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Abstract: In order to find new hypotensive drugs possessing higher activity and better selectivity, a
new series of fifteen 5,5-dimethylhydantoin derivatives (1–15) was designed. Three-step syntheses,
consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Com-
pounds 7–9 had crystallographic structure determined. All of the synthesized 5,5-dimethylhydantoins
were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico meth-
ods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in
radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was
conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All
of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which
possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some
representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two
compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was
examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil
but also a stronger effect than prazosin.

Keywords: α1-adrenoceptor; 5,5-dimethylhydantoin; crystallography; molecular modelling; α1A; α1B

1. Introduction

The α1-adrenoceptors (α1-ARs) belong to the G protein-coupled receptor (GPCR) and
play a fundamental role in the physiology of the sympathetic nervous system [1]. They
are activated by the endogenous catecholamines, norepinephrine and epinephrine and
mediate various physiological effects, such as vascular and urogenital smooth muscle con-
traction [2]. Pharmacologically, α1-ARs are an important cellular target for the treatment of
several pathologies [3], e.g., hypertension [4–6], benign prostatic hyperplasia (BPH) [7], and
lower urinary tract symptoms (LUTS) [8,9]. Nowadays, three subtypes of α1-adrenoceptors,

Int. J. Mol. Sci. 2023, 24, 16609. https://doi.org/10.3390/ijms242316609 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242316609
https://doi.org/10.3390/ijms242316609
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4408-9804
https://orcid.org/0000-0003-1946-9370
https://orcid.org/0000-0002-2891-5603
https://orcid.org/0000-0002-5388-1214
https://orcid.org/0000-0002-3674-3581
https://doi.org/10.3390/ijms242316609
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242316609?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 16609 2 of 22

namely α1A, α1B, and α1D, have been identified based on molecular cloning techniques and
pharmacological studies [1]. All three α1-AR subtypes are present in blood vessels [10],
whereas the α1B subtype contributes to vasoconstriction and blood pressure control in
humans [11–13]. Interestingly, the expression of vascular α1-AR subtypes changes with age.
In the mammary artery, α1B-AR expression increases 2-fold in patients aged 65 years or
older compared to patients younger than 55 years. Consequently, the α1B-AR is the predom-
inant subtype in the arteries in older patients (≥65 years) [10]. Data from human studies
indicate that α1B-AR predominates in epicardial coronary artery endothelial cells (90–95%
of total α1-AR mRNA) [14]. Recently, a molecular study confirmed a statistically signif-
icant increase in the expression of α1B-AR in human peripheral mononuclear cells from
hypertension patients. The increase in α1B-AR mRNA levels correlates with the increase in
systolic blood pressure and plasmatic homocysteine levels [15]. Thus, α1-AR antagonists
are attractive therapeutic targets for the treatment of hypertension. Blockade of α1-ARs re-
duces vascular resistance and venous capacitance [16], consequently decreasing peripheral
resistance and lowering blood pressure [6]. It is also well established that α1-adrenoceptor
antagonists have beneficial effects on lipids profile and glucose metabolism [17–27]. Recent
clinical studies have shown that therapy with α1-AR blockers is associated with a lower
rate of readmission for heart failure and mortality [28].

The α1A- and α1B-ARs are present in the human myocardium and do not appear to
have an important role in the regulation of heart function under normal physiological
conditions but increase importance under pathological conditions [29]. During cardiac
ischemia and post-ischemic reperfusion, α1-adrenergic stimulation may play a significant
role in the generation of arrhythmias because myocardial ischemia causes an increase
in α1-ARs density and intracellular Ca2+ overload [30–34]. The increase in intracellular
Ca2+ signaling, in response to α1-adrenergic stimulation, is mediated by the α1A-AR [35].
Data from animal studies demonstrate that the α1A-AR antagonists have antiarrhythmic
effects [36]. Therefore, this subtype is an interesting target for the treatment of arrhythmias.

In this context, the search for antagonists of α1-ARs is an important issue in the
discovery and development of new therapeutic agents. Prazosin, which was the first
marketed antihypertensive drug with α-adrenolytic activity and two further pharma-
ceuticals in this class, terazosin and doxazosin [4,37,38], contain a piperazine-1,4-diyl
moiety (Figure 1) [39,40]. Pharmacological studies of α1-ARs antagonists demonstrated
that an o-methoxyphenylpiperazine moiety plays a significant role in the affinity to this
subtype [39–42], and this structural fragment is also a part of structures of urapidil and
naftopidil (Figure 1) [39]. Urapidil, a well-known antihypertensive drug, acts as an α1-
AR antagonist and 5-HT1A agonist [43], while naftopidil is an α1-AR blocker with 3-fold
higher affinity for α1D- than for α1A-AR subtype, and is commonly used in the treatment
of patients with LUTS/BPH [44].
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Our previous studies described syntheses and pharmacological properties of phenylpiper-
azine derivatives of phenytoin that displayed in vitro high affinity for α1-ARs and antag-
onistic properties in functional bioassays (Figure 2) [45–47]. Several compounds also
showed antiarrhythmic effects via an α1-ARs dependent antagonistic action [41]. In ad-
dition, the derivative with o-methoxyphenylpiperazine moiety displayed hypotensive
activity in an animal model [41]. The already described modifications included different
types of substituents on piperazine, modification on linker (length and/or branching with
hydroxy group) and modification on nitrogen atom N3 of hydantoin—ester or aliphatic
chain (Figure 2). Nevertheless, we succeeded with the synthesis of compounds with better
in vitro activity than reference AZ-99. Those compounds are characterized by high hy-
drophobic properties and moderate solubility. The continuation of this work led to the
synthesis of compound PI, which was the first derivative without two aromatic rings in
position 5 of hydantoin (two methyl groups instead) and with a benzyl group in position
N3 (Figure 2) [48]. Based on structure-activity relationship (SAR) analysis from previous
results and choosing compound PI as the lead structure, we designed the novel series of
compounds (1–15, Table 1). In order to keep the balance between appropriate hydrophobic-
ity and still meet the criteria of Barbaro’s pharmacophore model for α1-ARs activity [49],
two chlorine atoms were introduced to the benzyl group (Figure 2). Moreover, the lead
optimization concerned substituents on piperazine and linker type—length/(un)branching
with the hydroxy group. Hence, the main goal of the present study was to investigate
the impact of performed modifications on in vitro affinity for α1-ARs, as well as intrinsic
activity at the α1A and α1B subtypes. Additionally, selected derivatives were investigated
in vivo to determine an influence on arterial blood pressure in rats. The structural studies
were enriched by X-ray crystallography and molecular docking to α1-ARs subtypes.
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Table 1. Structures of obtained 5,5-dimethylhydantoin derivatives (1–15).
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Scheme 1. Syntheses of compounds 1–15; (i) K2CO3, TEBA, acetone, reflux, 4 h; (ii) K2CO3, TEBA,
acetone, rt, 120–168 h; (iii) K2CO3, acetone, reflux, 4–11 h; (iv) µw, 300–450 W, 3–7 min.

Syntheses of compounds 7–9, 15, 16 and 18–20 were published before [48,50]. Syn-
theses of obtained compounds consisted of (i) N3-alkylation, (ii) N1-alkylation, and (iii
or iv) arylpiperazine N-alkylation with suitable alkylation agents (17–20). Firstly, 5,5-
dimethylhydantoin was reacted with 2,4-dichlorobenzyl chloride to obtain intermediate 16
(i, Scheme 1). In the next reaction (ii), N1-alkylation was conducted using dibromoalkyl
(17–19, Group A) or 2-(chloromethyl)oxirane (20, Group B and C). The final N-alkylation
was carried out using 1-phenylpiperazine derivatives to obtain products from Group A (1–5,
Scheme 1) and Group B (6–14, Scheme 1). However, conditions for those two groups were
different. In Group A, the reaction was carried out using acetone and potassium carbonate,
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while for Group B, the reaction was conducted using microwave (µw) irradiation. In the
case of compound 15 (Group C), intermediate 20 was reacted with 1-benzhydrylpiperazine
under microwave conditions.

