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Abstract: Dinucleoside polyphosphates (NpnNs) are considered novel signalling molecules involved
in the induction of plant defence mechanisms. However, NpnN signal recognition and transduction
are still enigmatic. Therefore, the aim of our research was the identification of the NpnN receptor
and signal transduction pathways evoked by these nucleotides. Earlier, we proved that purine and
pyrimidine NpnNs differentially affect the phenylpropanoid pathway in Vitis vinifera suspension-
cultured cells. Here, we report, for the first time, that both diadenosine tetraphosphate (Ap4A) and
dicytidine tetraphosphate (Cp4C)-induced stomatal closure in Arabidopsis thaliana. Moreover, we
showed that plasma membrane purinoreceptor P2K1/DORN1 (does not respond to nucleotide 1) is
essential for Ap4A-induced stomata movements but not for Cp4C. Wild-type Col-0 and the dorn1-3 A.
thaliana knockout mutant were used. Examination of the leaf epidermis dorn1-3 mutant provided
evidence that P2K1/DORN1 is a part of the signal transduction pathway in stomatal closure evoked
by extracellular Ap4A but not by Cp4C. Reactive oxygen species (ROS) are involved in signal
transduction caused by Ap4A and Cp4C, leading to stomatal closure. Ap4A induced and Cp4C
suppressed the transcriptional response in wild-type plants. Moreover, in dorn1-3 leaves, the effect of
Ap4A on gene expression was impaired. The interaction between P2K1/DORN1 and Ap4A leads to
changes in the transcription of signalling hubs in signal transduction pathways.

Keywords: abscisic acid; diadenosine tetraphosphate (Ap4A); dicytidine tetraphosphate (Cp4C);
dinucleoside polyphosphates (NpnNs); extracellular ATP (eATP); plant signalling; reactive oxygen
species (ROS); uncommon nucleotides

1. Introduction

Regulation of plant metabolic processes takes place at a molecular level. The defence
reactions are among the processes in which signal transduction plays a key role. Based on
the criterion of the distance that a given signal molecule can cover, short-distance molecules
cause local intercellular responses, and long-distance molecules trigger systemic responses.
Signalling molecules regulate many processes throughout various signal transduction
pathways and specific or unspecific receptors [1]. Unlike animals, the ability of extracellular
nucleotides to initiate diverse signalling responses in plants remained enigmatic for years.
A growing number of nucleotides classified as signalling molecules have been identified
in plants [2]. Among them, extracellular ATP (eATP) plays an essential role in plant
growth [3–8] and development [9,10]. Extracellular ATP regulates responses to biotic
stress [11–14] and abiotic stress [15–18]. One of the reactions that eATP can control is
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stomatal movements [12,19,20]. In this reaction, the cytoplasmic Ca2+ ions ([Ca2+]cyt)
and the complex signalling cross-talk between second messengers, such as nitric oxide
(NO) [7,21,22], and reactive oxygen species (ROS) [12,23–25] plays a crucial role as a
mediator in the signal transduction pathway. Consequently, these messenger agents affect
the phosphorylation of mitogen-activated protein kinase (MAPK) and the expression of
defence-related genes [12,26,27].

We have a longstanding interest in the function of dinucleoside polyphosphates
(NpnNs) in plant cells. Our papers describe changes in gene expression profile and
metabolism in Arabidopsis thaliana and Vitis vinifera treated with a broad spectrum of
NpnNs. We postulated the participation of NpnNs in the plant defence responses since they
induce synthesis of the phenylpropanoid pathway-delivered secondary metabolites [28–30].
The phenylpropanoid pathway participates in plant defence responses [31,32]. Identifi-
cation of Ap4A and other NpnNs across prokaryotic and eukaryotic cells testifies to their
universality [33]. Due to the dramatic increase in levels of various NpnNs observed in
cells subjected to abiotic stress factors [34–38], these compounds have been termed “alar-
mones”, triggering stress adaptive processes. Our latest findings confirmed the induction
of the phenylpropanoid pathway by purine, pyrimidine, and purine–pyrimidine hybrids
of NpnNs. Moreover, we observed that diadenosine polyphosphates (ApnA) induced
stilbene biosynthesis. In contrast, dicytidine polyphosphates (CpnC) strongly inhibited
this reaction but markedly induced the expression of the cinnamoyl-CoA reductase gene
that controls lignin biosynthesis [30]. Nonetheless, the underlying mechanism of NpnN
signal recognition and transduction in plants remains elusive. The growing number of
plant enzymes found to be involved in NpnN biosynthesis and degradation strengthens
the hypothesis of their signalling function [2,33].

Plants can respond to extracellular purine nucleotides, such as eATP, through plasma
membrane receptors. So far, two plant receptors with an eATP binding domain have been iden-
tified. They are P2K1/DORN1 (does not respond to nucleotides 1) [26] and P2K2/DORN2,
which belong to the L-type lectin receptor kinase (LecRK) protein family [39,40]. LecRK
proteins activate the processes controlling stress responses, development, growth, and
disease resistance [41]. Although eATP sensing and action in plants have been elucidated,
the mechanisms of signal perception and transduction evoked by NpnNs, such as Ap4A
and Cp4C, remain enigmatic. In animal cells, among the different nucleotides and nucle-
osides, eATP, together with Ap4A, shares access to the same receptors that belong to the
P2 group, which is divided into two classes, namely ligand-gated ion channels (P2Xs) and
G protein-coupled (P2Ys) receptors [42–46]. Therefore, we hypothesise that the purinore-
ceptor P2K1/DORN1, a receptor of eATP, is also necessary for sensing Ap4A in plant cells.
Moreover, we wondered whether P2K1/DORN1 is also engaged in the effects evoked by
the pyrimidine nucleotide Cp4C.

