [184]. The diameter of polymeric nanoparticles varies between 20 and
1000 nm [139], and they are subdivided into vesicular systems (nanocapsules), in which
the drug is encapsulated in a core surrounded by a polymeric membrane, and polymeric
matrix systems (nanospheres), in which the drug is arranged throughout the polymeric
matrix [184,185].

On the one hand, polymeric nanoparticles are promising vehicles for drugs, as they can
be captured by cells and are well targeted. In addition, it is possible to control the release
pattern of the encapsulated content through the chosen production technique, making them
a promising alternative for the treatment of different types of cancer [184,186]. On the other
hand, they have some disadvantages, such as low reproducibility, degradation problems,
and potential antigenicity, even though the polymers used are natural [184].

Polylactic-co-glycolic acid (PLGA) nanoparticles, one of the most widely used types of
polymers, have been approved by the FDA containing leuprolide acetate (a testosterone
inhibitor) for use in the treatment of prostate cancer (Eligard®). The incorporation of PLGA
allows a slow and sustained release of leuprolide acetate after subcutaneous injection
administration [139]. Zhong et al. (2017) [187] encapsulated doxorubicin in hyaluronic acid
nanoparticles and lipoic acid to treat multiple myeloma, resulting in a more prolonged
and concentrated drug action at the tumor site, which helped protect the adjacent healthy
tissues and organs.
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Several vaccines and immunotherapies targeting B cell maturation antigen (BCMA)
have been investigated to promote T cell activation for cancer treatment. A study proposed
by Bae et al. (2020) [188] developed PLGA-based polymeric nanoparticles loaded with an
immunogenic BCMA72-80 peptide. The result was a nanosystem successfully taken up by
antigen-presenting cells, greater antitumor activity than the free peptide, and cytotoxicity
due to degranulation and cytokines [188,189]. Another study of the antitumor activity of
PLGA nanoparticles containing the programmed cell death ligand (PD-L1) was carried
out by Guo et al. (2020) [60], resulting in a better activation of dendritic cells and T cells.
Zuglianello et al. (2022) [190] produced nanoparticles by the association of pramlintide
with dextran sulfate to serve as a new route of administration of peptides in the mucosa.
The nanoparticles increased the α-helical content of pramlintide, stabilizing the peptide in
its bioactive form. It was the first time that the feasibility of obtaining pramlintide–dextran
polyelectrolyte nanoparticles with a high rate of drug encapsulation, nanometric size, and
monodisperse particles was demonstrated, indicating their feasibility for the development
of transmucosal delivery systems.

Another potential application of polymeric nanoparticles is against bacterial diseases.
A study proposed by Valencia et al. (2021) [191] demonstrated that the production of
this nanosystem associated with lecithin and chitosan encapsulating curcumin had a high
encapsulation rate (92.74 ± 0.01%), high stability, and excellent antimicrobial activity
against Gram-positive and Gram-negative bacteria, being able to preserve the antioxidant
activity of curcumin. Quercetin, a bioactive compound with potential application as
an antioxidant in food matrices, which has a high degree of hydrophobicity and low
bioavailability, was also encapsulated in nanocapsules of lecithin and chitosan to improve
its dispersibility in aqueous media and protect against degradation. An encapsulation
efficiency of 98.31 ± 0.01% and stability of 28 d at 4 ◦C and 30 ◦C were achieved, making
the nanoparticles excellent for potential application in food matrices aimed at developing
new functional foods [192].

In addition, the polymeric nanoparticles can be associated with other materials, obtain-
ing nanocomposites or hybrid to diverse applications [193,194]. Since significantly smaller
quantities of raw materials are needed to obtain the nanomaterials, there is a sustainable
behavior in the process [195,196]. With lighter and more resistant properties, these materials
can reduce energy consumption and the resources needed for production, storage, and
transport [195,197]. The reduced size and superficial area greater than its volume generate
a positive impact on the environment by reducing their carbon footprint compared to their
microscale homologs [8,198,199].

Polymeric Nanocapsules

Polymeric nanocapsules are commonly used as carriers for drugs whose oral ad-
ministration would otherwise be considered pharmaceutically challenging. They can,
for example, improve the oral bioavailability of drugs with low solubility in water (and,
consequently, in biological fluids) and high molecular weight [200]. Also, by manipu-
lating their physicochemical characteristics, such as adding PEG or chitosan, polymeric
nanocapsules can be better directed to the desired targets and better released through the
intestinal mucosa [201–203]. To reach specific targets, it is possible to manipulate polymeric
nanocapsules by inserting, on their surfaces, specific ligands of the desired target, such
as antibodies and peptides, which have specific cell receptors. Tumor cells themselves
can express several molecular markers not expressed in normal tissues, likely becoming
coupling sites for nanocapsules, making cancer treatment more specific [204].

Due to the success of PEGylation of proteins to improve systemic circulation time
and decrease immunogenicity, one of the best examples of surface modifications for better
absorption and targeting to tumors is the incorporation of PEG or polyethylene oxide,
which prevents nanoparticles from being detected by the cells of the immune system as
foreign objects, which allows them to circulate freely in the blood until they reach the tumor.
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Furthermore, PEG coatings also protect the surface against aggregation, opsonization, and
phagocytosis, prolonging the systemic circulation time [205,206].