2.2. X-ray Crystallographic Studies

The molecular geometry in the crystals of 7, 8, and 9 with the atom numbering schemes
is shown in Figure 3.
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Figure 3. The molecular geometry of (a) 7, (b) 8 and (c) 9, with the atom numbering schemes.
Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50%
probability level. Orange lines show hydrogen bonds between the chloride anion and the protonated
N2 atom.

The overall shape of these three molecules is very similar (Figure 4). The linker, having
a bent conformation, consists of three methylene units with a hydroxy group located
at the second carbon atom. The oxygen atom of the hydroxy group is engaged in the
intramolecular C9-H9···O1 hydrogen bond. Furthermore, the geometry of the linker is
stabilized by intermolecular interactions, in which O-H···Cl and C-H···O hydrogen bonds
are involved. Similar geometry was observed in another hydantoin derivative with the
same linker [49].

Small differences are visible in the mutual orientation of hydantoin and aromatic rings,
as well as hydantoin and piperazine rings. The piperazine ring adopts chair conforma-
tion with an equatorial position of substituents at N2 and N4 atoms. The investigated
compounds have different substituents at the aromatic ring, which is connected to the
piperazine ring, namely 2-F for 7, 4-F for 8 and 2,4-di-F for 9. The angle between the planes
of the aromatic ring at the N4 atom and the carbon atoms of the piperazine ring is 49.86,
41.99 and 53.82◦ for 7, 8 and 9, respectively. The values of this angle for 7, 8 are higher
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than in other crystal structures containing 4-(2-fluorobenzene)piperazine (the range of
this angle 35.75–46.28◦) or 4-(4-fluorobenzene)piperazine moiety (the range of this angle
11.52–35.68◦) deposited in Cambridge Structure Database (CSD) [51]. There is no deposited
crystal structure containing 4-(2,4-difluorobenzene)piperazine moiety in the CSD, which is
present in 9. The introduction of the second fluorine atom into the aromatic ring increases
the value of this interplanar angle. The biggest difference in the geometry of analyzed
molecules is observed in the location of 2-fluoro substituent of 7 in comparison to 2-fluoro
substituent of 9; namely, these substituents are on opposite sides (Figure 4).
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In the presented crystal structures, the chlorine anion is involved in a charge-assisted
hydrogen bond with a protonated N2 atom (Figure 3). The intermolecular interactions in
the crystals are dominated by N-H···Cl, O-H···Cl, C-H···Cl and C-H···O hydrogen bonds.
Additionally, C-H···F contacts are observed for structures containing 4-F substituent.

2.3. Affinity for α1-Adrenoceptors

In the first step, all synthesized compounds (1–15) were tested in vitro for their affinity
for α1-ARs on rat cerebral cortex by the radioligand binding assay using [3H]-prazosin
as a specific radioligand. The affinity described by Ki (nM) values are given in Table 2. A
majority of compounds (1, 3, 5–9, 11, 13) presented high affinity for α1-ARs (Ki ≤ 100 nM).
These compounds were identified to be more potent than urapidil, but none was as potent
as the reference antagonist (prazosin). Among the novel compounds, four derivatives (2, 4,
12, 14) showed moderate affinity to α1-ARs (100 < Ki ≤ 535 nM). The newly synthesized
derivatives, excluding compounds 2, 10, and 15, presented higher affinity for the α1-ARs,
when compared to compound AZ-99.

Table 2. α1-adrenoceptor affinity (Ki) for the tested compounds (1–15) and references (AZ-99, pra-
zosin, and urapidil) [39,45].

Compound Ki (nM)

1 31.0
2 535.0
3 43.0
4 255.0
5 12.7
6 53.0
7 100.0
8 44.0
9 42.0
10 778.0
11 26.0
12 270.0
13 29.0
14 289.0
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Table 2. Cont.

Compound Ki (nM)

15 2443.0
AZ-99 529.0 a

Prazosin 0.24 a

Urapidil 127.9 b

Inhibition constants (Ki) values were obtained from three independent experiments in duplicates. a Results were
published previously [45]; b Result was published previously [39].

2.4. Intrinsic Activity

In the next step, selected compounds (1–3, 5–9, 11–14) were tested in vitro for their an-
tagonistic activity at the α1-AR subtypes using the cells expressing mitochondrially-targeted
aequorin and one of the human adrenergic receptors α1A or α1B. The intrinsic activity ex-
pressed as IC50 values is presented in Table 3. The subtype selectivity for α1A and α1B was
calculated as IC50(α1B-AR)/IC50(α1A-AR) and IC50(α1A-AR)/IC50(α1B-AR) ratio, respectively.

Table 3. Intrinsic activity at the α1-ARs (α1A, α1B) for tested compounds and references.

Compound α1A-AR α1B-AR Selectivity Ratio
IC50

a (nM) Profile IC50
a (nM) Profile α1A/α1B

b α1B/α1A
c

1 90.62 Antagonist 10.71 Antagonist 8.46 0.12
2 1730.00 Antagonist 1146.00 Antagonist 1.51 0.66
3 290.00 Antagonist 3.27 Antagonist 88.73 0.01
5 0.02 Antagonist 0.002 Antagonist 10.00 0.10
6 5909.00 Antagonist 905.00 Antagonist 6.53 0.15
7 1415.00 Antagonist 483.90 Antagonist 2.92 0.34
8 816.70 Antagonist 170.40 Antagonist 4.79 0.21
9 162.40 Antagonist 147.40 Antagonist 1.10 0.91

11 162.30 Antagonist 359.10 Antagonist 0.45 2.21
12 3136.00 Antagonist 377.30 Antagonist 8.31 0.12
13 138.70 Antagonist 331.10 Antagonist 0.42 2.39
14 1221.00 Antagonist 1366.00 Antagonist 0.89 1.12

Tamsulosin 0.03 Antagonist 0.48 Antagonist 0.06 16.00
Terazosin 4.52 Antagonist 0.67 Antagonist 6.70 0.15
Prazosin 0.72 Antagonist 0.17 Antagonist 4.25 0.24

Phenylephrine 23.64 Agonist 2.31 Agonist 10.25 0.10
a IC50 values are means of three independent experiments in duplicates; b selectivity for α1B-AR
(IC50(α1A-AR)/IC50(α1B-AR)); c selectivity for α1A-AR (IC50(α1B-AR)/IC50(α1A-AR)).

All tested compounds demonstrated antagonistic activity at the α1-AR subtypes. The
strong (IC50 < 100 nM) or moderate (100 nM < IC50 < 200 nM) α1A-AR antagonistic intrinsic
activity was observed for compounds 1 and 5, or 9, 11, and 13, respectively. Compound 5
was more potent at the α1A-AR than terazosin and prazosin and generally similar when
compared to tamsulosin (Figure 5a). The strong α1B-AR antagonistic intrinsic activity
(IC50 < 11 nM) was identified for compounds 1, 3, and 5. Interestingly, compound 5 was
more potent at the α1B-AR than all reference drugs: prazosin, terazosin and tamsulosin
(Figure 5b). This compound was found to be the most potent α1-AR antagonist in the
present group of derivatives of 5,5-dimethylhydantoin. In terms of subtype selectivity,
compounds 5 and 3 displayed moderate (10-fold) and much higher (~90-fold) selectivity
for α1B-AR over α1A-AR, respectively. Compounds 11 and 13 demonstrated slightly higher
(~2-fold) selectivity for α1A-AR over α1B-AR. The reference drugs, prazosin and terazosin,
did not show subtype selectivity, while tamsulosin demonstrated moderate selectivity for
α1A-AR (over α1B-AR), according to the literature data [52,53].
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Figure 5. Concentration-response curves of phenylephrine, prazosin, terazosin, tamsulosin and
compound 5 at the adrenergic (a) α1A and (b) α1B receptors. The values (%) are expressed as a
percentage of the action of the reference agonist phenylephrine at the dose of EC80 (100%).