Here, we present, for the first time, evidence for the involvement of the P2K1/DORN1
receptor in the sensing of Ap4A in plants. All experiments were conducted on 4-week-old
Arabidopsis thaliana wild-type Col-0 and dorn1-3 knockout mutant leaves. Our research
showed that extracellular Ap4A and Cp4C evoked stomatal closure in Col-0 plants. This
effect was abolished in the dorn1-3 mutant by Ap4A but not Cp4C. This result confirms
the requirement of P2K1/DORN1 for Ap4A-induced stomatal closure. Nevertheless, our
research indicates the involvement of superoxide (•O2

−) and hydrogen peroxide (H2O2) in
the signal transduction evoked by Ap4A and Cp4C, leading to stomatal closure. Further-
more, we analysed the expression of genes encoding selected proteins integrated within
the signalling hubs. It concerns NADPH oxidases (RBOHD and RBOHF), MAPK cascades,
SNF1/AMPK-related protein kinases (SnRKs), and transcriptional factors, such as ZAT6 and
ZAT12. Notably, Ap4A induced the expression of the tested genes. Moreover, the gene
expression in dorn1-3 was almost abolished by the Ap4A effect.
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2. Results
2.1. Ap4A and Cp4C Induce Stomatal Closure

Our previous research showed that exogenous NpnNs induce the biosynthesis of
secondary metabolites that play an essential role in the plant defence strategy [28–30]. We
wondered how the signal evoked by NpnNs could be sensed and transduced in plant cells
and whether plants contain cell membrane receptor(s) for these molecules. It is known that
eATP, one of the exogenous purine nucleotides, evokes stomatal closure with the involve-
ment of the purinoreceptor P2K1/DORN1 in Arabidopsis thaliana [12,26]. Therefore, based
on similarities in the ATP and Ap4A structures, we tested the effect of these nucleotides
on stomatal movements. Moreover, we also included cytidine nucleotides in our research
because of the different effects of purine and pyrimidine NpnNs on the phenylpropanoid
pathway in Vitis vinifera cells [30]. To trace stomatal movement under the nucleotide treat-
ment, we examined the ability of purine NpnNs such as Ap3A and Ap4A to stimulate
stomatal closure. Additionally, for the positive control, we tested the effects of ADP and
ATP, as described earlier [12,26], as well as ABA—a well-known molecule controlling stom-
atal movements [47,48]. Exogenous Ap4A significantly reduced the stomatal aperture in
the light. It was at a similar level compared to the effect evoked by ATP and ADP. However,
Ap3A did not evoke such an effect (Figure 1). We also examined stomatal movement under
the treatment of cytidine mono- and dinucleotides (CDP, CTP, Cp3C, Cp4C). Interestingly,
only Cp4C triggered significant stomatal closure among tested cytidine nucleotides. As
expected, ABA closed stomata [49] (Figure 1).
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thaliana Col-0 plants. Images represent stomata in the abaxial epidermis of a leaf treated for 2 h with 
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replicates. Different letters above the error bars indicate statistically significant differences according 
to the ANOVA analysis with the post-hoc Tukey’s HSD multiple comparisons test (p < 0.05). 

In plant cells, there are enzymes degrading NpnNs to mononucleotides [50]. To con-
firm that Ap4A and Cp4C evoke stomatal closure but not by the products of their degra-
dation (AMP, ADP, ATP, and CMP, CDP, CTP, respectively), we collected samples of leaf 
epidermis from the microscope slides after incubation of nucleotides, and application of 

Figure 1. Diadenosine tetraphosphate (Ap4A) and dicytidine tetraphosphate (Cp4C), similar to
adenosine diphosphate (ADP) and adenosine triphosphate (ATP), induce stomatal closure in Ara-
bidopsis thaliana Col-0 plants. Images represent stomata in the abaxial epidermis of a leaf treated
for 2 h with the MOCK solution MES/KOH opening buffer, 10 µM abscisic acid (ABA), and 2 mM
purine and pyrimidine nucleotides. White bar = 25 µm. Bars represent mean values ± SD, n ≥ 20,
three biological replicates. Different letters above the error bars indicate statistically significant
differences according to the ANOVA analysis with the post-hoc Tukey’s HSD multiple comparisons
test (p < 0.05).

In plant cells, there are enzymes degrading NpnNs to mononucleotides [50]. To
confirm that Ap4A and Cp4C evoke stomatal closure but not by the products of their
degradation (AMP, ADP, ATP, and CMP, CDP, CTP, respectively), we collected samples of
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leaf epidermis from the microscope slides after incubation of nucleotides, and application
of the HPLC assay (Method S2) proved that Ap4A was not degraded to the corresponding
mononucleotide. Only a trace amount of CTP was detected in a solution of Cp4C after the
investigation (Figure S1).