However, an excessive use of PEG can lead to several undesirable effects on the patient,
since PEG tends to accumulate in body tissues [207]. Thus, polymeric nanocapsules can
be developed by replacing this surfactant with more biocompatible ones when necessary.
The use of poly(2-R-2-oxazoline), a class of polymers with a peptidomimetic structure
belonging to the polyamide family, has been proven to be a promising alternative, as it
presents cytocompatibility, hemocompatibility [208] and furtive behavior [137]. Almeida
et al. (2019) [209] investigated the effect of the Cymbopogon citratus essential oil on
nanocapsules under HaCat keratinocyte cells. Nanoparticles were able to control oil release
and reduce its toxicity. Oregano oil was another essential oil successfully encapsulated
in chitosan nanoparticles. The encapsulation took place through a method that produced
an oil-in-water emulsion and ionic gelation of chitosan with sodium tripolyphosphate.
In vitro assays showed a slow-release profile of the drug, which would lead to an increase
in its bioavailability [210].

PEG-coated polymeric nanoparticles have also been produced to encapsulate garlic
essential oil. Its insecticidal activity against the beetle Tribolium castaneum was evaluated.
The encapsulated oil generated particles with less than 240 nm and more than 80% encap-
sulation efficiency, with the anti-insecticide action of the encapsulated oil being increased
by seven times and maintained for five months, while the effectiveness of the free oil at the
same concentration was only 11% [211].

Copaiba essential oil was another natural oil successfully encapsulated by Xavier-
Junior et al. (2018) [212] in poly(isobutyl cyanoacrylate) nanocapsules through an original
method of interfacial polymerization using chitosan as a stabilizer. The optimized nanocap-
sules showed a diameter of 473 nm, zeta potential of +34 mV, and oil encapsulation
efficiency of 74%, including 55.5 µg of β-caryophyllene/mg of nanocapsules. In a sub-
sequent study, Xavier-Jr et al. (2019) [213] investigated the mucoadhesive properties of
paclitaxel-loaded chitosan-poly (isobutyl cyanoacrylate) core–shell nanocapsules for oral
drug delivery. Nanoparticles presented a hydrodynamic diameter of 470 nm with a low
polydispersity index, drug-loading capacity of 74 ± 1%, and high stability in the simulated
gastric medium for 120 min and in storage at 4 ◦C for six months. These results make them
promising oral delivery systems for anticancer molecules and bioactive compounds from
the essential oil with a probable synergic effect.

Furthermore, Ivermectin, an antiparasitic widely used in medicine, was also encap-
sulated in nanocapsules of poly(ε-caprolactone) and pumpkin seed oil to increase its low
oral bioavailability. The nanocapsules showed high encapsulation efficiency (98–100%) and
stability at 4 and 25 ◦C for 150 d in addition to greater anthelmintic activity than the free
drug. It also showed reduced toxicity against macrophages and fibroblasts [214]. Non-toxic
and environmentally degradable polymers, such as polysaccharides (e.g., chitosan and
hyaluronic acid), alginate, dextran, collagen, or synthetic polymers that have received FDA
approval, including poly (lactide-co-glycolic acid) (PLGA) and poly(ε-caprolactone) are
then advisable to maximize the safety of this type of nanoparticles [182].

4.3. Metallic Nanoparticles

Inorganic nanoparticles have been recently studied for drug delivery. In general, they
consist of two areas: a core containing the inorganic component (e.g., gold, silver, or iron
oxide) and a region that surrounds it, usually composed of organic polymers, which will
mediate the interactions with the desired physiological components, protecting the material
disposed of the core and directing it to the appropriate location [134].

Metallic nanoparticles have high stability, purity, optical and electromagnetic proper-
ties and are easily susceptible to surface modifications. Furthermore, when metal oxides
are made into nanoparticles, they can have excellent photoluminescence, antibacterial,
and antifungal properties, which are not always present in their macro forms [215]. The
US Food and Drug Administration and the International Agency for Research on Cancer
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consider zinc oxide (ZnO) and titanium oxide (TiO2) to be “GRAS” (generally recognized
as safe) [216].

Iron oxide nanoparticles also have super magnetic properties and can be produced
by associating a biocompatible polymer with a Fe3O4 or Fe2O3 core. In addition to their
application in targeted drug and gene delivery, iron oxide nanoparticles can be used in
biosensors and magnetic fluid hyperthermia, which is a recent cancer treatment tech-
nique [217–219]. Zhang et al. (2015) [220] produced magnetic iron oxide nanoparticles with
modified dimercaptosuccinic acid. Both bortezomib (BTZ), a first-line proteasome inhibitor,
and gambogic acid (GA) have been encapsulated to enhance their anticancer properties.
Combining BTZ and GA with iron nanoparticles resulted in a greater inhibition of cell
proliferation and greater induction of cell apoptosis compared to the same free drugs at an
equivalent dose [220]. Fe3O4 nanoparticles loaded with paclitaxel also have been synthe-
sized to increase the low solubility of drugs in water, biological fluids, and most excipients
used by the pharmaceutical industry. Paclitaxel is one of the most effective antineoplastic
drugs identified in recent decades mainly because it has demonstrated action against a
broad spectrum of cancers, such as ovarian, breast, glioma, and multiple myeloma. Results
have shown excellent stability and a greater inhibition of tumor volume of nanoparticles
when compared to the free drug with clear inhibitory effects on tumor growth in animal
models [221,222].

