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This Special Issue, the third dedicated to reproductive immunology and pregnancy, is
another review of the latest trends in research topics in this field. The dynamic develop-
ment of immunopathology of the reproductive system creates new opportunities to verify
hypotheses regarding the etiopathogenesis of endometriosis and infertility, among other
conditions [1].

While estrogens themselves do not cause endometriosis, the disease is classified as
estrogen-dependent, in which cells with characteristics very similar to endometrial cells
form ectopic foci outside the uterine cavity. Because endometriosis cells may express
estrogen receptors (ERα, Erβ, GPER) and progesterone (P4) receptors (PR-A, PR-B), their
growth, cyclic proliferation, and breakdown are similar to the processes that occur in
the endometrium [2]. This leads to significant complications, mainly due to the chronic
inflammatory response. Endometriosis affects 10–15% of women of reproductive age and
is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility [3,4].

The pathogenesis of endometriosis is multifactorial [5,6]. There are several theo-
ries, including the widely accepted implantation theory, which assumes the occurrence
of retrograde transport of viable endometrial cells with retained abilities for pelvic cavity
attachment, proliferation, differentiation, and subsequent invasion into the surrounding
tissue [7]. Achievements in the field of immunobiology and embryology have made it pos-
sible to supplement implantation theory with knowledge about the significant contribution
of stem cells, leading to the development of the stem cell theory of endometriosis [8]. A
population of stem cells in the uterus helps the endometrium regenerate after shedding
each month during menstruation. These stem cells divide and produce more endometrial
tissue to replace what is lost during menstruation. Accordingly, the most abundant cells
in the endometrium are endometrial stromal cells (EnSCs) [8,9]. These cells constitute a
particular population with clonogenic activity that resembles the properties of mesenchy-
mal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction
in the formation of initial endometrial lesions is suspected. There is increasing evidence
that the role of epigenetic mechanisms and processes in endometriosis has been underesti-
mated [5,10–12]. This conclusion is based on the fact that heritable phenotype changes that
do not interfere with the DNA sequence are common triggers for hormonal, immunologi-
cal, and inflammatory disorders, which play a key role in the formation of endometriotic
foci [7].

The instability of estrogen/P4 homeostasis, which leads to excessive estrogen exposure
and P4 resistance, is strongly reflected in endometriotic tissue as changes in the expression
of transcription factors of the estrogen and P4 signaling pathways [9].