2.2. P2K1/DORN1 Is Involved in Signal Perception Evoked by Ap4A but Not Cp4C

Plants respond to eATP by the induction of a complex signalling network after signal
recognition by the P2K1/DORN1 and P2K2 receptors [26,39]. Similarities in stomatal move-
ments evoked by eATP, Ap4A, and Cp4C led us to hypothesise that those nucleotides could
interact with P2K1/DORN1. Based on the results presented in Figure 1, Ap4A and Cp4C
were chosen for further experiments. The dorn1-3 mutant, having a T-DNA insertion in the
extracellular legume-type lectin domain, was selected based on literature data [12,26]. We found
that Ap4A and eATP did not close stomata in dorn1-3 mutant leaves. Contrary to this, Cp4C
significantly closed stomata in dorn1-3 mutant leaves. As expected, ABA-treated mutant leaves
also showed closed stomata [12] (Figure 2). Thus, the results strongly suggest that besides eATP,
P2K1/DORN1 may also be involved in signal perception elicited by Ap4A but not Cp4C.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

the HPLC assay (Method S2) proved that Ap4A was not degraded to the corresponding 
mononucleotide. Only a trace amount of CTP was detected in a solution of Cp4C after the 
investigation (Figure S1). 

2.2. P2K1/DORN1 Is Involved in Signal Perception Evoked by Ap4A but Not Cp4C 
Plants respond to eATP by the induction of a complex signalling network after signal 

recognition by the P2K1/DORN1 and P2K2 receptors [26,39]. Similarities in stomatal 
movements evoked by eATP, Ap4A, and Cp4C led us to hypothesise that those nucleotides 
could interact with P2K1/DORN1. Based on the results presented in Figure 1, Ap4A and 
Cp4C were chosen for further experiments. The dorn1-3 mutant, having a T-DNA insertion 
in the extracellular legume-type lectin domain, was selected based on literature data 
[12,26]. We found that Ap4A and eATP did not close stomata in dorn1-3 mutant leaves. 
Contrary to this, Cp4C significantly closed stomata in dorn1-3 mutant leaves. As expected, 
ABA-treated mutant leaves also showed closed stomata [12] (Figure 2). Thus, the results 
strongly suggest that besides eATP, P2K1/DORN1 may also be involved in signal percep-
tion elicited by Ap4A but not Cp4C. 

 
Figure 2. Diadenosine tetraphosphate (Ap4A), similar to extracellular (eATP), did not induce sto-
matal closure in the dorn1-3 Arabidopsis thaliana mutant. However, dicytidine tetraphosphate (Cp4C) 
and abscisic acid (ABA) evoked stomatal closing. Images represent stomata in the abaxial epidermis 
of dorn1-3 leaf treated for 2 h with MOCK solution opening buffer, 10 µM ABA and 2 mM adenosine 
triphosphate (ATP), Ap4A, and Cp4C. White bar = 25 µm. Bars represent mean values ± SD, n ≥ 20, 
three biological replicates. Different letters above the error bars indicate statistically significant dif-
ferences according to the ANOVA analysis with the post-hoc Tukey’s HSD multiple comparisons 
test (p < 0.05). 

2.3. ROS Are Produced in Leaves under Nucleotide Treatment 
It was previously found that the elevated production of ROS and stomatal closure 

are mediated by eATP recognition by the receptor P2K1/DORN1, followed by direct phos-
phorylation of the NADPH oxidase RBOHD [12]. This phosphorylation causes an increase 
in the generation of extracellular ROS, such as •O2−, which is then converted into H2O2 in 
the extracellular environment [51,52]. Notably, the apoplastic production of ROS is one of 
the fastest physiologically common responses to external stimuli observed in plants 
[53,54]. Considering all the above-described information, we decided to investigate the 
accumulation of •O2− and H2O2 in Arabidopsis thaliana leaves in response to 2 mM ATP, 
CTP, Ap4A, and Cp4C. Our experiments revealed that the NBT staining of leaves, indicat-
ing •O2− accumulation, was increased in Col-0 leaves treated with CTP, Ap4A, and Cp4C 

Figure 2. Diadenosine tetraphosphate (Ap4A), similar to extracellular (eATP), did not induce stomatal
closure in the dorn1-3 Arabidopsis thaliana mutant. However, dicytidine tetraphosphate (Cp4C) and
abscisic acid (ABA) evoked stomatal closing. Images represent stomata in the abaxial epidermis of
dorn1-3 leaf treated for 2 h with MOCK solution opening buffer, 10 µM ABA and 2 mM adenosine
triphosphate (ATP), Ap4A, and Cp4C. White bar = 25 µm. Bars represent mean values ± SD, n ≥ 20,
three biological replicates. Different letters above the error bars indicate statistically significant
differences according to the ANOVA analysis with the post-hoc Tukey’s HSD multiple comparisons
test (p < 0.05).