Gold and silver nanoparticles are, on the other hand, the most common metallic
nanoparticles used as drug carriers and have become the subject of intensive research [223].
Depending on the size presented, gold nanoparticles can be used to diagnose and treat
cancer [224,225]. Acute cytotoxicity data suggest surface-functionalized gold nanoparticles
are not inherently toxic to healthy human cells. However, nanoparticles with a diameter
<2.0 nm have shown high toxicity due to their ability to cross the nuclear pores and enter
the nucleus. Gold nanoparticles larger than 10 nm are characterized by lower cytotox-
icity [226]. Then, it is still necessary to study its complete toxicity profile, especially in
the long term [227], even though their mechanism of action is cellular uptake. In addi-
tion, gold nanoparticles pose significant environmental challenges, including the potential
release of metal ions. The structural modification of gold nanoparticles provides opportuni-
ties for high-quality production, thereby mitigating concerns about their environmental
toxicity [228].

When loaded with oligonucleotides, the resulting gold nanoparticles are called spheri-
cal nucleic acids [229], which are nanostructures with a high capacity for internalization by
various types of cells but presenting low toxicity in healthy cells. Nanoparticles functional-
ized with oligonucleotides, such as siRNAs, can be used in different applications related to
the regulation of genes or immunomodulatory processes, as described for the treatment of
diseases such as breast cancer [230], glioblastoma [229], psoriasis and diabetes [231].

Silver nanoparticles, on the other hand, can be used as biosensors due to their optical
properties and ability to absorb and scatter light [232,233] as well as for drug delivery,
which is mainly due to their ability to conjugate with antibodies, ligands, and drugs [234].
It was discovered that silver nanoparticles induce cytotoxicity through the apoptosis and
necrosis of several cells, including tumor cells, in addition to inhibiting or decreasing
DNA damage, the generation of reactive oxygen species, and the inhibition of stem cell
differentiation [235]. Nanoparticles can be used to deliver a combination of drugs, including
salinomycin, gemcitabine, and camptothecin [236].

Gemcitabine encapsulated in silver nanoparticles demonstrated a synergistic effect
by generating more cytotoxicity and apoptosis in ovarian cancer cells than when using
the drug in its free form, as shown by Yuan et al. (2017) [237]. In addition, it was noted
that they can improve the responsiveness to gemcitabine in the same cancer cells, which
consequently leads to an increased production of pro-apoptotic genes and the activation of
caspases 3 and 9 [236,237].

Silver nanoparticles have also been used as antiviral agents due to their inhibitory
activity against several types of viruses, such as some coronavirus strains, hepatitis, in-
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fluenza, herpes, and HIV, among others [238–240]. They contribute to viral inactivation
due to reactions with sulfide, amino, carboxyl, phosphate, and imidazole groups [241] in
addition to blocking viral entry into the cell and, consequently, preventing infection [242].
The positive results related to the prevention of H3N2 influenza virus infection by silver
nanoparticles have been shown in both in vitro and in vivo studies, which confirmed that
the growth of the virus hemagglutinin activity is inhibited as the dose increases [240].

In addition, silver nanoparticles can also be designed to increase the efficacy, stability,
specificity, and biocompatibility of antibiotics [243] through different mechanisms of action,
many of which are based on adherence to microbial cells as well as their penetration, the
generation of reactive oxygen species and the modulation of transduction pathways [244].
Because they have such a small diameter, they can penetrate bacterial cells to generate an
inhibition of the enzymatic systems of the respiratory chain to impair DNA synthesis [245].

As shown in this section, nanoparticles from different sources, whether organic or
inorganic, lipids or polymers, have numerous advantages compared to the usual pharma-
ceutical vehicles, being recently deeply studied either for the improved delivery of drugs
already used in clinical practice or for those that have not yet reached the market. Thus,
technological nanosystems are extremely promising for treating various diseases, including
those previously incurable, such as cancer. Given the numerous articles published in
recent years on nanotechnology in drug delivery, we decided to simplify access to this
knowledge by compiling several studies into a comprehensive table, aiming to provide a
quick overview of the various types of nanomaterials and their therapeutic applications
(Table 1).

Table 1. Main nanosystems and some of their applications in drug delivery.

Nanosystem Composition Therapeutic Application Characterization Reference

Liposome

PEG-coated liposomal doxorubicin Treatment of breast cancer — [134]
Liposome system carrying prostaglandin

E-1 (PGE-1) Treatment of cardiovascular diseases — [146]

Liposome modified with pyrrolidinium
surfactants containing a hydroxyethyl

fragment

Transdermal delivery of
non-steroidal anti-inflammatory

drugs
— [149]

Liposome coated with PEG Ischemic myocardium — [147]

Exosome

Exosomes by bovine milk Treatment of lung tumor Size < 80 nm; PDI of
0.22 ± 0.06 [155]

Exosomal formulations Treatment of cancer — [157]
Exosomes derived from adipose

tissue-derived mesenchymal stem cells
Treatment of type 1 diabetes

mellitus.
Size ≤ 100; diameter of

41.1 nm [159]

Exosomes containing curcumin Treatment of Alzheimer’s disease — [160]

Nanostructured
lipid carrier

Nanostructured lipid carriers produced for
cotransport of lapachone and doxorubicin Treatment of breast cancer — [169]

Nanostructured lipid carriers encapsulated
with lipophilic low molecular weight

EGFR inhibitor
Hepatocellular carcinomas — [171]

Nanostructured lipid carriers with omega-3
fatty acids Reduce oxidation in fortified foods — [176]

Nanostructured lipid carriers encapsulating
sucupira essential oil Treatment for diabetes mellitus

Size 148.1 ± 0.9815 nm; PDI
0.274 ± 0.029; ZP from
−0.00236 ± 0.147 mV

[179]