2.5. Molecular Modelling

The compounds were docked to the inactive-state models of adrenergic receptors
α1A and α1B, constructed on the basis of the GPCRdb data. The ligand-protein contacts
occurring in the obtained complexes are present in the form of the interaction matrices with
α1A (Figure 6) and α1B receptors (Figure 7).
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The contact patterns presented in both Figures 6 and 7 show that the compounds
consistently interact with the aspartic acid from the third transmembrane helix (TM3),
D 3 × 32, for both α1A and α1B receptor subtype; the respective interaction is not present
only for 15 (it is missing for both α1A and α1B), which was characterized by the lowest
affinity to α1 receptor (Ki = 2443 nM).

In addition, all the compounds make contact with two residues from the second
extracellular loop (ECL2): I 45 × 52, E180, and also with F × 51 when α1A is taken into
account and with A 5 × 40, I 6 × 45, and F 7 × 34, when α1B is considered.

In general, the interaction matrices show that the compounds adopted similar poses
in the receptor binding sites: they consistently interact with the same set of residues from
TM3, TM5, TM6, and TM7.

The comparison of 13 (significantly better binder of α1A) position in α1A a and α1B
(Figure 8) revealed that although the position of piperazine is similar for both receptor sub-
types, the hydrogen bond with D 3 × 32 is formed only with α1A. Although compound 13
makes contact with D 3 × 32, the protonated nitrogen from the piperazine moiety is too
far from the oxygen from the aspartic acid to make contact via a strong hydrogen bond. In
addition, the methoxy moiety points towards TM5 for α1A, whereas in 13-α1B complex is
oriented with the closest proximity to TM6.
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Figure 8. Docking results of 13 to (a) α1A and (b) α1B.

Examining the ligand-protein interactions occurring for PI and 3 (Figure 9), it appears
that the compound orientation in the binding site of both α1A and α1B is similar, and the
piperazine moieties (forming the strongest interaction with the receptor) are almost aligned
in both cases, which can explain the similar activity profile of PI and compound 3. The
introduction of di-Cl into the benzyl ring did not influence the overall compound pose but
resulted in the formation of the additional interactions with W 7 × 39 in the case of α1A, and
V 2 × 56 for α1B. However, as the di-Cl substitution faces towards extracellular part of the
receptor, it probably does not influence compound affinity to such an extent, and the contact
pattern of non-substituted PI is strong enough to provide the strong compound binding.

The low affinity of 15 is also reflected in docking studies, in which it adopted a flipped
position in comparison to all remaining compounds for both α1A and α1B (Figure 10). As a
result, the piperazine in 15 is located too far from the D 3 × 32 residue, and the hydrogen
bond between the protonated nitrogen of piperazine and aspartic acid from TM3 cannot
be formed. Instead, the piperazine interacts with E180 from ECL2 for α1A, and K 45 × 48,
E 45 × 49, C 45 × 50 for α1B; however, the overall position of 15 in the receptor binding site
(for both α1A, and α1B) is very shallow (especially for α1A) and does not provide sufficient
contact network to strongly fit the compound in the binding pocket.
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2.6. The Influence on Blood Pressure in Rats

In the next step, the hypotensive activity of novel compounds 1–3, 5–9, and 11–14
was determined after i.v. administration to normotensive anesthetized rats. All results
are shown in Supplementary Table S1. Four compounds (1, 3, 5, 13) proved statistically
significant reduction of systolic and diastolic blood pressure. For these compounds, the
hypotensive activity expressed as a percentage of decreased systolic and diastolic blood
pressure is displayed in Figures 11a and 11b, respectively.

Compound 5 administered at the dose 0.0625 mg/kg, significantly reduced systolic
blood pressure by 13.1–10.6% and diastolic blood pressure by 14.8–10.5% from the fifth
minute of the observation period. Compound 13 at the dose 2.0 mg/kg, significantly
decreased systolic blood pressure by 23.2–10.8% and diastolic blood pressure by 37.6–13.0%
from the fifth minute after administration. Compound 3 at the dose 2.0 mg/kg, significantly
reduced systolic blood pressure by 13.7–9.0% and diastolic blood pressure by 14.6–12.3%
from the tenth minute after administration. Compound 1 at the dose 2.0 mg/kg, signif-
icantly reduced systolic blood pressure by 14.3–11.2% and diastolic blood pressure by
14.9–13.2% from the tenth minute of the observation period. Urapidil (used as a reference
compound) at the lowest hypotensive dose (1.0 mg/kg) significantly decreased systolic
blood pressure by 16.8–13.1% and diastolic blood pressure by 20.9–15.7% from the fifth
minute after administration.
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Figure 11. Hypotensive activity of 1, 3, 5, 13, and urapidil tested after i.v. administration to anes-
thetized normotensive rats. Results are expressed as a percentage of decrease (a) systolic and
(b) diastolic blood pressure. Statistical analysis: two-way ANOVA and Sidak’s multiple comparisons
test. Statistically significant: * p < 0.05, ** p < 0.02, *** p < 0.01, **** p < 0.001, vs. control group (vehicle
treatment); n = 6 rats per each group.

3. Discussion

The new group of 5,5-dimethylhydantoin derivatives (1–15) is characterized by modi-
fications in two fragments: arylpiperazine and alkyl linker (Figure 2). The first one involves
un-, mono- and disubstituted phenyl ring (Group A and B, Table 1) or diphenylmethyl
moiety (Group C, Table 1). The other embraced either three different lengths of chain (n = 3,
5 or 6, Group A) or branching with hydroxyl group (Group B and C). The current design
was based on a previously found active compound, PI (Figure 2), and accordingly, final
products possess 5,5-dimethyl- fragment. Furthermore, the benzyl moiety connected to
N3 position of hydantoin was slightly modified by the addition of two chlorine atoms to
achieve proper hydrophobic properties. Taking into consideration previously obtained
active compounds, described modifications of moieties attached to N1 position enabled
to carry out structure—activity relationship (SAR) analysis of obtained compounds with
potential influence on α1-ARs.

Affinity values for α1-ARs were determined for all compounds (1–15) using the ra-
dioligand binding assay. Nine compounds (1, 3, 5–9, 11, and 13) displayed Ki lower than
urapidil (Table 2). Among the four, the most potent compounds (1, 3, 5, 13) proved to have
high affinity for α1-ARs (Ki = 31.0, 43.0, 12.7, 29.0 nM, respectively), three ones (1, 5, 13) con-
tain an o-methoxyphenylpiperazine fragment in their structure. Moreover, compound 11,
possessing a cyano group at the o-position of the phenyl ring, also showed a high affinity
for these receptors (Ki = 26.0 nM). Nevertheless, the most potent compound (5) possesses
an o-methoxyphenylpiperazine fragment and hexyl linker at the N1-position of hydantoin.
Moreover, current studies results proved that presence of chlorine in phenyl ring is not
advantageous (1 vs. 2, 5 vs. 4, and 6 vs. 10, Table 2), while compounds containing fluorine
atom(s) at position ortho and para (9) or para (8) at the phenyl ring of phenylpiperazine moi-
ety displayed higher affinity for α1-ARs (Ki = 42.0, 44.0 nM, respectively) than compound 7
possessing an o-fluorophenylpiperazine moiety (Ki = 100 nM). The molecular geometry
of these compounds in the crystals is very similar (Figure 4). Our research also indicated
that the substituents at position meta, ortho and meta or meta and para of the phenylpiper-
azine phenyl ring seem to be unfavorable. The obtained results are in agreement with the
previously drawn conclusion that the methoxy group at o-position at the phenyl ring of



Int. J. Mol. Sci. 2023, 24, 16609 12 of 22

phenylpiperazine moiety is favorable for the affinity to α1-ARs [39,41,42,45,47,54–57]. In
the case of the linker, a long carbon chain consisting of 6 carbon atoms seems to have a
beneficial influence on affinity to α1-ARs of an o-methoxyphenylpiperazine derivative.

