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Abstract: In this review, we provide a general overview of the current panorama of mining strategies
for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers
in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with
varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different
molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt
to address some of the less discussed aspects of the practical applications using different study designs
for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the
potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in
cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.

Keywords: long non-coding RNAs; cancer; multi-omics

1. Introduction

The advent of next-generation sequencing and other revolutionary technologies for
the study of omics, such as genomics, transcriptomics, proteomics, and metabolomics,
has completely transformed the way basic and clinical cancer research is conducted [1,2].
As a consequence of these fast-moving advances, we have been able to produce large
volumes of data from an assortment of multiple omics layers (i.e., genomics, epigenomics,
transcriptomics, proteomics, metabolomics, and microbiomics) from different tissue and
cell models for the study of basic and translational research in cancer [3,4]. In particular,
the exponential advances in sequencing technology have allowed researchers to explore the
complexity and diversity of human transcriptomes [5,6]. One population of RNA molecules
that has received special attention in recent years are long non-coding RNAs (lncRNAs),
which are molecules without protein-coding capacities but with versatile and pleiotropic
functions [7,8], with well-defined action mechanisms linked to different hallmarks of can-
cer [9–11]. lncRNAs are increasingly being recognized as potential pharmacological targets
and as diagnostic and prognostic biomarkers [12–14]. Indeed, advances in RNA-seq and
other large-scale methodologies represent a valuable resource for deepening our knowledge
of the molecular aspects of lncRNAs and their roles in cancer biology [15,16]. So far, most
studies have primarily centered on detecting aberrant expression changes of lncRNAs.
However, given the complex and pleiotropic functions of lncRNAs, we must recognize
that to truly harness the potential of these transcripts to reveal their complex functional
aspects and associations with extrinsic and intrinsic factors that influence the suscepti-
bility, incidence, and survival of different types of cancer, we need to incorporate new
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frameworks for multidimensional analyses, as have been proposed for the study of other
complex diseases [17]. In this context, multi-omics analysis approaches that combine and
integrate protein-coding gene expressions with other dimensions of molecular information,
such as genomics and epigenomic, have improved our capacity for obtaining significant
understanding of the molecular aberrations underpinning the oncologic characteristics in
different types and subtypes of tumors (e.g., cancer cell fate and survival) [4,18]. Likewise, a
multi-omics framework progressively incorporated into research is helping us to delineate
the way lncRNAs perform their functions and how they impact cancer development [19].
As a new paradigm, these approaches might boost research to produce sufficient evidence
to ascribe them a causal relationship to the malignancy presence and most importantly, a
clinical value as diagnostics, prognostic, and predictive markers in cancer [20,21].

In this review we do not intend to cover an exhaustive compendium of the many
lncRNAs and their biological and molecular roles in cancer, nor of the large number of
bioinformatics programs that have been developed for the analysis of transcriptomics,
genomics, and epigenomics data, both of which have been extensively discussed else-
where [18,22–24]. Instead, we will try to shed light on some of the less discussed aspects of
the practical applications using different integrative, comparative, and multidimensional
study designs incorporating bioinformatics and statistical analysis of multi-omics data.
Finally, we will discuss the possible improvements and new paradigms aimed at unraveling
the activity of lncRNAs in cancer, and their potential use as molecular markers in clinical
and biological behaviors. Throughout the following sections, we present and discuss the
recent scientific evidence employing different omics strategies for the functional and bio-
logical study of lncRNAs in cancer research, with special interest in their informative role
in oncology programs. Next, we focus our discussion on machine learning and biostatistics
solutions that have been incorporated as part of methodological pipelines for quantifying
the performance of lncRNAs signatures in the classification of cancer samples and the
prediction of response and survival in cancer patients. Finally, we discuss future scenarios
of new technological advances for the discovery and profiling of lncRNAs in cancer, and
the challenges of translating these advances into real-world clinical settings.

The complexity of genomic alterations, gene expression, protein–protein interactions,
epigenetic mechanisms, cellular secretome, and metabolome is a complex subject, especially
when we want to define how their components interact (Figure 1). For this reason, and
considering our main interest, in this work, we searched for literature in the PubMed
database using the keywords (“lncRNA” or “long non-coding RNA” and “cancer” and
“multi-omics”) up to October 2023. Subsequently, we manually revised our search to focus
mainly on the different approaches for multi-omics integration with the scope of finding
and evaluating functional lncRNAs signatures with a clinical prognosis and prediction of
patient outcome. The integration of the data can occur from a simple to a more complex
view of cellular function. We will start with the simplest view, which focuses on describing
the combination of phenotypes observed at different biological levels independently.



Int. J. Mol. Sci. 2023, 24, 16600 3 of 33Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 33 
 

 

  

Figure 1. Representation of the various molecular features with changes and alterations at the DNA, 

RNA, and protein levels that can occur in cancer cells, representing the spectrum of multi-omics 

states that can be interrogated by high-throughput methods. DNA is the substrate for somatic aber-

rations, such as point mutations (arrow pointing at yellow spark) and somatic copy-number altera-

tions (SCNA). DNA is also the molecule where the methylation of 5-methy-cytosine in different 

patterns has consequences in epigenomic regulation. On the other hand, the transcriptome, which 

is composed of the many RNA species in a cell, including the coding and non-coding genes (i.e., 

mRNAs, lncRNAs, and microRNAs), undergoes various dynamic changes that affect the levels of 

these species in different cells and tissues. Changes in the expression of various RNA molecules, 

such as lncRNAs, have become a potential repertoire of functional molecular markers for different 

types of cancer. Similarly, proteins and metabolites can also become informative indicators of the 

oncogenic processes occurring in a cell, tissue, organ, or physiological system in the body. Although 

graphically represented as separate compartments, these molecular dimensions are interconnected, 

and changes in the state in one dimension have consequences in the others and vice versa. 
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Figure 1. Representation of the various molecular features with changes and alterations at the DNA,
RNA, and protein levels that can occur in cancer cells, representing the spectrum of multi-omics
states that can be interrogated by high-throughput methods. DNA is the substrate for somatic
aberrations, such as point mutations (arrow pointing at yellow spark) and somatic copy-number
alterations (SCNA). DNA is also the molecule where the methylation of 5-methy-cytosine in different
patterns has consequences in epigenomic regulation. On the other hand, the transcriptome, which
is composed of the many RNA species in a cell, including the coding and non-coding genes (i.e.,
mRNAs, lncRNAs, and microRNAs), undergoes various dynamic changes that affect the levels of
these species in different cells and tissues. Changes in the expression of various RNA molecules, such
as lncRNAs, have become a potential repertoire of functional molecular markers for different types of
cancer. Similarly, proteins and metabolites can also become informative indicators of the oncogenic
processes occurring in a cell, tissue, organ, or physiological system in the body. Although graphically
represented as separate compartments, these molecular dimensions are interconnected, and changes
in the state in one dimension have consequences in the others and vice versa.