Nanostructured lipid carriers encapsulating
essential oil of Piper aduncum Anti-inflammatory activity — [180]

Nanostructured lipid carriers encapsulating
essential oil of the leaf of Pinus densiflora

Treatment against oral squamous
cell carcinoma

72 ± 1.5 and 120 ± 5.1 nm;
PDI 0.1 to 0.29; stability index

of 89%
[181]

Polymeric
nanoparticle

Polylactic-co-glycolic acid
(PLGA) nanoparticles Treatment of prostate cancer — [139]

Nanoparticles of hyaluronic acid and lipoic
acid encapsulated with doxorubicin Treatment of multiple myeloma Size of 183 nm [187]

PLGA-based polymeric nanoparticles
loaded with an immunogenic

BCMA72-80 peptide
Treatment of cancer

Size 172 ± 0.73 nm; PDI of
0.20 ± 0.01; Zeta potential of

−1.16 ± 0.18 mV
[188]

PLGA nanoparticles containing the
programmed cell death ligand (PD-L1)

Activation of dendritic cells
and T cells — [60]
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Table 1. Cont.

Nanosystem Composition Therapeutic Application Characterization Reference

Iron oxide
nanoparticle

Magnetic iron oxide nanoparticles with
modified dimercaptosuccinic acid

Inhibition of cell proliferation and
greater induction of cell apoptosis Diameter of 18.7 ± 5.61 nm [220]

Fe3O4 nanoparticles loaded with paclitaxel Treatment of tumor — [221]

Gold nanoparticle
Gold nanoparticles loaded with

oligonucleotides
Regulation of genes or

immunomodulatory processes — [229]

Gold nanoparticles Treatment of cancer Size 4 nm [224]

Silver nanoparticle

Gemcitabine encapsulated in silver
nanoparticles Ovarian cancer cells Size 20 nm; PDI 0.123; Zeta

potential −33 mV; [237]

Silver nanoparticles Prevention of H3N2 influenza virus

Diameter of around
9.5 ± 0.8 nm; stable over

6 months at room
temperature

[240]

5. Nanomaterials for Imaging and Diagnosis

As molecular imaging has improved biomedical imaging, new tools have been devel-
oped to address clinical needs such as disease staging, stratification, and the monitoring
of treatment response [246]. Nanomaterials, as defined by the International Organization
for Standardization (ISO) (ISO, 2023), have been proposed as new candidates for imaging
and diagnosis tools in various ways depending on their properties and modifications.
Nanoparticles can be introduced into the body in a noninvasive manner, and when skill-
fully engineered, they can attain tissue specificity by utilizing targeting components [247].
These systems possess an inherent multifunctional and modular nature, allowing them to
facilitate tissue targeting and selectivity, and the chemistry of nanoparticles can be adjusted
to influence factors such as circulation half-life [205,248,249].

It is possible to adjust and expand the surface functionalization of nanomaterials in
terms of their physical, chemical, and biological properties (Figure 4). Multifunctional
nanosystems can be modified by exploiting surface functionalization in one of three ways:
(i) by adding new functional molecules to the surface, (ii) by covering the surface with an-
other layer, or (iii) by modifying their chemical termination directly on the surface [250,251].
When modified on the surface, the new nanoplatforms exhibit multiple actions, combining
therapy and diagnosis to produce a theragnostic response [252,253]. As well as protect-
ing drugs from degradation and controlling their bioavailability and release, functional
coatings prevent the degradation of drugs or bioactive agents [254].
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Theragnostic applications use functionalization as a powerful technique to use nanopar-
ticles in the medical field. The advantage of this approach is that it can enhance therapeutic
systems’ versatility and widen the range of bioimaging modalities to be used [255]. The
integration of therapeutic functionality and imaging capabilities will offer benefits for
monitoring drug delivery effectiveness, detecting potential off-target effects and toxic-
ity, and observing the therapeutic response. The result has been the development of a
broad range of nanotherapeutic agents, including liposomes, polymeric nanoparticles, and
coated metal nanoparticles, for various imaging-guided techniques. There are various
molecular imaging techniques available to diagnose diseases, including optical imaging,
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Single
Photon Emission Computed Tomography (SPECT), though their sensitivity and resolution
differ [23,246,256–260]. In general, nanotherapeutic agents can be modified by targeting
moieties to enhance photoluminescent effects for optical imaging [261]. Additionally, 2D
nanomaterials can be used for MRI, which provides various information related to living
subjects’ anatomical, physiological, and molecular processes [23,262].

As a result of inherent limitations (photobleaching or poor contrast generation), or-
ganic and organometallic imaging agents were often used as imaging agents. Several
classes of inorganic nanoparticles have been developed to overcome these limitations in
clinically relevant imaging modalities [263]. As diverse ligands can envelop nanoparticles,
they exhibit robust affinity and distinctiveness, promoting interaction with specific sets of
target cells. This attribute enables a notable enhancement in their enduring association,
presenting an escalation of four to five orders of magnitude [263,264]. Most nanoscale imag-
ing agents typically exceed 10 nm in size, evading renal elimination and prolonging their
circulation time compared to smaller counterparts, spanning minutes versus days [249,265].
This advantageous trait facilitates iterative image scrutiny, obviating the requirement for
additional nanoparticle administration [266].