2.3. ROS Are Produced in Leaves under Nucleotide Treatment

It was previously found that the elevated production of ROS and stomatal closure
are mediated by eATP recognition by the receptor P2K1/DORN1, followed by direct
phosphorylation of the NADPH oxidase RBOHD [12]. This phosphorylation causes an
increase in the generation of extracellular ROS, such as •O2

−, which is then converted
into H2O2 in the extracellular environment [51,52]. Notably, the apoplastic production of
ROS is one of the fastest physiologically common responses to external stimuli observed in
plants [53,54]. Considering all the above-described information, we decided to investigate
the accumulation of •O2

− and H2O2 in Arabidopsis thaliana leaves in response to 2 mM
ATP, CTP, Ap4A, and Cp4C. Our experiments revealed that the NBT staining of leaves,
indicating •O2

− accumulation, was increased in Col-0 leaves treated with CTP, Ap4A, and
Cp4C but not by eATP, while in the dorn1-3 mutant, only Cp4C evoked an accumulation
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of •O2
− (Figure 3a). DAB staining representing the concentration of H2O2 in leaves was

increased in Col-0 leaves under eATP, Ap4A, and Cp4C, while CTP caused only slight DAB
staining. In the dorn1-3 mutant, only CTP and Cp4C evoked an accumulation of H2O2 in
the leaves. Nevertheless, only weak DAB staining was caused by CTP (Figure 3b).
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Figure 3. Histochemical detection of •O2
− (a) and H2O2 (b) in leaves of Arabidopsis thaliana Col-0

and the dorn1-3 mutant triggered by 2 mM adenosine triphosphate (ATP), cytidine triphosphate
(CTP), diadenosine tetraphosphate (Ap4A), dicytidine tetraphosphate (Cp4C) after 2 h treatment.
Leaves were stained with nitroblue tetrazolium (NBT) and 3,3′-diaminobenzidine tetrahydrochloride
(DAB) for •O2

− and H2O2 detection, respectively. The experiment was repeated six times, and
representative leaves were chosen.

2.4. ROS Are Involved in Signal Transduction Evoked by eATP, Ap4A and Cp4C, Leading to
Stomatal Closure

Based on the results indicating that Ap4A and Cp4C induced the production of ROS
(Figure 3a,b), we wondered whether these key signalling molecules are components of signal
transduction pathways evoked by NpnNs leading to stomatal closure. We simultaneously
applied superoxide dismutase (SOD) and catalase (CAT), enzymes scavenging ROS [54,55],
and thereby sought to confirm the role of •O2

− and H2O2 in the transduction pathway of
the signal generated by Ap4A and Cp4C. Interestingly, CAT and SOD eliminated the effect of
stomatal closure under simultaneous nucleotide treatment, so our observations showed the
direct involvement of •O2

− and H2O2 in stomatal closure evoked by eATP, Ap4A, and Cp4C.
However, the plants did close their stomata upon adding ABA (Figure 4).

2.5. P2K1/DORN1 Is Implicated in Ap4A- and eATP-Responsive Gene Expression

It is known that transcriptional upregulation of defence-related and wound-response
genes by eATP is P2K1/DORN1-dependent [26,56]. Thus, we decided to investigate
whether Ap4A also changes the expression of the defence-related genes and whether the
plasma membrane receptor P2K1/DORN1 is engaged in this regulation. To understand the
signal transduction pathway evoked by Ap4A, we tested the gene expression coding for
proteins as a component of signalling hubs known as key points in response to stresses. First,
we studied the NADPH oxidase respiratory burst oxidase homologs (RBOHs), RBOHD,
and RBOHF, which generate ROS [54]. We found that Ap4A up-regulated RBOHF but
not by eATP in Col-0 plants. Interestingly, both eATP and Ap4A downregulated RBOHF
expression in the dorn1-3 mutant (Figure 5a). The expression of RBOHD was drastically
induced (the most among all studied genes) by eATP but only in Col-0 plants. In contrast,
in the dorn1-3 plants, this effect was weak. Ap4A evoked slight changes in expression levels
of RBOHD in Col-0 and dorn1-3 plants (Figure 5a).
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adenosine tetraphosphate (Ap4A), dicytidine tetraphosphate (Cp4C) treatment in Arabidopsis thaliana
Col-0 leaves. White bar = 25 µm. Bars represent mean values ± SD, n ≥ 20, three biological replicates.
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ANOVA analysis with the post-hoc Tukey’s HSD multiple comparisons test (p < 0.05).