The intrinsic activity assay enabled the determination of agonist/antagonist profile
as well as selectivity towards α1A- and α1B-ARs. All selected compounds (1–3, 5–9, 11–14)
showed antagonistic activity to both tested α1-AR subtypes (Table 3). Two compounds
(1 and 5), both belonging to group A and possessing methoxy group at o-position at the
phenyl ring, displayed strong (IC50 < 100 nM) α1A-AR antagonistic intrinsic activity, while
representatives from group B (9, 11, 13) proved moderate one (100 nM < IC50 < 200 nM).
In the case of α1B-AR, all o-methoxyphenylpiperazine derivatives from group A (1 and 5)
showed IC50 < 100 nM. Nevertheless, selectivity ratio calculation revealed that 2-methoxy
(13) and 2-cyano (11) group with 2-hydroksypropyl linker at the N1-position of hydantoin
could be responsible for better subtype selectivity for α1A (over α1B), while long carbon
chains, first of all hexyl (5), secondly pentyl (3), linkers seem to be beneficial for the subtype
selectivity for α1B (over α1A). Furthermore, the antagonistic intrinsic activity of 5 towards
α1A was similar to the most potent tested reference, tamsulozin (Figure 5a) and higher than
all reference compounds in the case of α1B-AR, including tamsulozin (Figure 5b).

In vivo assay on normotensive rats was carried out in order to assess the hypoten-
sive activity of selected compounds (1–3, 5–9, 11–14). All tested compounds possessing
o-methoxyphenylpiperazine fragments (1, 5, 13) proved significant reduction of systolic
and diastolic blood pressure as well as one with unsubstituted phenylpiperazine (3). Fur-
thermore, these effects were observed for compound 5 in a 16-fold lower dose than for
urapidil (0.0625 vs. 1.0 mg/kg, respectively). Results obtained via in vivo study corre-
lated with in vitro functional assays. The hypotensive activity compounds showed strong
antagonistic effects at α1A-AR (13) and/or α1B-AR (1, 3, 5), but the short-term, strong
hypotensive effect of compound 13 may result from a different mechanism of antihyper-
tensive action than the α1-blocker or different pharmacokinetics, which would be worth
investigating at a later stage of research. Moreover, compound 5 displayed a stronger
effect at α1-ARs than classic α1-AR blockers like prazosin and terazosin, well known as
antihypertensive drugs [58,59]. The presented results suggested that these compounds
exhibited hypotensive activity through α1-AR blockade. Analyzing the structure of the
most active compound (5), it could be stated that methoxy-substituent at the ortho position
of the phenyl ring and hexyl linker at the N1-position of hydantoin are very favorable in
case of hypotensive effects by blocking α1B-AR. The identified α1A-AR selective antagonists
also can help the design of efficacious drugs for arrhythmias. Discovery of new α1-AR
antagonist (5), moderately selective for α1B over α1A subtype (10-fold), is promising for
the development of novel hypotensive drugs. Moreover, among tested phenylpiperazine
derivatives, compound 11 (o-CN-phenylpiperazine derivative) exhibited no significant
changes in the hemodynamic parameters (SBP and DBP) and demonstrated in vitro strong
antagonistic activity at α1A-AR. Moreover, this compound showed a slight selectivity for
α1A over α1B subtype. This can suggest that 2-cyano- substituent at the phenyl ring of the
phenylpiperazine moiety exerts a beneficial influence on α1A subtype selectivity (over α1B).
Thus, these data can aid the development of new α1A-AR selective blockers used in the
treatment of patients with BPH/LUTS.

4. Materials and Methods
4.1. Chemistry

Reagents were purchased from Alfa Aesar (Karlsruhe, Germany) or Sigma Aldrich
(Darmstadt, Germany). Reaction progress was verified using thin layer chromatography
(TLC), which was carried out on 0.2 mm Merck silica gel 60 F254 plates. Spots were
visualized by UV light. Melting points (m.p.) were determined using the MEL-TEMP II
apparatus (LD Inc., Long Beach, CA, USA) and were uncorrected. The 1H-NMR spectra
were obtained on a Mercury-VX 300 Mz spectrometer (Varian, Palo Alto, CA, USA) in
DMSO-d6. Chemical shifts in 1H-NMR spectra were reported in parts per million (ppm)
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on the δ scale using the solvent signal as an internal standard. Data are reported as
follows: chemical shift, multiplicity (s, singlet; d, doublet; dd—doublet of doublets; t,
triplet; m, multiplet), coupling constant J in Hertz (Hz), number of protons, proton’s
position (Im—imidazolone, Benz- benzyl, Ph—phenyl, Pp—piperazine). Mass spectra were
recorded on a UPLC-MS/MS system consisting of a Waters ACQUITY®UPLC® (Waters
Corporation, Milford, MA, USA) coupled to a Waters TQD mass spectrometer (electrospray
ionization mode ESI-tandem quadrupole). Chromatographic separations were carried out
using the Acquity UPLC BEH (bridged ethyl hybrid) C18 column; 2.1 × 100 mm, and
1.7 µm particle size, equipped with Acquity UPLC BEH C18 VanGuard precolumn (Waters
Corporation, Milford, MA, USA); 2.1 × 5 mm, and 1.7 µm particle size. The column was
maintained at 40 ◦C and eluted under gradient conditions from 95% to 0% of eluent A over
10 min, at a flow rate of 0.3 mL·min−1. Eluent A: water/formic acid (0.1%, v/v); eluent
B: acetonitrile/formic acid (0.1%, v/v). Chromatograms were made using Waters eλ PDA
detector. Spectra were analyzed in the 200–700 nm range with 1.2 nm resolution and a
sampling rate 20 points/s. MS detection settings of Waters TQD mass spectrometer were as
follows: source temperature 150 ◦C, desolvation temperature 350 ◦C desolvation gas flow
rate 600 L·h−1, cone gas flow 100 L·h−1, capillary potential 3.00 kV, cone potential 40 V.
Nitrogen was used for both nebulizing and drying gas. The data were obtained in a scan
mode ranging from 50 to 1000 m/z in time 0.5 s intervals. The data acquisition software
was MassLynx V 4.1 (Waters Corporation, Milford, MA, USA). The UPLC/MS purity of
all the final compounds was confirmed to be 95% or higher. Retention times (tR) are given
in minutes. The UPLC/MS purity of all final compounds was determined (%). Syntheses
under microwave irradiation were performed in a household microwave oven Samsung
MW71B. Synthesis of compounds 7–9, 15, 16, 18–20 was described earlier [48,50], and the
procedure for intermediate 17 can be found in Supplementary Materials.