The contrast in the MRI is generated based on variances in the density of hydrogen
protons along with the longitudinal T1 (spin–lattice relaxation time) and transverse T2
(spin–spin relaxation time) relaxation characteristics of protons within the soft tissue [267].
Thus, it has been demonstrated by J. Y. Park et al. (2009) [268] that ultra-small gadolinium
oxide (Gd2O3) nanoparticles with a relaxivity value of 9.9 nM−1s−1 can be used in clinical
imaging as T1-weighted MRI agents. By increasing the particle size from 4 to 12 nanometers,
Jun et al. (2005) [269] have developed Fe3O4 nanocrystals as size-dependent T2-weighted
MRI agents. Tong et al. (2010) [270] exhibited that superparamagnetic iron oxide nanopar-
ticles (SPIONs) measuring 14 nm in diameter, which were enveloped with hydrophilic
polymer polyethylene glycol-phospholipids, exhibited a remarkable 200-fold increase in T2
relaxivity (385 ± 39 mM−1s−1) in comparison to the uncoated Fe3O4 particles.

Wang et al. (2013) [271] have created hybrid nanocomposites by incorporating
gadolinium-doped layered double hydroxide (LDH) and gold (Au) combined with the
anti-cancer medication doxorubicin (DOX). These nanocomposites exhibited a longitudinal
relaxivity value of 6.6 mM−1s−1. Importantly, these nanocomposites displayed minimal
cytotoxic effects when tested against both normal fibroblast (L929) and cervical cancer
(HeLa) cells. Furthermore, 2D nanomaterials have the potential to serve as diagnostic
agents by integrating radioisotopes like 57Co, 64Cu, 67Ga, and 68Ga into their crystal
lattice. This is facilitated by their chemical stability and minimal toxicity within in vivo
systems [272–274].

Through nanotechnology, experimental data visualization can be enhanced through
optical imaging, enabling heightened accuracy and resolution both in space and time. An
approach to this concept relies on functionalized semiconductor nanocrystals, which are
also known as quantum dots. Unlike bulk materials, nanoscale particles exhibit distinct
quantum mechanical properties encompassing electrical, thermal, and optical character-
istics. An integral component of these devices is heavy metals (cadmium–selenium or
cadmium telluride), an unreactive zinc sulfide shell, and external coatings that can be
systematically engineered to fulfill specific functional needs using specialized bioactive
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compounds on their surfaces [275]. It has already been extensively demonstrated that
quantum dot labeling can enable single particle tracking within live cells in vitro across a
wide range of cell types [276].

Employing nanomaterials for optical imaging also presents a promising avenue for
the enhanced visualization of cerebral injuries, such as traumatic brain injury. In this
context, necrotic brain cells were selectively targeted through the application of PEGylated
poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which encapsulated both perfluorocar-
bons and near-infrared fluorophores. Using cyanine dyes, including IRDye 800CW, these
nanoparticles were tracked by optical imaging and 19-fluorine MRI, presenting accumu-
lation in blood regions for prolonged periods, effectively homing in on traumatic brain
injury-damaged tissue. A significant advantage of these necrosis-targeting nanoparticles is
that they can provide quantitative three-dimensional insights into deeper tissues via MRI
as well as rapid qualitative optical monitoring of TBI, making them excellent candidates
for clinical diagnosis and assessment [277].

Within the realm of varied nanomaterial advancements, metal-based inorganic nanopar-
ticles possessing elevated atomic numbers and substantial X-ray attenuation coefficients
exhibit significant promise in enabling precise bioimaging applications, serving as con-
trast agents in computed tomography [278]. Gold nanoparticles (AuNPs) demonstrate
remarkable photothermal characteristics, making them potential alternatives to lasers [279].
These AuNPs possess the capability to absorb light within the near-infrared spectrum
and subsequently transform this energy into heat. The photothermal attributes of AuNPs
have been extensively examined through both in vitro and in vivo investigations, involving
the scrutiny of glioma cells and mouse models [280]. These materials possess notable
X-ray attenuation capabilities and a substantial K-edge energy (80.7 keV) with the poten-
tial to deliver enhanced imaging contrast when compared to iodinated contrast agents at
equivalent concentrations [281]. Gold nanoparticles (4 nm and 15 nm) generated a more
persistent and pronounced contrast within blood vessels compared to their larger coun-
terparts. This heightened contrast arises from the diminished recognition and clearance
of smaller material by the mononuclear phagocyte system as they navigate the liver and
kidney, ultimately leading to an elevated concentration of nanoparticles within the blood
pool [282]. Engineered gold nanorod (AuNR) nanoprobes, modified with Arg-Gly-Asp
(RGD), exhibited attributes of non-toxicity, substantial contrast enhancement, and extended
imaging duration [283].

Another method worthy of consideration is the exploration of photoacoustic imaging
(PAI), which furnishes molecular insights by analyzing the multispectral photoacoustic (PA)
reactions within biological tissues [284]. Consequently, it is applicable for functional imag-
ing purposes, including the tracking of hemoglobin oxygen saturation levels (sO2) [285],
the examination of melanin constituents [286–288], and detecting lipids [289].

It is important to remember that nanomaterials, despite their small scale, possess
unique physicochemical properties, which allow them to form nanostructures with greater
surface-to-volume ratios compared to most nanomaterials. This ample surface area allows
the attachment, absorption, and transport of various molecules like small-molecule drugs,
probes, RNA, DNA, and proteins by nanostructures. As a result of their adjustable size,
surface features, and structural configurations, nanomaterials have significant durability,
significant capacity, inherent hydrophilic and hydrophobic qualities, and versatile delivery
methods. Due to these attributes, nanomaterials are highly sought after in a wide range
of medical fields [249,290]. Table 2 represents some notable studies exemplifying these
endeavors in the development of technology to diagnosis.
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Table 2. Nanosystems formulated to improve the diagnosis of several diseases.