2. lncRNAs Associated with Cancer Driver Somatic Mutations Profiles

Cancer is characterized by the somatic acquisition of various cellular alterations that
lead to selective advantages, such as unrestricted growth, the suppression of apoptosis,
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and enhanced metabolism [25], and genomic instability has been widely recognized as
one of the leading hallmarks of cancer [26]. Recently, especially using high-throughput se-
quencing, research has revealed the complexity of the somatic DNA aberration landscapes
of cancer genomes [27]. In fact, defining specific somatic mutational profiles has long been
a keystone for characterizing cancer patients and leading to the discovery of specific cancer
driver genes [28], which in turn can help estimate the inherited risk, prioritize therapy and
prognosis, and understand pharmacologic responses to drug treatments [29]. Not surpris-
ingly, given the protein-centric view that has prevailed in many branches of molecular
biology in recent years, cancer studies have focused more on exploring the mutations that
occur in protein-coding regions, despite the fact that the exome represents a very small
fraction (1–2%) of the human genome (Figure 1). Excitingly, with the expansion of our
knowledge about other functional regions within the human genome other than the regions
with protein-coding loci, a growing number of discoveries have now emerged demonstrat-
ing that recurrent somatic mutations in non-protein-coding regions can also be informative
features, paving the way for discovering causal links between lncRNAs functions and onco-
genesis [30]. By leveraging whole-genome sequencing data, researchers have been able to
better characterize the presence, frequency, and functional impacts of somatic mutations in
the non-coding regions of cancer genomes [31]. To our current knowledge, the most robust
evidence has shown that cancer driver point mutations and structural variants are less
common in non-coding genes and regulatory sequences than in protein-coding genes. The
availability of whole-genome sequencing data and capture panels that include non-coding
regulatory regions from projects such as TCGA, along with other valuable efforts, has
led to the discovery of driving somatic mutations in non-coding regions that affect the
function of genes other than the protein-coding genes [32–35]. For example, Rheinbay et al.
sequenced 360 primary breast tumors and patient-matched normal samples, and observed
cancer driver mutations in the regulatory non-coding regions that could indeed occur at
frequencies similar to the coding regions. However, they also found promoter elements
with a significant burden or clustering of mutations, including promoters of lncRNA genes,
such as RMRP8 and NEAT1. Notably, three of the four mutations present in the NEAT1
promoter element induced a reduction in the NEAT1 expression, thus adding new loss-of-
function alterations affecting NEAT1 in breast cancer [36]. This study represents one of the
most sophisticated integrative efforts performed to date. The approach used by the authors
emphasized the discovery of somatic alterations that did not occur at the loci encoding
the transcripts of lncRNAs, but in the regulatory regions that controlled their transcription
(Figure 2). A broader view of the state-of-the-art approaches that integrate multiple omics
data to characterize the somatic point mutations at loci-encoding lncRNAs that may lead to
a gain or a loss of function are discussed in Table 1.
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Figure 2. Multi-omics approaches used in cancer research and interrogated at a multidimensional
level for the characterization of the biological, functional, and pathophysiological properties of
lncRNA. In multi-omics, different modalities for the study design have been proposed, mainly com-
bining two or more dimensions of molecular features (i.e., genomics, transcriptomics, epigenomics,
proteomics, and metabolomics). For that purpose, bioinformatics and statistical frameworks have
been also envisaged by researchers to mine information from the integrative analysis of these mul-
tidimensional data structures (e.g., post-analysis and early integration analysis). In combination
with bioinformatics pipelines, different statistical and machine learning frameworks have been im-
plemented, which are aimed at constructing and refining models to predict the outcome of cancer
patients, such as free survival, time to relapse, and treatment response.
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Table 1. Research studies conducted, in which multi-omics approaches were used to identify and characterize the biological and clinico-pathological features of
different lncRNAs signatures and evaluate their performance as predictors of patient clinical outcomes for various cancer types. NA: No information available.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

ESR1, TRPS1, ERG,
RUNX1,
SNHG16, and
HOTAIR

Various cancer types

Molecular and biological
characterization of the
regulatory mutations on
functional lncRNAs in
cancer

Somatic mutations on
the lncRNA TF binding
site are associated with
their expression and
activity in cancer

NA NA NA [32]

CASC8 Breast cancer

Prioritize and predict
lncRNAs with a
functional impact
through mutation
analysis

Somatic mutations on
the lncRNA loci site are
associated with
expression alterations
that have a functional
impact

NA NA NA [37]

ENSG0000021403,
ENSG00000261650,
ENSG00000281406,
and G001643

Colorectal
carcinoma

Molecular and biological
characterization of the
regulatory mutations on
functional lncRNAs in
cancer

Somatic mutations on
the lncRNA loci site are
associated with
expression alterations
that have a functional
impact

NA NA NA [38]

LINC00460,
AC156455.1,
AC015977.2,
‘PRDM16-dt’,
AL139351.1,
AL035661.1, and
LINC01606

Renal cell
carcinoma

Identify the genome
instability-related
lncRNAs and their
clinical significance

Discovery of
11 lncRNAs related to
mutational burden and
associated with patient
poor overall survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

Train AUC = 0.743
Test = 0.770 [39]

LINC00460,
LINC01234

Clear cell renal
carcinoma

Identify the genome
instability-related
lncRNAs and their
clinical significance

Identification of a
lncRNAs signature
related to the mutational
burden and associated
with patient poor overall
survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