Other components involved in a variety of signalling pathways, ranging from develop-
ment to stress responses, are cyclic nucleotide-gated channels (CNGCs) [57,58]. Moreover,
AtCNGC2 mediates eATP signal transduction in cells of the root epidermis [20]. We found
that Ap4A induced CNGC2 expression in Col-0 plants and decreased the expression in the
dorn1-3 mutant. Extracellular ATP decreased the expression of CNGC2 in both Col-0 and
dorn1-3 mutant plants (Figure 5b). We also focused on essential protein kinases, such as SnRKs,
that regulate cellular energy homeostasis, stress response, and growth [59]. Thus, we checked
the changes in the expression of SnRK1.1, SnRK1.2, SnRK2.1, SnRK2.2, and SnRK2.6. We also
tested the expression of PV42a encoding cystathionine-β-synthase (CBS) domain-containing
protein belonging to the PV42 class of γ-type subunits of the plant SnRK1 complexes. It is
known that CBS domains generally act as regulatory domains of protein activity through
adenosyl ligand binding [60]. Our experiments showed that eATP strongly induced the
expression of SnRK1.1, SnRK1.2, and PV42a in Col-0 plants. Although Ap4A causes a lower
effect than eATP, the elevation in the expression of SnRK1.1 and SnRK1.2 was statistically
significant. Interestingly, in Col-0 plants, only eATP up-regulates the transcription of PV42a.
Still, in the dorn1-3 mutant compared to Col-0, only Ap4A treatment caused induction of the
expression (Figure 5c). Extracellular ATP and Ap4A increased the expression of SnRK2.2,
SnRK2.3, and SnRK2.6 in Col-0 plants. In the dorn1-3 mutant plants, Ap4A down-regulated
SnRK2.2, SnRK2.3, and SnRK2.6. Still, the effect of eATP in the mutant was not the same for
the expression of the three SnRK2 genes; namely, the expression of SnRK2.2 was decreased,
SnRK2.3 was slightly increased, and there was no effect on SnRK2.6 expression (Figure 5c).
The strong relationships between secondary messengers, such as ROS and MAPKs, are often
highlighted in the literature [61,62]. MAPK6, among its roles in various metabolic processes
in plants, can regulate the activities of diverse targets, including transcription factors [63]. We
observed an up-regulation of MAPK6 expression by both eATP and Ap4A in Col-0 plants
and down-regulation in the dorn1-3 mutant (Figure 5d). Among the transcription factors that
MAPKs regulate, we tested the regulation of expression of the zinc-finger transcription factors
(ZAT6 and ZAT12) and found that eATP and Ap4A up-regulated the expression of both genes,
as mentioned above, in Col-0 plants. Extracellular ATP increased the expression of ZAT6 and
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ZAT12 also in the dorn1-3 mutant, but Ap4A downregulated the expression of both genes in
the mutant plants (Figure 5e).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. The purinoceptor P2K1/DORN1 is involved in the Ap4A-induced transcriptional response 
in Arabidopsis thaliana Col-0 leaves. Graphs present the changes in the gene expression level for 
NADPH oxidase respiratory burst homologs (RBOHD and RBOHF) (a), cyclic nucleotide-gated 
channel 2 (CNGC2) (b), SNF1/AMPK-related protein kinases (SnRKs) (c), mitogen-activated protein 
kinase 6 (MAPK6) (d), and transcription factors (ZAT6 and ZAT12) (e). Leaves taken from Col-0 and 
the dorn1-3 mutant were treated for 2 h with 2 mM adenosine triphosphate (ATP) and diadenosine 
tetraphosphate (Ap4A). Transcript levels are represented as Log2(2–ΔΔCt) compared to the MOCK-
treated (control) plants. The housekeeping gene AtACT2 was used for data normalisation as an en-
dogenous control. Data are mean ± SD from 3 biological replicates. Different letters above the error 
bars indicate statistically significant differences according to the ANOVA analysis with the post-hoc 
Tukey’s HSD multiple comparisons test (p < 0.05). 

Other components involved in a variety of signalling pathways, ranging from devel-
opment to stress responses, are cyclic nucleotide-gated channels (CNGCs) [57,58]. More-
over, AtCNGC2 mediates eATP signal transduction in cells of the root epidermis [20]. We 

Figure 5. The purinoceptor P2K1/DORN1 is involved in the Ap4A-induced transcriptional response
in Arabidopsis thaliana Col-0 leaves. Graphs present the changes in the gene expression level for
NADPH oxidase respiratory burst homologs (RBOHD and RBOHF) (a), cyclic nucleotide-gated
channel 2 (CNGC2) (b), SNF1/AMPK-related protein kinases (SnRKs) (c), mitogen-activated pro-
tein kinase 6 (MAPK6) (d), and transcription factors (ZAT6 and ZAT12) (e). Leaves taken from
Col-0 and the dorn1-3 mutant were treated for 2 h with 2 mM adenosine triphosphate (ATP) and
diadenosine tetraphosphate (Ap4A). Transcript levels are represented as Log2(2–∆∆Ct) compared to
the MOCK-treated (control) plants. The housekeeping gene AtACT2 was used for data normalisation
as an endogenous control. Data are mean ± SD from 3 biological replicates. Different letters above
the error bars indicate statistically significant differences according to the ANOVA analysis with the
post-hoc Tukey’s HSD multiple comparisons test (p < 0.05).
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3. Discussion