4.1.1. General Procedure to Obtain Final Products from Group A (1–5)

Piperazine derivatives (2–4 mmol), potassium carbonate (6.5–13.0 mmol, 0.9–1.80 g),
acetone (7.5–15.0 mL), and 2,4-dichlorobenzyl-1-bromoalkyl-5,5-dimethylimidazolidine-2,4-
dione derivatives (17–19) (4.0–8.0 mmol) dissolved in acetone (10.0–15.0 mL) were heated
at reflux for 3.75–11 h. Then, filtration was carried out. The filtrate was evaporated. To the
residue, dichloromethane was added, and it was washed 2–3 times with 1% HCl. Organic
fractions were dried, then filtrated and evaporated. Solid products were obtained using
method A-B. Method A—Saturation using gaseous hydrochloric acid; Method B—When
method A was unsuccessful, the obtained compound was dissolved in anhydrous ethanol,
and diethyl ether was added. It was mixed for 30 min and then put into the refrigerator
for 2–7 days. Then, filtration was performed. Method C: If the solid product from method
A or B was impure, it was heated in acetone for 5 min. The suspension was put into the
fridge for 15 min and then into the refrigerator for an additional 15 min. Finally, Buchner
filtration was conducted to obtain a pure product.

3-(2,4-dichlorobenzyl)-1-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5,5-dimethyli
midazolidine-2,4-dione hydrochloride (1).

1-(2-methoxyphenyl)piperazine (4 mmol, 0.77 g) and the 3-bromopropyl derivative
(17) (8.0 mmol, 3.2 g) were used. Product was obtained using method A. White solid. Yield
60.0%; mp 201–203 ◦C. C26H33Cl3N4O2 MW 555.93. LC/MS±: purity 98.64% tR = 5.60,
(ESI) m/z [M + H] 519.12. 1H NMR (DMSO-d6, ppm): δ 10.67 (s, 1H, NH+), 7.66 (d,
J = 2.1 Hz, 1H, Benz-3-H), 7.43 (dd, J = 8.4, 2.2 Hz, 1H, Benz-5-H), 7.21 (d, J = 8.4 Hz, 1H,
Benz-6-H), 7.07–6.86 (m, 4H, PpPh-3,4,5,6-H), 4.63 (s, 2H, N3-CH2), 3.79 (s, 3H, OCH3),
3.60–3.34 (m, 6H, Pp-3,5-H, N1-CH2), 3.25–2.97 (m, 6H, Pp-2,6-H, Pp-CH2), 2.13–1.95 (m,
2H, Pp-CH2-CH2), 1.42 (s, 6H, 2 × Im-CH3).

3-(2,4-dichlorobenzyl)-1-(3-(4-(2,3-dichlorophenyl)piperazin-1-yl)propyl)-5,5-dimethyl
imidazolidine-2,4-dione hydrochloride (2).

1-(2,3-dichlorophenyl)piperazine (4 mmol, 0.92 g) and the 3-bromopropyl derivative
(17) (8.0 mmol, 3.2 g) were used. The product was obtained using method B. White
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solid. Yield 62.0%; mp 185–187 ◦C. C25H29Cl5N4O2 MW 594.78. LC/MS±: purity 97.84%
tR = 6.48, (ESI) m/z [M + H] 559.00. 1H NMR (DMSO-d6, ppm): δ 10.73 (s, 1H, NH+), 7.64
(d, J = 2.1 Hz, 1H, Benz-3-H), 7.44–7.29 (m, 3H, Benz-5,6-H, PpPh-4-H), 7.23–7.17 (m, 2H,
PpPh-5,6-H), 4.61 (s, 2H, N3-CH2), 3.56 (d, J = 5.9 Hz, 2H, Pp-3,5-Hb), 3.47–3.31 (m, 4H,
N1-CH2, Pp-3,5-Ha), 3.25–3.05 (m, 6H, Pp-CH2, Pp-2,6-H), 2.12–1.92 (m, 2H, Pp-CH2-CH2),
1.38 (s, 6H, 2 × Im-CH3).

3-(2,4-dichlorobenzyl)-5,5-dimethyl-1-(5-(4-phenylpiperazin-1-yl)pentyl)imidazolidine-2,4-
dione hydrochloride (3).

1-phenylpiperazine (4 mmol, 0.65 g) and the 3-bromopentyl derivative (18) (5 mmol,
2.18 g) were used. The product was obtained using method A. White solid. Yield 37.5%;
mp 218–220 ◦C. C27H35Cl3N4O2 MW 553.95. LC/MS±: purity 100.00% tR = 5.90, (ESI) m/z
[M + H] 517.13. 1H NMR (DMSO-d6, ppm): δ 10.49 (s, 1H, NH+), 7.65 (d, J = 2.1 Hz, 1H,
Benz-3-H), 7.43 (dd, J = 8.4, 2.2 Hz, 1H, Benz-5-H), 7.31–7.22 (m, 2H, PpPh-3,5-H), 7.18 (d,
J = 8.4 Hz, 1H, Benz-6-H), 7.00 (d, J = 7.9 Hz, 2H, PpPh-2,6-H), 6.86 (t, J = 7.3 Hz, 1H, PpPh-
4-H), 4.62 (s, 2H, N3-CH2), 3.88–3.44 (m, 4H, Pp-3,5-H), 3.28 (t, J = 7.4 Hz, 2H, N1-CH2),
3.19–3.00 (m, 6H, Pp-CH2, Pp-2,6-H), 1.83–1.68 (m, 2H, N1-CH2CH2), 1.68–1.54 (m, 2H,
Pp-CH2CH2), 1.38 (s, 6H, 2 × Im-CH3), 1.36–1.29 (m, 2H, PpCH2CH2CH2).

3-(2,4-dichlorobenzyl)-1-(6-(4-(3,4-dichlorophenyl)piperazin-1-yl)hexyl)-5,5-dimethyli
midazolidine-2,4-dione hydrochloride (4).

1-(3,4-dichlorophenyl)piperazine (2 mmol, 0.46 g) and the 3-bromohexyl derivative
(19) (4.0 mmol, 1.80 g) were used. Product was obtained using methods B and C. White
solid. Yield 2.0%; mp 154–156 ◦C. C28H35Cl5N4O2 MW 636.86. LC/MS±: purity 99.10%
tR = 6.84, (ESI) m/z [M + H] 601.46. 1H NMR (DMSO-d6, ppm): δ 11.09 (s, 1H, NH+), 7.64
(d, J = 2.1 Hz, 1H, Benz-3-H), 7.50–7.37 (m, 2H, Benz-5-H, Ph-5-H), 7.24 (d, J = 2.8 Hz, 1H,
Ph-2-H), 7.17 (d, J = 8.4 Hz, 1H, Benz-6-H), 7.00 (dd, J = 9.0, 2.8 Hz, 1H, Ph-6-H), 4.61
(s, 2H, N3-CH2), 3.95–3.80 (m, 2H, Pp-3,5-Hb), 3.58–3.43 (m, 2H, Pp-3,5-Ha), 3.35–3.16
(m, 4H, N1-CH2, Pp-CH2), 3.14–2.97 (m, 4H, Pp-2,6-H), 1.84–1.66 (m, 2H, Pp-CH2CH2),
1.66–1.50 (m, 2H, N1-CH2CH2), 1.44–1.26 (m, 10H, N1-CH2CH2CH2, Pp-CH2CH2CH2,
2 × Im-CH3).

3-(2,4-dichlorobenzyl)-1-(6-(4-(2-methoxyphenyl)piperazin-1-yl)hexyl)-5,5-dimethylim
idazolidine-2,4-dione hydrochloride (5).