AUC = 0.681 [40]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

FAM30A,
CACNA1C-AS1,
LINC02595,
LINC00926,
AL589863.1, and
AP000919.3

AML
Construct a somatic
mutation-associated risk
index

lncRNAs related to the
mutational burden and
associated with patient
poor overall survival

Selection of
candidate lncRNAs
using LASSO
followed by the
univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

AUC = 0.804 [41]

AC007996.1,
AC009237.14,
AP003555.1, and
AL590483.1

Colorectal carcinoma

Evaluate the
performance of a
genome stability-related
lncRNA signature as a
risk predictor

Identification
of a lncRNAs signature
related to the mutational
burden and associated
with patient poor overall
survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at
3 years; p < 0.001

AUC = 0.713 [42]

ZNF503-AS1,
AL353747.2,
AC129492.1,
AP003555.1, and
AC009237.14

Colorectal carcinoma

Evaluate the
performance of a
genome stability-related
lncRNA signature as a
risk predictor

Identification
of a lncRNAs signature
related to the mutational
burden and immune
infiltration that are
associated with patient
poor overall survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001; in the
validation set

AUC (1 year) = 0.750;
AUC (3 years) =
0.757, AUC (5 years)
= 0.711; in the
validation set

[43]

AC107464.2,
MIR100HG, and
AP001527.2

Cervical carcinoma

Evaluate the
performance of a
genome stability-related
lncRNA signature as a
risk predictor

Identification
of a lncRNAs signature
related to the mutational
burden and associated
with patient poor overall
survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk (1.7 years)
vs. low-risk (1.5
years) groups;
p < 0.001; in the
validation set

AUC (3 years) =
0.663; in the
validation set

[44]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

AC002511.2,
LINC00501,
LINC02055,
LINC02714,
LINC01508,
LOC105371967,
RP11_96A15.1,
RP11_305F18.1,
RP11_342M1.3,
RP11_432J24.3, and
U95743.1

Hepatocellular
carcinoma

Evaluate the
performance of a
genome stability-related
lncRNA signature as a
risk predictor

Identification of a
lncRNAs signature
related to the mutational
burden and associated
with patient poor overall
survival

Selection of
candidate lncRNAs
using LASSO
followed by the
univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

NA [45]

C116351.1,
ZFPM2-AS1,
AC145343.1, and
MIR210HG

Hepatocellular
carcinoma

Evaluate the
performance of a
genome stability-related
lncRNA signature as a
risk predictor

Identification of a
lncRNAs signature
related to the mutational
burden and associated
with patient poor overall
survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at 3
and 5 years; p < 0.001

AUC (3 years) =
0.710, AUC (5 years)
= 0.707; in the
validation set

[46]

BCAL8 Breast cancer

Molecular and biological
characterization of the
functional regulatory
mutations on cancer

Identification of a
somatic SCNA-related
lncRNAs signature
associated with patient
prognosis

Selection of
candidate lncRNAs
using filtering
methods

NA NA [47]

RUSC1-AS1,
LINC01990,
LINC01411,
LINC02099, H19,
LINC00452,
ADPGK-AS1, and
C1QTNF1-AS1

Cervical carcinoma

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification of a
somatic SCNA-related
lncRNAs signature with
a value as independent
tumor-free survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at 1,
3, and 5 years;
p < 0.001

AUC (1 year), AUC
(3 years), and AUC (5
years) > 0.750

[48]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

PRAL Tumor suppressor

Molecular and biological
characterization of
SCNA-related lncRNAs
in cancer

Identification of a
somatic SCNA-related
lncRNA with a value as
an independent
predictor for reduced
tumor-free survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

NA [49]

LOC101927604,
LOC105377267,
CASC15, LINC-PINT,
CLDN10-AS1,
C14orf132, LMF1,
LINC00675,
CCDC144NL-AS1,
and LOC284454

Colorectal carcinoma

Evaluate the
performance of an
SCNA-related lncRNA
signature as a risk
predictor for CRC

Identification of somatic
SCNA-related lncRNA
with a value as an
independent predictor
for reduced tumor-free
survival

Clustering based on
the gene expression,
SCNA, and DNA
methylation followed
by the univariable
and multi-variable
COX prognostic
regression model

High-risk vs.
low-risk groups;
p < 0.001

NA [50]

RP11-571M6.8 Glioblastoma

Molecular and biological
characterization of
SCNA-related lncRNAs
in cancer

Identification of a
somatic SCNA-related
lncRNA that is
significantly predictive
of disease-free survival

Selection of
candidate lncRNAs
using filtering
methods followed by
the univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

NA [51]

RP11-1020A11.1 Bladder carcinoma

Molecular and biological
characterization of
SCNA-related lncRNAs
with risk prediction
utility in cancer

Identification of a
somatic SCNA-related
lncRNA that is
significantly predictive
of disease-free survival

Selection of
candidate lncRNAs
using filtering
methods followed by
the univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

NA [51]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

LINC02528,
SEMA6A-AS1,
EBLN3P, MIR155HG,
LYRM4-AS1, and
HLA-DQB1-AS1

Skin cutaneous
melanoma

Identify a novel
prognostic signature
using m6A-related
lncRNAs and evaluate
the prognostic of
survival performance

Identification of a
lncRNAs
signature-related somatic
SCNA associated with
patient overall survival

Selection of
candidate lncRNAs
using LASSO
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups at 1,
2, 3, and 5 years;
p < 0.001 and
construction of a
nomogram for the
clinical decision risk
score

AUC (1, 2, 3, and
5 years) > 0.6 [52]

AL121772.1,
BX640514.2,
LINC01133, and
LYPLAL1-AS1

Pancreatic cancer

Investigate the
prognostic performance
of a lncRNA signature
and its relationship with
the tumor immune
microenvironment

Identification of a
genomic
instability-related
lncRNAs signature
associated with patient
overall survival

Selection of
candidate lncRNAs
using filtering
methods followed by
the univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at
1 year; p < 0.001

AUC (1 year) = 0.653 [53]