It is well known that endometriosis co-occurs in individuals with autoimmune diseases
more often than in the general population [13]. This includes individuals with systemic
lupus erythematosus (SLE), Hashimoto’s autoimmune thyroiditis, multiple sclerosis (MS),
diabetes mellitus type 1, rheumatoid arthritis (RA), Graves’ disease, vitiligo, and celiac
disease (CD), among others [13–15]. In autoimmune diseases, the immune system mis-
takenly recognizes its own tissues as immunologically foreign and then induces cellular
immunity mechanisms based on T lymphocytes (T cells), macrophages, and natural killer
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(NK) cells to destroy them. The results of recent studies indicate significant disturbances in
the function of these cells in women with endometriosis. For example, an increased number
and high activity of regulatory T cells (Tregs) and macrophages are found in the peritoneal
fluid of women with endometriosis. In relation to T cells, maintenance of forkhead box
P3 (Foxp3) protein—the master regulatory protein involved in Treg-mediated immune
system responses—seems crucial to ensure a balanced immune response [16]. Significant
differences between autoimmunity and endometriosis in relation to the activity of Tregs
and autoreactive effector CD4+ T helper (Th)1 and Th17 subsets are simplified in Figure 1.
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an SIRT1-catalyzed reaction. Another mechanism of SIRT1 inhibition in autoimmunity involves 
phosphorylation of SIRT1 by mammalian sterile 20-like kinase 1 (Mst1) protein kinase with subse-
quent protein p53 acetylation and transactivation, resulting in apoptosis induction and decreased 
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helper (Th)1 and Th17 subsets [19]. Conversely, in endometriosis, a low level of Foxp3 acetylation 
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sequent reduction in Th1 and Th17 activities [20]. Therefore, the detection of ectopic locations of 
endometrial cells (endometriotic foci) by the immune system is impaired. An inherent symptom of 
both autoimmunity and endometriosis is inflammation, although with different pathogenesis and 
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Figure 1. Altered immune response as a result of epigenetically determined dysfunction of regulatory
T cells (Tregs): autoimmunity vs. endometriosis. Tregs are essential for maintaining immune
homeostasis. Forkhead box P3 (Foxp3) is the master regulatory protein involved in Treg development
and function [17]. The activity of Foxp3 is a derivative of the degree of acetylation (Ac), which
is directly related to the presence of sirtuin-1 (SIRT1). SIRT1 functions as a nicotinamide adenine
dinucleotide (NAD+)-dependent protein deacetylase linked to cellular energy and redox status.
Deacetylation of Foxp3 in autoimmunity may be inhibited by nicotinamide (NAM), a byproduct
of an SIRT1-catalyzed reaction. Another mechanism of SIRT1 inhibition in autoimmunity involves
phosphorylation of SIRT1 by mammalian sterile 20-like kinase 1 (Mst1) protein kinase with subsequent
protein p53 acetylation and transactivation, resulting in apoptosis induction and decreased cell
proliferation [18]. A high level of Foxp3 acetylation in autoimmunity leads to a decrease in the activity
of Tregs and, consequently, to an increase in the activity of autoreactive effector CD4+ T helper (Th)1
and Th17 subsets [19]. Conversely, in endometriosis, a low level of Foxp3 acetylation with uninhibited
deacetylating function of SIRT1 leads to an increase in Tregs activity (*) and subsequent reduction
in Th1 and Th17 activities [20]. Therefore, the detection of ectopic locations of endometrial cells
(endometriotic foci) by the immune system is impaired. An inherent symptom of both autoimmunity
and endometriosis is inflammation, although with different pathogenesis and characteristics [16].

Dysfunctional natural killer (NK) cells may also contribute to the impaired recognition
of ectopic foci in endometriosis and the lack of effective removal of endometrial cells by the
immune system. Reis et al. (2022) [21] reviewed, summarized, and updated the previous
literature on NK cells and endometriosis, focusing on the current state of knowledge about
the role of NK receptors (NKRs).
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The overexpression of NK cell inhibitory receptors (KIRs), such as CD158a+, KIR2DL1,
CD94/NKG2A, PD-1, NKB1, and EB6, and inhibitory ligands, namely, PD-L1, HLA-E,
HLA-G, and HLA-I, may play an important role in the pathogenesis of endometriosis.

Moreover, the early onset of preeclampsia may also be caused by immune checkpoint
disorders, with the presence of a population of NK cells with abnormal KIR expression caus-
ing a predisposition to inadequate uterine spiral artery remodeling and shallow trophoblast
invasion [22]. It has been shown that immunological interactions in the maternal–fetal
system occurring in early pregnancy are not only moderated by T lymphocytes but also by
NK cells, which may be because decidual NK cells are the largest population of immune
system cells in the uterus during early pregnancy [23]. It has been shown that immunologi-
cal interactions in the maternal–fetal system occurring in early pregnancy are moderated
mainly by NK cells, not T cells, which may be because decidual NK cells are the largest
population of immune system cells in the uterus during early pregnancy [23].

Fertility disorders related to abnormal functioning of the immune system, increasing
the risk of autoimmune diseases, are a constantly growing and supplemented pool of
causes of infertility [24]. Antiphospholipid syndrome (APLS) is characterized by thrombo-
sis and/or recurrent pregnancy loss coexisting with the presence of circulating autoanti-
bodies that are directed against phospholipid-binding proteins (antiphospholipid or aPL
antibodies) [25]. Minimal vasculitis combined with complement consumption in patients ex-
periencing infertility may be an underlying mechanism for impaired implantation because
aPL antibodies regulate the inflammatory response [26]. Recently, a novel autoantibody
against a complex of β2-glycoprotein I and human leukocyte antigen class II molecules
(β2-GPI/HLA-DR) has been reported to be an independent autoantibody associated with
APLS [27]. In addition, human leukocyte antigen G (HLA-G), expressed on trophoblastic
cell surfaces, seems to be one of the main molecules involved in the modulation of both
local and systemic maternal immune responses. It was demonstrated that HLA-G 3’UTR
polymorphisms and haplotypes may be involved in unexplained recurrent spontaneous
abortion (URSA) and may be a predictor of pregnancy outcome [28].