1-(2-metoxyphenyl)piperazine (2 mmol, 0.38 g) and the 3-bromohexyl derivative (19)
(4.0 mmol, 1.80 g) were used. Product was obtained using methods A and C. White
solid. Yield 45.0%; mp 205–207 ◦C. C29H39Cl3N4O3 MW 598.01. LC/MS±: purity 95.67%
tR = 6.19, (ESI) m/z [M + H] 562.26. 1H NMR (DMSO-d6, ppm): δ 11.02 (s, 1H, NH+), 7.65
(d, J = 2.1 Hz, 1H, Benz-3-H), 7.43 (dd, J = 8.3, 2.2 Hz, 1H, Benz-5-H), 7.17 (d, J = 8.4 Hz,
1H, Benz-6-H), 7.06–6.87 (m, 4H, PpPh-3,4,5,6-H), 4.62 (s, 2H, N3-CH2), 3.80 (s, 3H, OCH3),
3.58–3.39 (m, 4H, Pp-3,5-H), 3.31–3.20 (m, 2H, N1-CH2), 3.20–3.00 (m, 6H, Pp-CH2, Pp-
2,6-H), 1.82–1.66 (m, 2H, Pp-CH2CH2), 1.66–1.50 (m, 2H, N1-CH2CH2), 1.45–1.26 (m, 10H,
N1-CH2CH2CH2, Pp-CH2CH2CH2, 2 × Im-CH3).

4.1.2. General Procedure to Obtain Final Products from Group B (6, 10–14)

Piperazine derivatives (3 mmol) and the 3-(2,4-dichlorobenzyl)-5,5-dimethyl-1-(oxiran-
2-ylmethyl)imidazolidine-2,4-dione (20) (3 mmol) were dissolved in acetone (15–20 mL).
The mixture was evaporated and irradiated in a household microwave (300–450 W) for
3–7 min. Crystallization using ethanol anhydrous was conducted. Method A: Solid prod-
ucts were obtained through saturation using gaseous hydrochloric acid. Method B: When
method A was unsuccessful, the obtained compound was dissolved in anhydrous ethanol,
and diethyl ether was added. It was stirred for 30 min and then put into the refrigerator for
2–7 days. Then, filtration was carried out. In order to obtain pure product, crystallization
from acetone was carried out.

3-(2,4-dichlorobenzyl)-1-(2-hydroxy-3-(4-phenylpiperazin-1-yl)propyl)-5,5-dimethylim
idazolidine-2,4-dione hydrochloride (6).
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1-phenylpiperazine (3 mmol, 0.49 g) and 3-(2,4-dichlorobenzyl)-5,5-dimethyl-1-(oxiran-
2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol, 1.03 g) were used. The product was
obtained using method B. White solid. Yield 89.0%; mp 196–198 ◦C. C25H31Cl3N4O3
MW 541.90. LC/MS±: purity 99.45% tR = 6.60, (ESI) m/z [M + H] 506.44. 1H NMR (DMSO-
d6, ppm): δ 10.74 (s, 1H, NH+), 7.64 (d, J = 2.1 Hz, 1H, Benz-3-H), 7.42 (dd, J = 8.4, 2.2 Hz,
1H, Benz-5-H), 7.31–7.21 (m, 3H, Benz-6-H, Ph-3,5-H), 7.00 (d, J = 7.9 Hz, 2H, Ph-2,6-H),
6.86 (t, J = 7.3 Hz, 1H, Ph-4-H), 4.63 (s, 2H, N3-CH2), 4.45–4.33 (m, J = 7.3 Hz, 1H, CH-OH),
3.93–3.01 (m, 12H, Pp-2,3,5,6-H, Pp-CH2, N1-CH2), 1.44 (s, 3H, 2 × Im- CH3b), 1.41 (s, 3H,
2 × Im-CH3a).

3-(2,4-dichlorobenzyl)-1-(3-(4-(3,4-dichlorophenyl)piperazin-1-yl)-2-hydroxypropyl)-5,5-
dimethylimidazolidine-2,4-dione hydrochloride (10).

1-(3,4-dichlorophenyl)piperazine (3 mmol, 0.69 g) and 3-(2,4-dichlorobenzyl)-5,5-
dimethyl-1-(oxiran-2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol, 1.03 g) were used.
The product was obtained using method A. White solid. Yield 4.0%; mp 223–225 ◦C.
C25H29Cl5N4O3 MW 610.78. LC/MS±: purity 97.61% tR = 6.29, (ESI) m/z [M + H] 575.33.
1H NMR (DMSO-d6, ppm): δ 10.56 (s, 1H, NH+), 7.65 (d, J = 2.0 Hz, 1H, Benz-3-H),
7.50–7.38 (m, 2H, Benz-5-H, PpPh-5-H), 7.31–7.21 (m, 2H, Benz-6-H, PpPh-2-H), 7.00 (dd,
J = 9.0, 2.5 Hz, 1H, PpPh-6-H), 5.94 (s, 1H, OH), 4.63 (s, 2H, N3-CH2), 4.48–4.24 (m, 1H, CH-
OH), 4.04–3.77 (m, 2H, N1-CH2), 3.75–3.35 (m, 4H, Pp-3,5-H), 3.30–2.97 (m, 6H, Pp-2,6-H,
Pp-CH2), 1.43 (s, 3H, Im-CH3b), 1.41 (s, 3H, Im-CH3a).

3-(2,4-dichlorobenzyl)-1-(3-(4-(2-cyanophenyl)piperazin-1-yl)-2-hydroxypropyl)-5,5-di
methylimidazolidine-2,4-dione hydrochloride (11).

1-(2-cyanophenyl)piperazine (3 mmol, 0.56 g) and 3-(2,4-dichlorobenzyl)-5,5-dimethyl-
1-(oxiran-2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol, 1.03 g) were used. The prod-
uct was obtained using method A. Cream solid. Yield 25.0%; mp 147–149 ◦C. C26H30Cl3N5O3
MW 566.91. LC/MS±: purity 100.00% tR = 5.46, (ESI) m/z [M + H] 531.45.

1H NMR (DMSO-d6, ppm): δ 10.66 (s, 1H, NH+), 7.76 (dd, J = 7.7, 1.5 Hz, 1H, PpPh-3-
H), 7.69–7.60 (m, 2H, PpPh-5-H, Benz-3-H), 7.43 (dd, J = 8.4, 2.2 Hz, 1H, Benz-5-H), 7.26
(m, 2H, Benz-6-H, PpPh-6-H), 7.18 (t, J = 7.6 Hz, 1H, PpPh-4-H), 5.94 (s, 1H, OH), 4.64 (s,
2H, N3-CH2), 4.38 (s, 1H, CH-OH), 3.81–3.50 (m, 4H, N1-CH2, Pp-3,5-Ha), 3.46–3.04 (m, 8H,
Pp-3,5-Hb, Pp-2,6-H, Pp-CH2), 1.44 (s, 3H, Im-CH3b), 1.42 (s, 3H, Im-CH3a).

3-(2,4-dichlorobenzyl)-1-(3-(4-(3,4-dimethylphenyl)piperazin-1-yl)-2-hydroxypropyl)-
5,5-dimethylimidazolidine-2,4-dione hydrochloride (12).

1-(3,4-dimethylphenyl)piperazine (3 mmol; 0.57 g) and 3-(2,4-dichlorobenzyl)-5,5-
dimethyl-1-(oxiran-2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol; 1.03 g) were used.
The product was obtained using method A. White solid. Yield 89.0%; mp 217–219 ◦C.
C27H35Cl3N4O3 MW 569.95. LC/MS±: purity 97.44% tR = 5.92; (ESI) m/z [M + H] 534.49.
1H NMR (DMSO-d6; ppm): δ 10.56 (s; 1H; NH+), 7.64 (d; J = 2.1 Hz; 1H; Benz-3-H); 7.42
(dd; J = 8.4; 2.2 Hz; 1H; Benz-5-H); 7.25 (d; J = 8.4 Hz; 1H; Benz-6-H); 7.00 (d; J = 8.3 Hz;
1H; PpPh-5-H); 6.80 (d; J = 2.3 Hz; 1H; PpPh-2-H); 6.70 (dd; J = 8.2; 2.5 Hz; 1H; PpPh-6-H);
6.07–5.85 (m; 1H; OH); 4.63 (s; 2H; N3-CH2); 4.45–4.31 (m; 1H; CH-OH); 3.85–2.99 (m; 12H;
N1-CH2; Pp-2,3,5,6-H; Pp-CH2); 2.19 (s; 3H; PpPh-3-CH3); 2.11 (s; 3H; PpPh-4-CH3); 1.44 (s;
3H; Im-CH3b); 1.42 (s; 3H; Im-CH3a).