CTD-2256P15.2 Lung
adenocarcinoma

Molecular and biological
characterization of
SCNA-related lncRNAs
with risk prediction
utility in cancer

Identification of a
somatic SCNA-related
lncRNAs signature
associated with the
prognosis of patients
after methyl ethyl ketone
(MEK) inhibitors
treatment

Selection of
candidate lncRNAs
using filtering
methods followed by
the univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

NA [54]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

LINC00896,
MCM8-AS1,
LINC01251,
LNX1-AS1,
GPRC5D-AS1,
CTD-2350J17.1,
LINC01133,
LINC01121, and
AC073130.1

Non-small
cell lung cancer

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification of a
lncRNAs signature
related to somatic SCNA
and associated with
patient poor overall
survival

Selection of
candidate lncRNAs
using LASSO
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups at 1
and 3 years; p < 0.001

AUC (1 and 3 years)
= 0.73 [54]

RP11-241F15.10 Osteosarcoma

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification
of a lncRNAs
signature-related somatic
SCNA associated with
patient disease-free and
overall survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at 1
and 3 years; p < 0.001

NA [55]

ALAL-1 Non–small cell lung
cancer

Molecular and biological
characterization of
SCNA-related lncRNAs
in cancer

Identification of a
pro-oncogenic lncRNA
that mediates cancer
immune evasion,
pointing to a new target
for immune potentiation

NA NA NA [56]

LOC339803, F11-AS1,
and PCAT2
TMEM220-AS1

Hepatocellular
carcinoma

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification of
CNA-related lncRNAs
that can better evaluate
the prognosis of patients
with liver cancer

Selection of
candidate lncRNAs
using LASSO
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups at 1,
3, and 5 years;
p < 0.001

AUC (1, 3, and 5
year) > 0.7 [57]

ENSG00000261582
Lung
adenocarcinoma and
cervical carcinoma

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification of a
somatic SCNA-related
lncRNAs signature
associated with patient
overall survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at
5 years; p < 0.001

NA [58]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

PCAN-R1 (Ensembl
ID
ENSG00000228288)
and PCAN-R2
(Ensembl ID
ENSG00000231806)

Prostate
adenocarcinoma

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification of a
somatic SCNA-related
lncRNAs signature
associated with patient
overall survival

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at
5 years; p < 0.001

NA [58]

LOC101927151,
LINC00861, and
LEMD1-AS1

Ovarian
cancer

Evaluate the
performance of a
SCNA-related lncRNA
signature as a risk
predictor

Identification
of a somatic
SCNA-related lncRNAs
signature associated with
patient prognosis

Univariable and
multi-variable COX
prognostic regression
model

High-risk vs.
low-risk groups at
5 years; p < 0.001

NA [59]

TSPOAP1-AS1,
CCNT2-AS1,
LINC01094,
AL033527.2, and
LINC00460

Gastric cancer

Evaluate the
performance of a
mutation-related
lncRNA signature as a
risk predictor and
characterization of
functional activity

Identification of an
anoikis-related lncRNAs
signature associated with
patient poor overall
survival and
immunotherapy
response

Selection of
candidate lncRNAs
using LASSO
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

Train AUC = 0.707
Test = 0.646 [53]

NA
Kidney
renal clear cell
carcinoma

Evaluate the
performance of a
multi-omics-derived
lncRNA signature as a
risk predictor

Identification of a
lncRNAs signature
derived from the analysis
of transcriptomics and
DNA methylation
associated with patient
poor overall survival

Selection of
candidate lncRNAs
using a novel TRS
method utilizing
multiple omics data
and a XGBoost
model followed by
the COX prognostic
regression model

High-risk vs.
low-risk groups;
p < 0.001

AUC = 0.95; using
the best predictor
model

[60]
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Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

Twenty-six lncRNAs Hepatocellular
carcinoma

Evaluate the
performance of a
multi-omics-derived
lncRNA signature as a
risk predictor and
characterization of
functional activity

Identification of an
exosome-related
lncRNAs signature
associated with patient
poor overall survival and
a response to
transarterial
chemoembolization
(TACE) therapy and
sorafenib therapy

Selection of
candidate lncRNAs
using a weighted
correlation network
analysis followed by
the COX prognostic
regression model

High-risk vs.
low-risk groups;
p < 0.001

AUC > 0.7 [61]

Ten lncRNAs,
including:
LINC00582,
MIR205HG and
TRG-S1,

Breast cancer

Evaluate the
performance of a
mutation-related
lncRNA signature as a
risk predictor and
characterization of
functional activity

Identification of a
TMB-related lncRNAs
signature associated with
patient poor overall
survival and a response
to immunotherapy

Clustering based on
the gene expression
and selection of the
gene predictors using
LASSO followed by
the COX prognostic
regression model

High-risk vs.
low-risk groups at 1,
3, and 5 years;
p < 0.001

AUC (1 year) = 0.722,
AUC (3 years) =
0.745, AUC (5 years)
= 0.811

[62]

C20orf197, UCA1,
MIR17HG, and
MIR22HG

Various cancer types

Evaluate the
performance of a
lncRNA signature as a
patient prognosis
predictor

Oxiplatin
sensitivity-related
lncRNAs signature
associated with the
prognosis of patients
given oxaliplatin-based
chemotherapy

Selection of
candidate lncRNAs
using LASSO,
decision tree, random
forest, and a support
vector machine
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups at 1,
3, and 5 years;
p < 0.001

AUC (1 year) = 0.76,
AUC (3 years) = 0.79,
AUC (5 years) = 0.88;
using the best
predictor model

[63]

18 lncRNAs Gastric cancer

Evaluate the
performance of a
lncRNA signature as a
patient prognosis
predictor

Identification of an
immune-related
lncRNAs signature that
helps predict the
prognosis of patients
suffering from gastric
cancer

Selection of
candidate lncRNAs
using the integration
of multiple machine
learning algorithms
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups at 1,
3, and 5 years;
p < 0.001

AUC (1 year) = 0.715,
AUC (3 years) = 0.80,
AUC (5 years) =
0.809; using the best
predictor model

[64]