Plants are exposed to continuous changes in environmental conditions that lead to
an imbalance in cellular homeostasis. It is known that in response to various stresses
in prokaryotic and eukaryotic cells, NpnNs accumulate. The accumulation of such
uncommon nucleotides can be considered in the context of the “friend hypothesis”
(alarmone) and “foe hypothesis” regarding critically damaged cells as a result of
internal and external stresses [33,64]. Although there are identified Ap4A-binding
protein targets in cells [33], the signalling pathways are still unclear. We reported
previously that extracellular NpnNs regulate the phenylpropanoid pathway, produc-
ing secondary metabolites—key molecules in response to abiotic stress in Arabidopsis
thaliana and Vitis vinifera [28–30]. Notably, one of the phenylpropanoid pathway en-
zymes, 4-coumarate:CoA ligase, is known to catalyse the synthesis of Ap4A [65], and
its activity was increased by Ap4A [28]. It is known that some extracellular ApnN may
become internalised and operate intracellularly [33]. Despite this obvious evidence
of the signalling function of uncommon nucleotides in regulating phenylpropanoid
synthesis, no receptors or signalling pathways have been identified in plants until now.
Here, we demonstrated, for the first time, that Ap4A and Cp4C evoked stomatal closure
in Arabidopsis thaliana leaves (Figure 1). We did not observe such an effect in dorn1-3
plants under the Ap4A effect (Figure 2). Thus, we can conclude that plasma membrane
purinoreceptor P2K1/DORN1 is essential in Ap4A perception. However, our research
also indicates that P2K1/DORN1 is not involved in signal perception elicited by Cp4C
(Figure 2). Such results suggest that in plants, P2K1/DORN1 is not Cp4C-binding, or
there are other protein(s) interacting with this nucleotide. After Ap4A signal recogni-
tion, P2K1/DORN1 stimulates ROS burst and the defence-related response. Our data
indicating ROS involvement in the plant response to Ap4A and Cp4C support the hy-
pothesis concerning the signalling function of Np4Ns (Figures 3 and 4). Moreover, the
HPLC assay proved that Ap4A was not degraded to corresponding mononucleotides,
which could evoke stomatal closure during the experiment (Figure S1). Only a tiny
amount of CTP was detected in a solution of Cp4C after the investigation. Still, as we
proved, CTP did not evoke stomatal closure (Figure 1). Therefore, it confirms that the
observed stomatal closure and ROS accumulation were caused by Ap4A and Cp4C but
not by their decomposition products.

The upregulation of defence-related genes encoding proteins involved in sig-
nalling hubs was reported [59]. The expression of the genes described in this research
was mostly abolished or down-regulated in the dorn1-3 mutant (Figure 5). Recent stud-
ies consider cross-talk between diverse plant defence response markers such as ROS,
hormones, and kinase cascades, leading to transcriptional, translational, and metabolic
reprogramming [54]. Our transcriptional analysis focused on elements that integrate
various signals and included cyclic nucleotide-gated channels (CNGCs) and NADPH
oxidases—respiratory burst oxidase homologs (RBOHD and RBOHF) that generate
ROS. Moreover, our studies are focused on SNF1-related protein kinases (SnRKs) and
PV42a, a cystathionine-β-synthase (CBS) domain-containing protein, belongs to the
PV42 class of γ-type subunits of the plant SnRK1 complexes. The next elements of
signal transduction pathways that we tested concern MAPK6 and transcription factors
(ZATs) (Figure 5). The transcript level of CGNC2 increased only under Ap4A in Col-0
plant leaves (Figure 5b). Involving CGNC2 in another purine nucleotide, eATP, signal
transduction in the root epidermis and eATP-induced Ca2+ influx were described by
Wang [20]. This result suggests that CNGC channels can be a part of signal transduction
evoked by Ap4A.
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Rapid systemic signalling in response to stress can be stimulated by RBOHD and
RBOHF, producing apoplastic ROS [66]. It is known that the elevated production of ROS
and stomatal closure are mediated by eATP recognition by the receptor P2K1/DORN1,
followed by direct phosphorylation of RBOHD [12], while RBOHD expression was sig-
nificantly reduced in dorn1-3 mutant plants. Our studies showed that transcriptomic
changes in both RBOHD and RBOHF evoked by Ap4A are similar, but in the dorn1-3
plants, the expression of RBOHF was also strongly inhibited (Figure 5a). This observation
correlated with the accumulation of ROS in Arabidopsis thaliana leaves (Figure 3). Stress
signalling in plants also involves different families of kinases, including the MAPK mod-
ule, that can be activated by ROS [67]. Moreover, it was previously shown that MAPKs
are activated by eATP [26,68–70]. We observed the induction of MAPK6 expression
evoked by eATP and Ap4A (Figure 5d), and it is known that MPK6 modulates actin
remodelling to activate stomatal defence in Arabidopsis thaliana [71]. MAPK pathways
are necessary for several ABA responses in many plant species, including antioxidant de-
fence and guard cell signalling [47,48]. Protein complexes SNF1-related protein kinase 1s
(SnRK1s) and SnRK2s play a prominent role in ABA signalling [72,73]. Numerous stud-
ies indicate SnRK1s and SnRK2s as regulators of the target of rapamycin (TOR) kinase
activity in controlling autophagy [74,75]. We observed that Ap4A induced the expression
of both SnRK1s and SnRK2s at a similar level in Col-0 plants. However, induction evoked
by eATP was much higher for SnRK1s than SnRK2s in wild-type plants. In the dorn1-3
mutant, the expression of SnRK1s and SnRK2s was decreased (Figure 5c). Also, neither
of the tested pyrimidine nucleotides, CTP and Cp4C, affected the expression of SnRKs in
Col-0 plants (Figure S2). It is known that SnRKs can regulate RBOH, which is engaged
in ROS production [54]. The SnRK1s and SnRK2s were identified as critical nodes for
stress and growth signalling pathways [59]. Moreover, it was suggested that under
normal conditions, cytosol-localised SnRK1.1, in response to high-ammonium or low-pH
stress, migrates to the nucleus and promotes the phosphorylation of the transcription
factors regulating the expression of responsive genes [76]. Studies on AKINβ1, subunit
SnRK1, showed its regulatory effect on secondary metabolic processes (e.g., flavonoid
metabolism) [77]. Another SnRK1 subunit is PV42a, which is the CBS domain protein.
Ap4A did not change the expression of the gene encoding AtPV42a in Col-0 plants
(Figure 5c). It is known that enzymes containing CBS domains can be regulated by Ap4A
binding [33]. Therefore, we postulate that AtPV42a regulates SnRK1s in response to
Ap4A. Moreover, SnRK1, SnRK2, and MAPK interact with transcriptional factors [78,79].
The induction of ZAT12 and ZAT6 transcription factors in which MAPK6 is involved
in an abiotic stress marker was described [63]. In the present research, we found that
Ap4A and eATP induced both ZAT6 and ZAT12 gene expression in Col-0 plants, and lack
of the P2K1/DORN1 receptor in the dorn1-3 mutants diminished this effect (Figure 5e).
It is known that the transcript level of ZAT6 positively affected the concentrations of
phenylpropanoids, including anthocyanin and total flavonoids [80]. Moreover, it was
proved that ZAT6 and ZAT12 are involved in the response to cadmium stress and abiotic
stress in plants [81–84], and the expression of ZAT12 was strictly dependent on the ROS
wave [85,86].