3-(2,4-dichlorobenzyl)-1-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5,5-
dimethylimidazolidine-2,4-dione hydrochloride (13).

1-(2-metoxyphenyl)piperazine (3 mmol, 0.58 g) and 3-(2,4-dichlorobenzyl)-5,5-dimethyl-
1-(oxiran-2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol, 1.03 g) were used. Product
was obtained using method A. White solid. Yield 36.0%; mp 144–146 ◦C. C26H33Cl3N4O4
MW 571.92. LC/MS±: purity 97.54% tR = 5.48, (ESI) m/z [M + H] 536.46. 1H NMR (DMSO-
d6, ppm): δ 10.62 (s, 1H, NH+), 7.65 (d, J = 2.1 Hz, 1H, Benz-3-H), 7.42 (dd, J = 8.4, 2.1 Hz,
1H, Benz-5-H), 7.26 (d, J = 8.4 Hz, 1H, Benz-6-H), 7.07–6.86 (m, 4H, PpPh-3,4,5,6-H), 5.86 (s,
1H, OH), 4.63 (s, 2H, N3-CH2), 4.46–4.30 (m, 1H, CH-OH), 3.79 (s, 3H, OCH3), 3.73–3.01 (m,
12H, N1-CH2, Pp-2,3,5,6-H, Pp-CH2), 1.45 (s, 3H, Im-CH3b), 1.42 (s, 3H, Im-CH3a).
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3-(2,4-dichlorobenzyl)-1-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propyl)-5,5-
dimethylimidazolidine-2,4-dione hydrochloride (14).

1-(3-metoxyphenyl)piperazine (3 mmol, 0.58 g) and 3-(2,4-dichlorobenzyl)-5,5-dimethyl-
1-(oxiran-2-ylmethyl)imidazolidine-2,4-dione (20) (3.0 mmol, 1.03 g) were used. The prod-
uct was obtained using method A. White solid. Yield 38.0%; mp 177–179 ◦C. C26H33Cl3N4O4
MW 571.92. LC/MS±: purity 100.00% tR = 5.45, (ESI) m/z [M + H] 536.46. 1H NMR (DMSO-
d6, ppm): δ 10.59 (s, 1H, NH+), 7.65 (d, J = 2.1 Hz, 1H, Benz-3-H), 7.42 (dd, J = 8.4, 2.2 Hz,
1H, Benz-5-H), 7.25 (d, J = 8.4 Hz, 1H, Benz-6-H), 7.15 (t, J = 8.2 Hz, 1H, PpPh-5-H), 6.57 (dd,
J = 8.2, 2.0 Hz, 1H, PpPh-6-H), 6.52 (t, J = 2.2 Hz, 1H, PpPh-2-H), 6.44 (dd, J = 8.1, 2.0 Hz,
1H, PpPh-4-H), 6.02–5.89 (m, 1H, OH), 4.63 (s, 2H, N3-CH2), 4.45–4.31 (m, 1H, CH-OH),
3.91–3.00 (m, 15H, OCH3, N1-CH2, Pp-2,3,5,6-H, Pp-CH2), 1.44 (s, 3H, Im-CH3b), 1.42 (s,
3H, Im-CH3a).

4.2. Crystallography

Crystals suitable for an X-ray structure analysis were grown from n-butyl acetate
for 7, while for 8 and 9 from n-propyl acetate, by slow evaporation of the solvent at
room temperature.

Data for single crystals of 7 and 9 were collected at 130K using the Oxford Diffraction
SuperNova four-circle diffractometer equipped with the Mo (0.71073 Å) Kα radiation
source, graphite monochromator, while for 8 were collected using the XtaLAB Synergy-
S diffractometer, equipped with the Cu (1.54184 Å) Kα radiation source and graphite
monochromator. Positions of all non-hydrogen atoms were determined by direct methods
using the SIR-2014 [60] program. Refinement and further calculations were carried out
using the SHELXL-2018 program [61]. All non-hydrogen atoms were refined anisotropically
using weighted full-matrix least-squares on F2. The hydrogen atoms attached to oxygen
atoms were identified on different Fourier maps, whereas all hydrogen atoms bonded to
carbon atoms were included in the structure at idealized positions and were refined using
a riding model with Uiso (H) fixed at 1.2 Ueq of C and 1.5 Ueq for methyl groups. In the
crystal structures of 7 and 9, a water molecule is present in the crystal lattice, wherein for 9
the occupancy factor of 0.3 of water molecule was used for refinement, and for molecular
graphics, the MERCURY [62] program was used.

7: C25H30Cl2FO3N4
+Cl−·H2O, Mr = 577.89, crystal size = 0.12 × 0.21 × 0.49 mm3,

triclinic, space group P1, a = 7.9131(3) Å, b = 13.0967(5) Å, c = 14.1077(5) Å, α = 68.230(3)◦,
β = 82.945(3)◦, γ = 86.697(3)◦, V = 1347.4(1) Å3, Z = 2, T = 130(2) K, 18,567 reflections
collected, 6279 unique reflections (Rint = 0.0260), R1 = 0.0532, wR2 = 0.1416 [I > 2σ(I)] and
R1 = 0.0683, wR2 = 0.1551 [all data].

8: C25H30Cl2FO3N4
+Cl−, Mr = 559.88, crystal size = 0.07 × 0.17 × 0.30 mm3, tri-

clinic, space group P1, a = 7.8606(1) Å, b = 13.0752(2) Å, c = 14.4597(2) Å, α = 64.936(2)◦,
β = 81.780(1)◦, γ = 88.492(1)◦, V = 1331.4(4) Å3, Z = 2, T = 100(2) K, 36,993 reflections
collected, 5449 unique reflections (Rint = 0.0439), R1 = 0.0401, wR2 = 0.1036 [I > 2σ(I)] and
R1 = 0.0421, wR2 = 0.1052 [all data].

9: C25H30Cl2F2O3N4
+Cl−·0.3H2O, Mr = 583.28, crystal size = 0.26 × 0.45 × 0.85 mm3,

triclinic, space group P1, a = 7.9118(3) Å, b = 13.0975(4) Å, c = 14.4313(5) Å, α = 65.905(2)◦,
β = 81.045(3)◦, γ = 88.293(3)◦, V = 1347.56(9) Å3, Z = 2, T = 130(2) K, 18,752 reflections
collected, 6313 unique reflections (Rint = 0.0228), R1 = 0.0503, wR2 = 0.1250 [I > 2σ(I)] and
R1 = 0.0630, wR2 = 0.1348 [all data].

CCDC 2248728-2248730 contains the supplementary crystallographic data. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 14 March 2023).

4.3. Pharmacology
4.3.1. Chemicals

The following drugs and chemicals were used: thiopental (Rotexmedica, Trittau,
Germany), heparin 5000 IU/mL (WZF Polfa S.A., Warsaw, Poland), ethyl alcohol 99.9%

www.ccdc.cam.ac.uk/data_request/cif
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(Chempur, Piekary Śląskie, Poland), kolliphor (Sigma-Aldrich, Taufkirchen, Germany),
sodium chloride (POCH, Gliwice, Poland), urapidil hydrochloride (Sigma-Aldrich, Ger-
many), prazosin hydrochloride (Sigma-Aldrich, Germany), terazosin hydrochloride (Sigma-
Aldrich, Germany), tamsulosin hydrochloride (Sigma-Aldrich, Germany), and phenyle-
phrine (Sigma-Aldrich, Germany).