Int. J. Mol. Sci. 2023, 24, 16600 14 of 33

Table 1. Cont.

lncRNA of
Relevance from the

Study

Potential
Association Based

on Biological or
Clinical Data

Goal Main Insight Regarding
the lncRNA

Model
Construction

Kaplan–Meier and
Log-Rank Test

Receiver Operator
Curve AUC Reference

Various lncRNAs Breast
cancer

Develop an interpretable
deep-learning-based
network for classifying
the recurrence risk and
revealing the potential
biological mechanisms

Construction of a
lncRNa-based model
associated with the
radiomics of magnetic
resonance features for
predicting individual
recurrence risk after
surgery

Construction of a
lncRNa-based model
using the Cox
proportional hazards
deep neural network

High-risk vs.
low-risk groups at 1,
2, and 3 years;
p < 0.001

AUC (1 year) = 0.98,
AUC (2 years) = 0.94,
AUC (3 years) = 0.92;
using the best
predictor model

[65]

CRNDE, AC010273.2,
MPPED2-AS1,
SNHG18, and
CYTOR

Lower-grade gliomas

Evaluate the impact of
DNA
methylation-related
lncRNAs with an effect
on genome stability and
the immune
microenvironment on
disease progression

Identification
of a five DNA
methylation-related
signature with an
independent prognostic
value

Selection of lncRNAs
using filtering
methods followed by
the COX prognostic
regression model

High-risk vs.
low-risk groups at 1,
2, and 3 years;
p < 0.001

AUC (1 year) = 0.893,
AUC (2 years) =
0.919, AUC (3 years)
= 0.866; using the
best predictor model

[66]

CRNDE, AC010273.2,
MPPED2-AS1,
SNHG18, and
CYTOR

Various cancer types

Explore the functional
effects of lncRNAs
related to DNA
methylation and
evaluate their predictive
performance on patient
survival

Identification of a DNA
methylation and genome
stability-related
signature with an
independent prognostic
value

Construction of a
lncRNa-based
co-expression
network of
pADM–lncRNA

High-risk vs.
low-risk groups;
p < 0.001

AUC = 0.6839 [67]

LIFR-AS1 Colorectal carcinoma

Evaluate the impact of
DNA
methylation-related
lncRNAs with an effect
on disease progression

Identification
of LIFR-AS1 as a tumor
suppressor RNA with an
independent prognostic
value

Selection using
filtering methods
followed by the COX
prognostic regression
model

High-risk vs.
low-risk groups;
p < 0.001

AUC = 0.872 [68]
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3. Approaches for Prioritizing Cancer Driver lncRNAs Using Somatic
Mutations Profiles

From an omics and bioinformatics point of view, we can broadly classify the ap-
proaches that have been developed to prioritize lncRNAs with a possible association with
cancer into at least two categories: (1) an early integrative analysis of somatic variants with
cancer driver potential that have an impact on the functional activity of lncRNAs associated
with prognosis in cancer patients [37,38,69–71], and (2) post-analysis integration strate-
gies centered on the relationship between genome instability and lncRNAs with aberrant
expressions associated with tumor prognosis [39–45] (Figure 2). A representative study
was conducted to evaluate the potential impact of somatic mutations in human lncRNAs
(denominated MutLncs) and their functional significance in cancer, interrogate the mutation
profiles in genomic regions harboring lncRNA and their vicinity across 17 cancer types,
and use an integrative pipeline to describe the significance of the MutLncs contribution to
cancer [69]. Interestingly, they discovered different cancer-specific networks of co-occurring
lncRNAs in the MutLncs by considering the mixing effects (i.e., the influence of a pairwise
combination of multidimensional data, including DNA methylation, TF expression, and
miRNA expression). Notably, the study found that a number of MutLncs in co-occurring
pairs were correlated with patient survival, particularly in human cutaneous squamous
cell carcinoma (SKCM) and glioblastoma (GBM) tumors [69].

The complexity of cancer genomes goes beyond a set of specific targetable driver
mutations. Other features, such as the tumor mutational burden (TMB) and mutational
signatures, are increasingly being incorporated into bioinformatic analyses aimed at un-
covering therapeutic and prognostic insights in cancer [72]. Therefore, it is not unexpected
that many studies have integrated somatic mutation profiles and transcriptome expression
data to identify lncRNAs [39–42,46] (Table 1). For example, in one study, colon cancer
researchers used a post-analysis integration strategy to characterize patients by their so-
matic mutation profiles and subsequently analyzed the transcriptome data and survival
information from the same set of patients. They were able to derive a score calculated
on a seven genome instability-associated lncRNA signature that was able to distinguish
high-risk patients characterized by high somatic mutation, high microsatellite instability,
significantly worse clinical outcomes, and specific tumor immune infiltration [43]. Using a
similar approach in cervical endometrial cancer (CESC), Zhang and collaborators created
a computational model derived from what they called the mutator hypothesis, in which
they first grouped patients based on the cumulative number of somatic mutations, then
screened them for differences in the lncRNAs expression, and found a genomic instability-
associated lncRNAs signature with the potential to determine patient survival and help
differentiate high-risk from low-risk CESC tumors [44]. Remarkably, the TMB has become
an emerging marker for checkpoint inhibitor-based immunotherapy [44,73]. In a recent
study, by integrating RNA sequencing data, mutation profiles, and the corresponding
clinical information from a TCGA colorectal cancer dataset (COAD), the authors evaluated
the TMB of the COAD samples to classify them into low- and high-TMB groups. They, then,
used a machine learning approach to construct a 14-lncRNA-based classifier index related
to three immune checkpoints (i.e., PD1, PD-L1, and CTLA-4). Interestingly, the obtained
classifier was significantly associated with the TMB levels and could accurately predict the
overall survival of the COAD patients [74].