The results of our research presented here shed more light on the signalling function
of Ap4A, its perception and signal transduction pathway in plants. We had previously
proposed a hypothetical NpnN signalling network in a plant cell [2]. Then, we strongly
suggested the existence of some receptor and signalling transduction pathways involving
signalling hubs and transcription factors resulting in gene expression changes, including
genes coding for enzymes catalysing the phenylpropanoid pathway [2,28–30]. Here, we fill
a few gaps in this network (Figure 6).
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Figure 6. Hypothetical working model of diadenosine tetraphosphate (Ap4A) signalling network in a
plant cell. Ap4A, similar to extracellular adenosine triphosphate (eATP) [26], can be recognised by the
purinoreceptor P2K1/DORN1 and lead to stomatal closure. As our study showed, Ap4A triggered
the reactive oxygen species (ROS) wave, which evoked changes in the expression of the defence-
related genes encoding proteins involved in signalling hubs, such as CNGC2; RBOHD and RBOHF
generate ROS; SnRKs; AtPV42a, γ-type subunits of the plant SnRK1 complexes; MAPK cascades; and
transcription factors, ZATs. The wounded cell membrane and transporters can release ATP to the
extracellular space matrix: PGP1, p-glycoprotein belonging to ATP-binding cassette ABC transporters,
and PM-ANT1, plasma membrane-localised nucleotide transporters [15,87]. Extracellular ATP
recognition by P2K1/DORN1 evoked phosphorylation of RBOHD [12]. Also, CNGC2 [20] and
MAPK cascades are involved in eATP signal transduction [26,68–70]. We previously described that
4-coumarate:CoA ligase (4CL), the branch point of the phenylpropanoid pathway, can synthesise
Ap4A [65], and its activity is induced by Ap4A [28]. As yet, no channel or transporter for Ap4A in
plants is known. P, phosphate.

4. Materials and Methods
4.1. Nucleotides

Ap4A and Cp4C were synthesised following previously reported procedures, purified
by reverse-phase HPLC, and isolated as ammonium (NH4

+) salts. The purities (>95%) were
confirmed by analytical HPLC, 1H NMR and 31P NMR [30].



Int. J. Mol. Sci. 2023, 24, 16688 11 of 16

4.2. Plant Material

Arabidopsis thaliana lines were in the Columbia (Col-0) ecotype. A T-DNA insertion line
of LecRK-I.9 (Salk_042209; dorn1-3) was obtained from NASC (Nottingham Arabidopsis
Stock Centre, Nottingham, UK). Surface-sterilised seeds were stratified in darkness at
4 ◦C for 48 h and transferred to a growth chamber. Plants were grown for four weeks on
the soil at 21–23 ◦C, 60–70% humidity, under a long-day photoperiod (16 h light and 8 h
dark), 120 µmol m−2 s−1 light intensity. Genotyping of insertional mutants is described in
Methods S1. Primers are listed in Table S1.

4.3. Stomatal Aperture Measurement

To ensure fully open stomata, plants were placed for 3 h under light intensity
120 µmol m−2 s−1. Samples of leaf epidermis were obtained from the abaxial side. They
were placed on a microscope slide for 2 h of incubation in (i) MOCK solution MES/KOH
opening buffer containing 10 mM MES pH 6.15, 10 mM KCl, 10 µM CaCl2 (control),
(ii) 10 µM abscisic acid (ABA, Sigma Aldrich, St. Louis, MO, USA, A1049) dissolved in
the MOCK solution MES/KOH buffer, and (iii) 2 mM ADP (Sigma, A2754), ATP (Sigma,
AA8937), Ap3A, Ap4A, and CDP (Sigma, C9755), CTP, Cp3C, Cp4C dissolved in the MOCK
solution MES/KOH buffer. We chose 2 mM concentration of nucleotides based on literature
data concerning the effect of eATP on regulation of stomatal aperture [12].