Nanosystem Characteristics Application Main Results Reference

Bismuth oxide
nanoparticles
(HA-Bi2O3)

- Bismuth oxide
nanoparticles

Exhibit great promise for CT
imaging-guided radiotherapy in
the diagnosis and treatment of

tumors

[291]

Perfluorocarbon
liposomes with gold

nanospheres

Size: 200 nm;
light-to-heat

conversion effect under
808 nm by NIR laser

irradiation

Ultrasound
imaging-guided

photothermal
chemotherapy

A remarkably enhanced
ultrasound signal was detected.

Exhibited a prominent
photothermally reinforced

chemotherapeutic effect

[292]

Nanobubble-paclitaxel
liposome (NB-PTXLp)

complexes

Entrapment efficiency
of 85.4 ± 4.39%

Conjugation efficiency
~98.7 ± 0.14%)

Size: 200 nm

Ultrasound imaging
and

ultrasound-responsive
drug delivery in cancer

cells

The developed nanobubbles were
found to exhibit more than 1-week
echogenic stability as opposed to
6 h stability of the commercially

available ultrasound contrast
agent SonoVue

[293]

Magnetic-carbon-
quantum-dots-probe-

labeled apoferritin
nanocages

Average diameters of
~5 nm

Polydispersity index of
Gd-CDs was 0.201

Bioimaging and
targeted therapy

Unique green photoluminescence
and almost no toxicity

Could serve as an excellent T1
contrast agent for MRI

[41]

Deoxyglucose-
conjugated persistent

luminescent
nanoparticles

Hydrodynamic
diameter: 500 nm.
Zeta potential was

about +1 mV

Diagnostic application
in fibrosarcoma tumor

model

Significant accumulation of
nanoparticles to the tumor site.
They showed a higher killing

ability for cancer cells compared to
normal cells

[294]

Functionalized
upconverting

nanoparticles (UCNPs)

Particle size of
29.0 ± 0.4 nm.

Ligands added to the
surface: 32 nm for

ligand-free UCNPs, to
50 nm for EY-UCNPs,

and 100 nm for the
EY-PEG-UCNP, with

polydispersity indexes
of 0.6, 1.2, and 0.4,

respectively

Nanophotosensitizers
and deep tissue

bioimaging agents for
simultaneous

therapeutic and
diagnostic applications

The functionalized UCNPs present
deep tissue NIR-II fluorescence
under 808 nm excitation, thus

demonstrating their potential as
bioimaging agents in the NIR-II

biological window

[295]

Multicore magnetic
iron oxide

nanoparticles

Low hydrodynamic
size of 35 nm, with

good monodispersity,
PDI < 0.13. Stability

over at least 6 months

Mediators for
AC-magnetic field

hyperthermia and as
contrast agents for MRI

Potential application in MRI and
magnetic hyperthermia. PEG can
stabilize the nanoparticles, which
can improve deposition. As well,
there is potential for suspensions
as T2-contrast agents with good

bio-stability and persistent
magnetic responses following

uptake, which can mark liposome
deposition and may provide local

hyperthermic hot spots

[296]

Gold nanoparticles
radiolabeled with

99mTc.

Au-citrate NPs with
13.8 ± 1.2 nm

Au-MUAM-PADA **
NPs with 14.0 ± 0.9 nm,

Au-MUAM-PADA-
99mTc(CO)3 NPs with

13.9 ± 1.2 nm

Theragnostic
applications

The multifunctional Au NPs could
be used for targeted drug delivery
and imaging of cancer cells as well
as for monitoring the effectiveness

of treatment

[297]
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Table 2. Cont.

Nanosystem Characteristics Application Main Results Reference

Gold nanorods

Particle sizes of
177.9 ± 19.3 nm for

eAuNR
(PDI 0.46 ± 0.14) and

149.5 ± 9 nm for
mAuNR

(PDI 0.32 ±0.07) ***

Nanomaterials for
target delivery

Important delivery differences
exhibited by extracellular vesicles
(EVs) or cell membranes- coated
nanorods, an understanding of
which may be important to the

design and development of
nanomaterials that use these

coatings for target and delivery

[298]

rGO-AuNPs- PEG * Size: 160 nm Photothermal agent

Very strong SERS signal, NIR-II PA
signal and high photothermal

efficiency against tumor upon 1061
nm laser irradiation

[299]

Lanthanide-activated
nanoparticles -

Biological application:
bioimaging, X-ray

imaging, MRI,
oncotherapy,

photodynamic
therapy, etc.

Nanosystems with multiple
modalities of bioimaging,

oncotherapy, and
neuromodulation

[300,301]

Core/shell lead
sulfide/cadmium

sulfide (CdS) quantum
dots (CSQDs)

Core size to ~5.4 nm for
~1600 nm emission,
forming an ~1.5 nm

thick CdS shell

Bright fluorescent
probe emitting at

~1600 nm in the NIR

Exhibited long blood circulation
time, real-time imaging, CSQDs
are excreted through the biliary
pathway without toxicity effects

[302]

SPIONs (iron-oxide
NPs)

Surface modification
1,5-dihydroxy-1,5,5-

tris-phosphonopentyl-
phosphonic acid

(di-HMBPs)

Osteoporosis High affinity for calcium
ions/hydroxyapatite for MRI use [303]

Carbon nanotubes 99mTc-labeled carbon
nanotubes

Active bone
metabolism

High affinity for hydroxyapatite
for photoacoustic imaging use [304]

Quantum dots Surface modification
with various antibodies

Binding to unique cell
populations in bone

marrow
Targeted cell imaging [305]

* Gold nanoparticle-coated reduced graphene oxide functionalized with PEG. ** Picolylamine Diacetic Acid
(PADA); Mercaptoundecylamine (MUAM); Surface-Enhanced Raman Scattering (SERS), Second Near Infrared
(NIR-II); Quantum Dot (QD); Commercial Quantum Dots (Qdots); Fetal Bovine Serum (FBS); monoclonal Antibody
(mAb) anti-mouse CD31; Antibody (Ab). The numbers 625 and 612 stand for wavelength in nanometers, and NB
stands for norbornene. *** EVs/AuNRs (eAuNR), and cell membrane/AuNRs (mAuNR) systems.