The number of studies discussed so far provided a vision of different modalities of
integrative multi-omics analyses being employed as powerful strategies for identifying
and characterizing lncRNAs as informative features that allow for diagnosis, prediction,
and prognosis. Without an integrative genomic approach, it is unlikely that more complex
questions can be addressed, for example, the search for the interaction of lncRNAs with
other biological and environmental factors, such as sex hormones, smoking, occupational
risk, and dietary habits, among others, and their association with the risk of cancer devel-
opment, patient survival, and response to treatment. For instance, lung adenocarcinoma
(LADC), the most common type of lung cancer, is largely caused by chronic tobacco smok-
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ing. However, approximately 25% of cases occur in non-smokers. Notably, this proportion
of LADC in non-smokers is associated with being female, and the etiology remains an
elusive question. In a recent study to uncover genomic evidence of smoking-associated
mutagenesis, researchers performed a multilevel integrative analysis using whole-genome
sequencing and RNA-seq data to unravel the mutational processes and complex genomic
rearrangements that drive the development of LADC. One of the intriguing findings of
this multi-omics analysis was the discovery of a recurrent fusion gene, composed of the
gene ERBB3 and the lncRNA anti-estrogen-resistance 4 (BCAR4), which was present in two
tumors from female cases in which low to no contribution of a mutational signature associ-
ated with direct DNA damage caused by tobacco smoke mutagens (COSMIC signature 4)
was observed [75] (Figure 3). Recently, other comprehensive integrative genomic analyses
have led to the discovery of diverse fusion variants involving BCAR4 in lung adenocarci-
noma [76–78]. Interestingly, the CD63–BCAR4 fusion was discovered in a never-smoking
female patient by another genome-wide study on non-small cell lung cancer (NSCLC) [79].
Here, the authors found that the expression of both transcripts within this fusion were
highly activated. Considering that a higher expression of BCAR4 was also established as an
independent predictive factor for tamoxifen resistance and poor progression-free survival
in ER+ breast cancer patients [80], the clinical relevance of these complex rearrangements
involving BCAR4 in other tumor types, such as lung cancer, may become more appar-
ent and demonstrate the utility of using highly multidimensional molecular analyses to
uncover the targetable alterations that would otherwise be overlooked.
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balanced, appear as a process of early oncogenesis that is often acquired in the first decades of life.
We graphically depicted an alteration described in 25% of lung adenocarcinoma cases without a
history of smoking, mainly enriched in female patients and whose etiology is unknown (upper panel).
The integrative multi-omics analysis identified a recurrent oncogenic fusion gene composed of
BCAR4:ERBB3 (lncRNA and messenger RNA) that was also overexpressed in a subset of cases
(bottom panel).

4. Copy-Number Alterations in Genomic Regions Encoding lncRNAs

Indeed, genomics and mathematical analyses of the patterns of somatic alterations
have become a powerful strategy for identifying cancer driver genes. In this regard,
although somatic point mutations and small insertions and deletions (INDELs) have been
the primary focus of cancer genomic studies, copy-number alterations (CNAs) are also
important forms of DNA aberrations, also referred to as somatic copy-number alterations
(SCNAs), which encompass larger genomic regions and often harbor key genes involved
in the development and progression of many cancers [81,82] (Figure 1). Not surprisingly,
most large-scale genomic analyses conducted to date have successfully identified almost
exclusively protein-coding cancer driver genes located in regions of focal amplification and
deletion [83–85], and it is only relatively recently that the first systematic analyses have
reported on the identification of lncRNAs that are also contained within focal CNAs in
cancer genomes [47,86–89]. Given the evidence that nearly three-quarters of the human
genome can be transcribed to RNA [90] and that only 2% of the human transcriptional
landscape codes for a protein, the need to understand the functional impact of SCNAs on
lncRNAs has become clearer. In one of the first comprehensive characterizations of the
impact of cancer driver lncRNAs in regions of SCNA alteration, Hu et al. implemented a
bioinformatic integration of SCNAs and an expression analysis across 12 different cancer
types. In developing their approach, the researchers scanned large-scale genomic data for
focal alterations, which often exhibited high-amplitude variations, and mapped the known
lncRNA loci to these regions of a focal gain or loss. Interestingly, approx. 17.8% of the
lncRNAs-encoded loci with SCNAs were expressed in 40 cancer cell lines representing
five different tumor types, among which they discovered FAL1 as a potentially oncogenic
lncRNA associated with clinical outcomes in ovarian cancer patients. In a follow-up study,
the authors confirmed the SCNAs in FAL1 in OC and observed that it was also present in
the other five tumor types [48–50,82]. The authors also raised a key issue to consider in the
characterization of lncRNAs as tumorigenic drivers by distinguishing the driver SCNAs
from passenger ones by their levels of presence (i.e., in sufficient quantities to be detected)
in the cancer cells of interest. In this regard, the identification of SCNAs from the lncRNA
loci that are actively transcribed in a given cell at a given time may help characterize the
lncRNA molecules with a real function and role as drivers of tumorigenesis and of potential
clinical utility, as further demonstrated by Hu et al. and other studies [47,48,51,54–56,87]
(Table 1).

A second consideration that arose in light of the above approaches for understanding
the actual contribution of lncRNAs as drivers of cancer and its deregulation was based
on estimating the relationship that exists between the copy-number values of the SCNAs
at the lncRNA loci and the expression levels of their corresponding transcripts present
in a given cancer type. Indeed, this aspect was consistent with our knowledge that the
differential gene expressions of the protein-coding cancer driver genes were significantly
correlated with the CNAs [82,91]. As a consequence, researchers have begun to delineate the
correlation between the SCNAs and expression levels as useful parameters for defining the
gain or loss of function of lncRNAs with oncogenic or tumor suppressor functions and for
potentially associating them with the clinical outcome for different tumors [47–50,56,57,82].