CTP and NpnNs were synthesised as described previously [30]. Stomata were ob-
served using the ZOE Fluorescent Cell Imager (Bio-Rad, Hercules, CA, USA, 1450031EDU).
Measurements, including stomatal aperture width and length, were performed with ImageJ
1.54g software. The involvement of ROS in stomatal movement under nucleotide treatment
was examined by the simultaneous addition of ROS enzyme scavengers to the nucleotide
solutions. Catalase (CAT) (Sigma Aldrich, C100) and superoxide dismutase (SOD) (Sigma
Aldrich, S9697), in a concentration of 100 units mL−1 and 500 units mL−1, respectively,
were used together in an incubation mixture.

4.4. Detection of Intracellular ROS Burst in Leaves

Two leaves were incubated in 3 mL of MOCK solution MES/KOH opening buffer or
the buffer enriched in 2 mM concentrations of tested nucleotides. After 2 h, the incubating
buffers were gently replaced with 3 mL of staining solutions, and submerged leaves were
vacuum infiltrated three times (1 min each time). The staining solution for •O2

− detection
was composed of 0.5% nitroblue tetrazolium (NBT, Sigma-Aldrich, N6876) dissolved in
10 mM potassium phosphate buffer, pH 7.8 [88], and the staining solution for H2O2 syn-
thesis was composed of 3,3′-diaminobenzidine tetrahydrochloride (DAB, Sigma-Aldrich,
D5905) (1 mg ml−1 DAB) dissolved in 10 mM potassium phosphate buffer, pH 7.4, and
0.05% Tween [89]. Samples were incubated at room temperature for the next 2 h in the
dark with continuous shaking. Then, leaves were incubated in 96% ethanol overnight for
bleaching, and the photographs were taken with an Epson Perfection V700 scanner.

4.5. Gene Expression Analyses

According to the manufacturer’s instructions, total RNA was extracted from leaves
using the RNeasy Plant Mini Kit (Qiagen, Germantown MD, USA). Evaluation of RNA
purity, cDNA synthesis, reverse transcription, and RT-qPCR were performed as described
previously by Pietrowska-Borek and co-workers [28,90,91]. The qRT-PCR reactions were
performed using a CFX96 Real-Time PCR Detection System (Bio-Rad). The specific primers
for Arabidopsis thaliana genes are listed in Table S1. The 2−∆∆Ct method [92] was applied to
calculate the relative gene expression. The data were normalised against the reference gene,
ACTIN2 (ACT2). For statistical analysis, the gene expression data were Log2-transformed
to meet distribution and variance assumptions.
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4.6. Statistical Analysis

All experiments were performed at least three times. The results are shown as the
mean ± SD. The statistical significance of the differences among the means was analysed
by the ANOVA with the post-hoc Tukey’s HSD multiple comparisons test (p < 0.05) using
Statistica, Version 13 (TIBCO Software Inc., Palo Alto, CA, USA).

5. Conclusions

In the present work, we confirmed that in plants, an Ap4A receptor exists, and we
found that it is purine receptor P2K1/DORN1. Moreover, we indicated ROSs as second
messengers, kinases, and transcription factors engaged in the Ap4A signal transduction
pathway. Nevertheless, further studies, both in silico and in vitro, on the binding of Ap4A
to the P2K1/DORN1, including key residues that modulate Ap4A affinity, are required.
We believe that the presented results in this paper contribute to the description of the role
of NpnNs in signalling hubs and can help better understand the function of uncommon
nucleotides in plants.
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com/article/10.3390/ijms242316688/s1. Refs. [93–100] are cited in the supplementary materials.

Author Contributions: J.D. co-designed the studies, carried out experiments, analysed results, and
was involved in statistical analysis, visualisation, and writing of the original draft of the manuscript;
V.H.N. and J.K. synthesised the dinucleoside polyphosphates and participated in reviewing and
editing of the manuscript; S.B. participated in writing and critically reviewing the manuscript and co-
designed and prepared Figure 6; M.P.-B. conceived the topic of the research, planned and supervised
all experiments, analysed all results, performed the statistical analysis, participated in writing the
draft of the manuscript, co-designed and co-created all figures, and prepared the final version of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The publication was co-financed within the framework of the Polish Ministry of Science
and Higher Education’s programme “Regional Excellence Initiative” in the years 2019–2023 (No.
005/RID/2018/19)”, financing amounting PLN 12 000 000 (M.P.-B.); the statutory activity of Poznań
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28. Pietrowska-Borek, M.; Nuc, K.; Zielezińska, M.; Guranowski, A. Diadenosine Polyphosphates (Ap3A and Ap4A) Behave as
Alarmones Triggering the Synthesis of Enzymes of the Phenylpropanoid Pathway in Arabidopsis thaliana. FEBS Open Bio 2011,
1, 1–6. [CrossRef] [PubMed]

29. Pietrowska-Borek, M.; Czekała, Ł.; Belchí-Navarro, S.; Pedreño, M.A.; Guranowski, A. Diadenosine Triphosphate Is a Novel
Factor Which in Combination with Cyclodextrins Synergistically Enhances the Biosynthesis of Trans-Resveratrol in Vitis vinifera
Cv. Monastrell Suspension Cultured Cells. Plant Physiol. Biochem. 2014, 84, 271–276. [CrossRef] [PubMed]
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