Alpha-enolase (enolase 1, ENO1) is a multifunctional protein that acts as a key gly-
colytic enzyme in the cytoplasm and a receptor for plasminogen expressed on the cell
surface. In euthyroid females with autoimmune thyroiditis, serum levels of autoantibod-
ies against strong epitopes of α-enolase may be treated as good predictive markers for
pregnancy loss [29].

Adipokines are cell-signaling molecules (cytokines) produced in adipose tissue and
are involved in metabolic, endocrinological, vascular, and immunogenic processes. The
obesity pandemic, also occurring among pregnant women, has undoubtedly contributed
to the increased interest in the study of adipokines in recent years. Many of these studies
aimed to explain the relationship between the concentrations of specific adipokines (e.g.,
fatty acid binding protein 4, FABP4), especially in pregnant women with weight disorders,
and the course of pregnancy and the risk of complications, such as gestational diabetes
mellitus (GDM), preeclampsia (PE), fetal growth restriction (FGR), and macrosomia [30–32].

The most well-studied gestational trophoblastic disease (GTD) is hydatidiform mole
(also known as a molar pregnancy), which is characterized by an overgrown villous tro-
phoblast with cystic “swollen” villi that develop inside the uterus after conception. The
peculiarity of this rare disease, which occurs with distinct geographical variations in approx-
imately 1 in 1200 pregnancies, is that the tumor essentially originates from the pregnancy
tissue and not from the mother’s tissue [33]. A mole is classified as partial when the cells
are triploid and contain two copies of the paternal genome and one copy of the maternal
genetic material, and—in the absence of the maternal genome—as complete (contains two
sets of the paternal chromosomes) [33]. This feature was used in the differential diagnosis
of mole by examining paternally imprinted genes. Paternally imprinted genes are those
that are expressed only when inherited from the mother, while the father’s allele is silenced
by DNA methylation [34]. Because complete hydatidiform mole lacks a maternal genomic
component, there is no expression of paternally imprinted genes in this pathological tis-
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sue. Since approximately 40 parentally imprinted genes have been identified in humans,
the number of genetic markers in complete hydatidiform mole is constantly increasing.
To date, the diagnostic utility has been confirmed with immunohistochemistry of cyclin-
dependent kinase inhibitor 1C (p57, encoded by CDKN1C imprinted gene), retinoblastoma
transcriptional corepressor 1 (RB1), and pleckstrin homology-like domain family A member
2 (IPL/TSSC3) [35–39].

Lactation in mammals completes the reproductive process, although milk production
generally interferes with fertility by inhibiting ovulation. In addition to its reproductive
functions, prolactin—the main hormone responsible for breast development during preg-
nancy and lactation—is also involved in metabolism, osmoregulation, immunomodulation,
and behavior. Lactation greatly changes the mother’s metabolism, redistributing the blood
supply and increasing the demand for nutrients. The lack of a balanced diet in breast-
feeding women carries a high risk of macro- and micronutrient deficiencies and makes it
difficult to maintain a healthy body weight due to metabolic disorders. In general, apart
from the obvious benefits for the baby, lactation also has a positive effect on the body of
the breastfeeding mother. Some cancers, type 2 diabetes, high blood pressure, and nonal-
coholic fatty liver disease (NAFLD) are less common among women who breastfeed [40].
However, in a situation unique to humans, i.e., industrial milk production in cows, intense
and maximally prolonged lactation has an adverse effect mainly on liver function and the
immune system. Cheng et al. (2023) [41] demonstrated that the functionality of circulating
leukocytes in dairy cows is suppressed after calving, with negative energy balance as a
risk factor. Moreover, the leukocytes of multiparous and primiparous cows responded
differently to the diets across age, nutrient supply, and immunity, affecting health and
subsequent fertility.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.
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