Cancer is a heterogeneous disease that includes a diversity of tumors from the same or
different organs and tissues, displaying differences in cellular compositions and biological
and molecular features [92]. Much of our understanding about cancer heterogeneity and
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its clinical implications has been improved by new developments in genomics [93]. Some
studies have so far addressed the integration of multi-omics data, including the lncRNAs
expression and SCNA, with the aim of defining the molecular profiles that capture the diver-
sity of the tumor subtypes with different prognoses and responses to treatment [58,59,94].
As a notable example, in a large-scale genomic analysis of high-grade serous ovarian
carcinoma (OV), Akrami et al. investigated the correlation between SCNA and lncRNAs
expression profiles and were able to identify the lncRNA OVAL (RP11-522D2.1) as a target
of focal DNA amplification. Notably, this alteration was detected specifically in OV and
was consistent with the increase in the OVAL transcript expression [95]. It is important to
note that this relationship may be more complex, and that the SCNAs present in a tumor
may be associated with aberrant expressions of lncRNAs other than those encoded at their
loci. For example, other mechanisms may operate to disrupt their activity, such as the
occurrence of a breakpoint event within the boundaries of the promoters and regulatory
sites of a particular lncRNA, or genomic alterations that directly disrupt the protein-coding
gene targets for such lncRNAs. In this regard, further research is still needed to unravel
the complicated interactions between lncRNAs, protein-coding genes, miRNAs, and other
types of functional elements that are potential drivers of cancer.

5. The Revolution of Non-Coding Transcriptome in Cancer Studies

There is increasing evidence that large numbers of lncRNAs are present in the human
genome. The latest release of LNCipedia, a public database for lncRNA sequences and
annotation, contains 107,039 high-confidence transcripts that show no coding potential
belonging to 49,372 lncRNA genes [96]. Undoubtedly, the burgeoning number of lncRNAs
over the past few years has aroused the interest of the scientific community in the study
of their biological properties and roles [11]. Based on the fact that they play critical
roles in various processes that are necessary for body cell functions, many studies have
addressed and demonstrated the relationship between lncRNAs and disease [21]. In
particular, experimental evidence for the relevance of lncRNAs as cancer markers has been
accumulating over the last decades. Among the most prominent examples of lncRNAs
whose aberrant expression is associated with cancer development are the descriptions of
MALAT1 [97], HOTAIR [98], and PCA3 [99]. Since its discovery, MALAT1 has become the
paradigm of functional alterations of lncRNA in cancer and has been proposed as a potential
biomarker with a critical role in several tumors, such as non-small cell lung adenocarcinoma
(NSCLC) [100], gastric cancer [101], and colorectal cancer [102]. The oncogenic expression
of lncRNA HOTAIR also holds a promising value as a biomarker of the response to
breast [103] and hepatocellular carcinoma [104]. Meanwhile, the levels of PCA3 in urine
has been used as a marker for prostate cancer aggressiveness to guide medical decisions on
patient treatment and has been available since its approval by the FDA [105,106]. Aside
from PCA3, no other lncRNA has been approved by the FDA for diagnostic, prognostic,
or treatment response prediction in any type of cancer. Despite these successful examples
discovering more associations between lncRNAs and diseases, characterizing them as
biomarkers or targets of therapeutic agents has become an increasingly challenging task. It
is at this point that the integrative analysis of large-scale data has become a game changer.
In this regard, there are several scientific examples that have used analytical strategies to
investigate the relationship between somatic alterations, including somatic mutations, copy-
number alteration profiles, and transcriptome alterations, such as the perturbed correlated
expression of protein-coding genes, microRNAs, and lncRNAs, to reveal cancer drivers or
biomarkers with potential utility in the prognosis and prediction of the treatment response.
As shown in Table 1, we enumerated many of the most relevant examples involving multi-
omics strategies for studying the biology and clinical utility of lncRNAs. In the following
sections, we will review some of them in more detail to provide insights into these studies
and exemplify the cross-linking, integration, and complementation between the different
traits that were analyzed using multiple omics dimensions.
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6. Multi-Omics Network Approaches Reveal lncRNA Biological Relevance on
Cancer Biology

As discussed above, the technological and computational advances in recent decades
have allowed for the identification of thousands of lncRNAs whose molecular alterations
are associated with various types of cancer (Figure 1). A major challenge is that the
initial efforts to discover cancer-related lncRNAs took advantage of classical functional
genomic approaches, primarily by characterizing the global transcriptomic landscape,
evolutionary conservation, or proximity to known cancer genes. While these analytical
strategies provided valuable insights, the altered transcriptional profiles alone do not
indicate a causal role in cancer programs. Currently, various biological evidence describing
known cancer-associated lncRNAs has been presented in the literature, most of which
focused on the function of a single lncRNA linked to malignant transformation through its
role in gene regulation and its impact on cancer hallmarks.

Despite intense research into the mechanisms underlying altered lncRNAs, our un-
derstanding of the global biological impact of lncRNA regulation in tumors remains lim-
ited [107]. It is challenging to holistically describe the complex biological processes of many
lncRNAs and their cooperative mechanisms using traditional biochemical and molecular
approaches. Therefore, the availability of multi-omics data from genomics (mutations and
CNV), transcriptomics (mRNA, non-coding RNA), proteomics, epigenetics (chromatin
methylation and architecture), and metabolomic studies has opened new strategies for
advancing the understanding of the roles of lncRNAs in health and disease by developing
tools to integrate these data at the systems level (Figure 1).

In this section, we will review the progress made in understanding the multi-omics
biological features through machine learning and artificial intelligence approaches and
provide an overview of the recent advances in uncovering the regulatory basis underlying
the functionalities of lncRNAs at various molecular and cellular biological levels.

Describing the Novel lncRNAs Drivers in Cancer through Multi-Omics Integration

Apart from a few well-known lncRNAs, the landscape of cancer lncRNAs is far from
complete. The diverse functional repertoire of lncRNAs in cancer can be explored through
(1) their function as driver genes, resulting from early mutations that are positively selected
during tumorigenesis, or (2) as downstream genes, resulting from non-genetic changes in
their expression, localization, or molecular interactions [108]. Although both categories con-
tribute to cancer phenotypes, most efforts to discover cancer lncRNAs only take advantage
of differential expression approaches. To overcome this, several computational methods
have recently been developed to identify lncRNA driver genes by analyzing coordinate
omics alterations to detect the signals of positive selection.