6. Biological Risks and Biocompatibility of Nanomaterials

Nanotechnology brings numerous benefits to the health field, which is mainly due
to the physicochemical properties of nanomaterials. But the nanoparticles may also have
completely different characteristics from macroparticles, including unfavorable ones [216].
There are concerns associated with the accumulation of nanomaterials in the body [306] and
its consequent toxicity in vivo [307,308] due to the reactivity of nanomaterials on biological
tissues [309]. Some routes of exposure are inhalation, oral, topical, and intravenous. This
can lead to agglomeration/aggregation, dissolution, and the formation/evolution of the
corona, among others, affecting the toxicokinetics and biological effects of nanomaterials in
the body [182]. Thus, the surface area, size, stability, and solubility in water, among oth-
ers [290], are some factors that need to be investigated to ensure the safety of nanomaterials.
Barreto et al. (2019) [310] showed that the bioaccumulation and impact of AuNPs were
influenced by the nanoparticle size, surface coating, surface charge, and state of aggrega-
tion or agglomeration. Indeed, the size is a crucial factor for these nanosystems. Due to
their small size, cellular interactions become greater. Thus, nanoparticles can interact with
the cell membrane surface, acting as ligands to the receptors in this region, allowing for
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more cellular interaction [311]. In addition, the reduced size of nanoparticles facilitates the
penetration of nanomaterials in some cell types, such as endothelial, pulmonary epithe-
lia, intestinal epithelium, alveolar macrophages, neuronal cells, and other macrophages,
through cellular diffusion [312]. As a consequence, genotoxicity, inflammation, oxidative
stress, apoptosis, and necrosis can occur, leading to numerous complications, such as
fibrosis, carcinogenesis, and cardiovascular problems [313]. Furthermore, nanomaterials
(NMs) can cause defects or changes in DNA [314] and inflammation through the release of
cytokines and chemokines [315]. Oxidative stress caused by NMs can also lead to defects
in cell signaling [316].

It is also important to highlight that the accumulation of NMs in the intracellular
environment facilitates their release into the bloodstream and can be transported to other
organs, including the liver [315], kidneys [317], spleen [318], lymph nodes [319], heart [320]
and even the brain [321]. Nanomaterials can still cause damage in locations further away
than the exposure site, significantly increasing the risk in the long term. The respiratory
system, gastrointestinal tract, and contact with the skin [306] are some means of exposure
since the organs are directly in contact with the external environment.

In the respiratory system, the mechanism of toxicity occurs primarily through cel-
lular diffusion, where tiny particles of nanomaterials enter the cell through this means
of transport. According to Thu et al. (2023) [306], the nanotoxicity of this system occurs
when nanoparticles interact undesirably with respiratory tissues due to free radicals, pro-
ducing oxidative stress. Consequently, unwanted complications may appear, such as cell
membrane damage, lysosomal damage, DNA deterioration, mitochondrial damage, etc.

The liver, in turn, is the organ most vulnerable to nanotoxicity from nanomaterials
since ultrafine particles can be deposited in the liver and accumulate [317] over a long
period [322]. As the organ responsible for the detoxification of harmful chemicals present
in the system [313], the liver plays a crucial role in synthesizing proteins, hormones, and
metabolism. Any damage to this organ can lead to several complications, such as multiple
organ failure, the accumulation of toxic substances, dysregulation in the immune system,
and the poor absorption of nutrients, among others.

The kidneys are next in line as the organs most susceptible to the accumulation of
nanoparticles. They are responsible for blood filtration, fluid regulation, mineral regulation,
and blood pH, among other functions [323]. Thus, if NMs are present in the bloodstream,
they will be sent to the kidneys for filtration. Therefore, nanoparticles in this organ can
also cause a series of complications, among the main ones nephrotoxicity and kidney
damage [324].

The shape of nanomaterials is another parameter that influences the interaction with
biological systems; that is, it is directly related to the absorption of nanoparticles in the
cellular environment, causing toxicity [325]. Still, the surface chemistry of the nanomaterial
can alter its affinity with water and generate aggregations [326].

Figure 5 shows the forms of exposure, entry methods, and mechanisms in the intra-
cellular environment of nanomaterials. NMs can be dispersed to other tissues through
endocytosis [327], phagocytosis [328], pinocytosis [329], and transcytosis [330] (movement
between epithelial and endothelial cells).