4.3.2. Animals

The experiments were carried out on male normotensive Wistar rats (outbred stock,
name: KRF:WI(WU)) weighing 250 to 300 g. The animals were purchased from a licensed
breeder (Animal House, Faculty of Pharmacy, Jagiellonian University Medical College,
Krakow, Poland). The rats were housed in pairs in standard plastic cages at a constant
room temperature of 22–24 ◦C, relative humidity of 55 ± 10%, with a 12:12 h light/dark
cycle (light on from 7 a.m. to 7 p.m.). The animals had free access to food pellets (Agropol
S.J., Motycz, Poland) and filtered tap water. The experimental groups consisted of six
animals each. The rats were adopted for 5 days to the laboratory conditions before being
used in experiments. The animals were killed by cervical dislocation immediately after
the experiments. All experimental procedures were performed according to the European
Union Directive of 22 September 2010 (2010/63/EU) and Polish legislation concerning
animal care and use and approved by the 2nd Local Ethics Committee for Experiments on
Animals in Krakow, Poland (Resolution No. 127/2017).

4.3.3. In Vitro Binding Assay—Determination of Affinity for α1-ARs

The affinity for α1-ARs was determined by radioligand binding assay on rat cerebral
cortex using [3H]-prazosin as a specific radioligand. The brains were homogenized in
20 volumes of an ice-cold 50 mM Tris-HCl buffer (pH 7.6) and were centrifuged (MPW
Med. Instruments, Warsaw, Poland) at 20,000× g for 20 min (0–4 ◦C). The cell pellet was
resuspended in the Tris-HCl buffer and centrifuged again. Radioligand-binding assay was
performed in plates (MultiScreen/Millipore, Burlington, MA, USA). The final incubation
mixture (final volume 300 µL) consisted of 240 µL of the membrane suspension, 30 µL
of [3H]-Prazosin (0.2 nM) solution, and 30 µL of the buffer containing seven to eight
concentrations (10−11 to 10−4 M) of the tested compounds. For measuring the unspecific
binding, phentolamine, 10 µM (in the case of [3H]-Prazosin) was applied. The incubation
was terminated by rapid filtration over glass fiber filters (Whatman GF/C, Sigma-Aldrich)
using a vacuum manifold (Millipore). The filters were then washed twice with the assay
buffer and placed in scintillation vials with a liquid-scintillation cocktail. Radioactivity
was measured in a WALLAC 1409 DSA liquid-scintillation counter (BioSurplus, San Diego,
CA, USA).

4.3.4. In Vitro Functional Assays—Determination of Intrinsic Activity at the α1A-ARs and
the α1B-ARs

Intrinsic activity at the α1-AR subtypes studies were performed using the cells ex-
pressing mitochondrially-targeted aequorin and one of the human adrenergic receptor
α1A or α1B (PerkinElmer, Boston, MA, USA), according to the manufacturer’s instructions.
For measurement, frozen cells were thawed and re-suspended in 10 mL of assay buffer
containing 5 µM “Coelenterazine h”. This cell suspension was put in a 10 mL Falcon tube,
fixed onto a rotating heel, and incubated overnight at rt in the dark (8 rpm; 45◦ angle). Cells
were diluted with Assay Buffer to 5000 cells/20 µL. Agonistic ligands 2 × (50 µL/well),
diluted in Assay Buffer, were prepared in 1

2 white polystyrene area plates, and the cell
suspension was dispensed in 50 µL volume on the ligands using the injector. The light
emitted was recorded for 20 s. Cells with antagonists were incubated for 15 min at room
temperature. Thereafter, 50 µL of the reference agonist phenylephrine (3 × EC80 final
concentration) was injected into the mix of cells and antagonist, and the light emitted was
recorded for 20 s. Luminescence was measured using the multidetection microplate reader
(POLARstar Omega, BMG LABTECH, Ortenberg, Germany).
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4.3.5. Influence on Blood Pressure in Normotensive Rats

The normotensive rats were anesthetized with thiopental (75 mg/kg) by intraperi-
toneal injection (i.p.). The left carotid artery was cannulated with a polyethylene tub filled
with heparin in saline to facilitate pressure measurements using a PowerLab Apparatus
(ADInstruments, Sydney, Australia). Blood pressure was measured immediately before
administration of the tested compounds or vehicle—time 0 min (initial blood pressure) and
60 min thereafter. Initial blood pressure before administration of the tested chemicals in all
experimental groups was similar. The tested compounds were dissolved in a specific vehi-
cle: ethyl alcohol 5% − kolliphor 5% − water 90%. All tested chemicals were administrated
intravenously (i.v.) at a constant volume of 1 mL/kg after 20 min of stabilization period.
The compounds were tested at a starting dose of 2 mg/kg. If the hypotensive activity was
found, the dose was reduced by half. The dosing was continued until the hypotensive
effects disappeared. Urapidil was used as a reference compound.

4.3.6. Statistical Analysis

All statistics were performed using GraphPad Prism, Version 6.0 (GraphPad Software,
San Diego, CA, USA). In the radioligand binding study, data were analyzed by a one-
site curve-fitting equation, and inhibition constants (Ki) values were calculated via the
Cheng-Prusoff equation [63]. In functional studies, data were analyzed using a sigmoidal
dose-response (variable slope) equation. Arterial blood pressure data were analyzed using
a two-way ANOVA with Sidak’s post-hoc test for multiple comparisons. A p < 0.05 was
considered statistically significant.

4.4. Molecular Modelling

All the compounds were prepared for docking using LigPrep [64] from the Schrödinger
Suite using default settings. Docking was carried out in Glide [65], using extra precision
mode. The compounds were docked to the homology models of α1A and α1B, constructed
on the basis of the GPCRdb data [66]. Homology modeling was carried out using the
Modeller software version 9.13 [67] using a multi-template approach and available crystal
structures of receptors from the aminergic family of GPCRs. The constructed models
were evaluated by docking of known ligands and sets of inactive compounds towards
α1A and α1B. For each receptor subtype, one model providing the best discrimination
between active and inactive compounds (in terms of the Area Under Receiver Operating
Characteristic—AUROC) was selected. Visualizations of docking poses were prepared in
Pymol [68].

5. Conclusions

This study reported the design, synthesis and pharmacological evaluation of a series
of novel phenylpiperazine derivatives of 5,5-dimethylhydantoin as α1-AR antagonists. The
newly synthesized compounds showed high-to-moderate affinity for α1-ARs. Compounds
containing the methoxy group at position ortho of the phenylpiperazine phenyl ring re-
vealed in vitro strong antagonistic activity at α1A- and/or α1B-AR and in vivo hypotensive
effects. The most promising compound (5) exhibited a stronger antagonistic effect at α1B-
ARs (IC50 = 0.002 nM) than classic α1-AR blockers such as prazosin, terazosin, tamsulosin
and significantly decreased systolic and diastolic blood pressure after i.v. administration at
a dose 0.0625 mg/kg. The hypotensive dose was lower than the effective dose obtained
for the reference drug urapidil. Compound (11) possessing a 2-cyano- substituent at the
phenyl ring of phenylpiperazine moiety demonstrated in vitro strong antagonistic activity
at α1A-AR without significant changes in the hemodynamic parameters (SBP and DBP).
Both compounds (5 and 11) are good candidates for further pharmacomodulation and bio-
logical screening development in search of innovative pharmacotherapy against circulation
and urinary diseases.
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studies on the importance of aromatic ring topologies in search for selective 5-HT(7) receptor ligands among phenylpiperazine
hydantoin derivatives. Eur. J. Med. Chem. 2014, 78, 324–339. [CrossRef]

49. Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. Synthesis,
biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward alpha(1)- and
alpha(2)-adrenoceptors. J. Med. Chem. 2001, 44, 2118–2132. [CrossRef]
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