Endocytosis encompasses large particles present in extracellular fluid [331] and can be
divided into two types: phagocytosis and pinocytosis. Phagocytosis occurs in specialized
cells composed of immune system cells (neutrophils, macrophages, dendritic cells, and
monocytes) and encompasses particles larger than 500 nm through a receptor-mediated
process [332]. Proteins (opsonins) then mark the nanoparticles still in the bloodstream
and make them visible to macrophages [333]. On the other hand, pinocytosis occurs
through three different mechanisms: macropinocytosis, adsorbent-mediated pinocytosis,
and receptor-mediated pinocytosis. In general, in pinocytosis, cellular uptake occurs in
the extracellular fluid. Thus, macropinocytosis is cellular uptake in a nonspecific manner
(particles > 1 µm) and is initiated by the stimulation of some growth factors, such as
tyrosine kinase [334]. Adsorbent pinocytosis is the nonspecific binding of solutes to the cell
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membrane (>200 nm); that is, NMs bind nonspecifically to some complementary binding
sites on the cell surface [329] such as the binding of cationic particles to a negatively charged
cell surface. Finally, receptor-mediated pinocytosis (mediated by claritin and caveolin)
is highly selective and specific. The claritin-mediated mechanism allows the passage of
particles (between 120 and 150 nm) in claritin-coated vesicles [335]. Caveolin-mediated
pinocytosis enables the selection of 20–40 nm particles [336].
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In addition, transcytosis is a process in which receptors and ligands are transported
from one side of the cell to the opposite location. In other words, biomacromolecules are
transported through biological barriers within one or more membrane-bound transporters.
This mechanism is one of the main dispersers of nanomaterials within the organism, such as
the transcytosis of nanoparticles from the epithelium of the respiratory tract into the blood
circulation or lymphatic vessels [337–340]. This process is usually mediated by receptors
such as claritin and caveolin.

Some strategies have been developed to mitigate the adverse effects and possible
toxicity of nanosystems, such as manipulating and modifying the physical–chemical com-
position of their surfaces. An example is the coating of silica or biodegradable polymers
to control the disintegration of particles and the release of kinetics of metal ions. Another
strategy would be the development of nanoparticles in cellular plasma membranes, such as
membranes derived from erythrocytes, which generate minimal protein corona formation,
reducing the toxicity and immunogenicity caused [341,342]. Iron oxide nanoparticle (IONP)
toxicity can also be modulated and mitigated by choosing potential use pathways, as shown
by [343].

It is also important to emphasize the biocompatibility of nanomaterials, which differs
from toxicity. Toxicity encompasses the adverse effects caused by substances in living
organisms. Biocompatibility is the ability of a material to perform its function in the intra-
cellular environment without causing undesirable reactions [344]. In other words, when
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a foreign body encounters the human body, it generates a response. If this response is
undesirable, the material becomes incompatible and toxic. The biocompatibility of nano-
materials is highly dependent on their surface properties, size, shape, functional groups,
concentration, and dosage [345]. According to the Registration, Evaluation, Authorization,
and Restriction of Chemical Substances (REACH), the nanomaterials must meet the safety
standards adopted for conventional chemicals, such as evaluation effects, exposure, and
risk characterization [346].

In vivo testing is crucial to demonstrate the safety and biocompatibility of nanomate-
rials. The type of nanomaterial and its application directly determine the type of animal
used, the drugs, the administration, the dosage, and the other parameters used [347]. In
addition, there is a safety protocol to affirm the biosafety of nanomaterials and associated
devices: ISO/TR 10993-22:2017 part 22 [348]. This document informs the necessary tests for
nanomaterials, such as (i) cytotoxicity, (ii) genotoxicity, carcinogenicity, and reproductive
toxicity, (iii) immunotoxicity, irritation, and sensitization, (iv) hemocompatibility, (v) sys-
temic toxicity, (vi) pyrogenicity, and (vii) implantation [349]. Therefore, the challenge of
approving nanosystems for biomedical engineering applications requires an assessment of
fate and toxicity accomplished through different pre-clinical and clinical phases approved
by specific regulatory agencies.

7. Conclusions

The intersection of nanotechnology with biomedical engineering has generated sig-
nificant health impacts with advances in diagnostics and imaging, nano-biosensor de-
velopment, controlled drug release, and nanomaterials in regenerative therapies, among
others. The possibility of directing specific target cell therapies and detecting biomarkers in
the initial stages is an example of how this synergy between areas has favored medicine.
Drug-controlled release systems have expanded therapeutic options and improved the
effectiveness of treatments. Nanofibers and nanowires have a central role as scaffolds in
tissue engineering. The high ratio of surface area/volume, flexibility, and porosity create
conducive environments for cellular regeneration and interaction, assisting in treating
injuries and diseases. Nanomaterials for images and diagnosis also open a remarkable
boundary in biomedical engineering. Its intrinsic versatility and multifunctionality, directed
specificity, lasting image patterns, and the ability to cross barriers previously considered
insurmountable offer unprecedented accuracy and insight into the complexity of the hu-
man body. However, there are still challenges to overcome in the nanotechnology and
biomedical engineering connection, such as the stability and uniformity of nano-biosensor
functionalization; biomimetic scaffolds, according to the biological complexity of tissues;
nanomaterial production scale; and security guarantee, potential toxicity, and long-term
biocompatibility. Given this, research should continue to investigate the influence of
nanoparticle structure and diameter, preparation methods, surface modifications, and,
especially, the interaction of nanomaterials with organs and tissues, directing target ap-
plication. Nanotoxicological and sustainable use studies of nanomaterials are essential
to assess their safety and regulation, including evaluations of their bioavailability, and
biological impacts. Therefore, the potential of these technologies is immense, but it must be
explored with a multidisciplinary perspective in medicine. Including professionals from
various areas will assist in developing reproducible and viable safe devices for the market
and society.
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