One of the first statistical methods for driver gene discovery was OncodriveFML [109],
which identifies tumor-associated lncRNAs by interrogating somatic mutations in the
coding and non-coding regions and gene expression. Compared to the other methods,
OncodriveFML calculates a functional impact score, for which it uses a local mutational
background in specific regions to define the positive selection signals in genes across tumor
tissues. The method takes into account that the mutational background is influenced by
chromatin architecture, replication timing, and transcription factor binding sites. Therefore,
by considering this local background as well as the mutational and expression patterns,
this computational tool can discover lncRNAs contained in potential genomic driver
regions involved in tumorigenesis. Computing this method using whole-genome tumor
data sequenced by the TCGA and the Cancer Genome Project, it was possible to identify
MALAT and MIAT as two lncRNAs with an excess of high-impact mutations.

Another integrative method for predicting lncRNA drivers that are relevant to tumori-
genesis is ExInAtor, which identifies genes with a high somatic single nucleotide variant
load across the tumor genomes using the DNA mutation patterns (local trinucleotide
background model) and expression data as proxies for their functionality. ExInAtor was
modeled on 1112 whole genomes from 23 cancer types deposited in GENCODE, and pre-
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dicted 15 lncRNA drivers with a high confidence, of which nine were novel lncRNAs and
six were known cancer-related transcripts, including PCA3, MALAT1, BCAR4, lncRNA-
ATB, and SAMMSON. Most of these lncRNAs were tumor-specific, although NEAT1 and
MALAT1 were identified in a pan-cancer context, confirming their role in tumorigene-
sis. The set of previously unreported driver lncRNAs include MIR100HG, AP000469.2,
RP11-308N19.1, RP11-455B3.1, RP11-332J15.1, RP11-707A18.1, RP11-6c14.1, RP11-1101K5.1,
RP11-354A14.1, and RP11-189E14.4. These novel candidates are evolutionarily conserved,
expressed in normal tissues, and have an increased gene length. They also tend to be
proximal to cancer SNPs and are encoded in CNA regions, suggesting a role in tumorigene-
sis. The authors highlighted MIR100HG, which was highly conserved and had canonical
histone modifications in the promoter region and transcription factor binding sites [110].

More recently, to enhance the discovery of cancer-related lncRNAs and gain insight
into their biology, the Cancer lncRNA Census (CLC) was presented as a tool to provide
functional or genetic evidence of lncRNAs roles in cancer by integrating genomic and
transcriptomic data associated with cancer in different mammalian species [108]. To date, it
is not completely clear whether mutated lncRNAs can drive tumorigenesis and whether
such altered functions could be conserved during evolution. Therefore, the CLC considers
the conserved functions between humans and mice as a relevant feature that could provide
strong evidence for the biological role of lncRNAs, both in cancer and under physiological
conditions. The application of this computational model revealed the colocalization of
cancer lncRNAs with known protein-coding cancer genes. A total of 10 tumor-causing
mutations were identified in eight lncRNA orthologs, including DLEU2, GAS5, MONC,
NEAT1, PINT, PVT1, SLNCR1, and XIS, some of which have already been reported in cancer.

The integration of DNA, RNA, and protein alterations and the way they cooperatively
interact provide new evidence for identifying dysregulated lncRNA in cancer. For example,
LongHorn [111], a recently presented computational method, integrates genomic, transcrip-
tomic, and proteomic alterations and predicts dysregulated lncRNA regulatory networks
in cancer pathways by modeling their impact on the transcription factors, RNA binding
proteins and microRNAs activity, lncRNA promoter binding sites, and post-transcriptional
activation/inhibition. The computation of this method for 14 cancer types from the TCGA
predicted several lncRNA candidates whose dysregulation affected other known cancer
genes and pathways mainly in a tumor-specific context and influenced tumor etiology.
OIP5-AS1, TUG1, NEAT1, MALAT1, XIST, and TSIX were predicted to regulate cancer
signaling in multiple tumor contexts. In addition, the lncRNA network analyses indicated
the enrichment of lncRNA binding sites in the promoter regions of messenger RNAs, which
enhanced the transcriptional effects of lncRNAs. The functional experimental analyses
confirmed most of the predictions made with LongHorn.

An interesting approach presented by Mitra and collaborators for predicting the
biological dependencies of uncharacterized lncRNAs focused on the identification of co-
essential modules by integrating the copy number, and epigenetic and transcriptomic
data of the lncRNA landscape from exogenous knockouts or activation screens that were
generated using CRISPR techniques [112]. By applying this model to multi-omics cancer cell
line data, the authors estimated 289 lncRNA-gene co-expression networks that recapitulated
the known proliferation-regulating lncRNAs and predicted novel lncRNAs associated with
proliferative signaling that were poorly characterized, such as PSLR-1/2, which induced
G2 arrest through the modulation of the FOXM1 transcriptional network and whose
exogenous expression inhibited proliferation and colony formation in cell line models.

Although DNA methylation dysregulation is associated with cancer, the molecular
mechanisms of how methylation and transcriptional lncRNA patterns are reciprocally
modulated in cancer remain largely unknown. A novel integrative analysis framework,
called MeLncTRN (Methylation mediated lncRNA Transcriptional Regulatory Network),
integrates transcriptome, DNA methylome, and copy-number variation profiles to identify
the regulatory circuits driven by epigenetically driven lncRNAs across 18 cancer types [113].
An analysis of 5970 TCGA tumor samples revealed that the association between lncRNAs
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and the DNA methylation mechanisms was common and conserved across multiple cancer
types, e.g., a complex interplay between lncRNAs and epigenetic modulators, such as DNA
cytosine methyltransferases DNMT1, and histone modification proteins, such as EZH2
(Figure 4). For example, FAM83H-AS1, TUG1, PVT1, and LINC00511 acted as scaffolds
to enhance EZH2 or DNMT1 binding and consequently repressed the expression of their
mRNA targets. This observation expands the understanding of the role of lncRNAs in
transcriptional regulatory circuits in addition to their miRNA sponge activity as competitive
endogenous RNA (ceRNA) [114].
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Figure 4. Summary representation of the multi-dynamic analysis computed by MeLncTRNn, which
integrated genomic, transcriptomic, and epigenetic data to identify lncRNA genes and their inter-
action with epigenetic mechanisms that could serve as markers for classifying cancer patients into
subtypes with different prognoses (top panel). We described a regulatory network operating in
pancreatic cancer defined by MeLncTRNn, integrating lncRNA modulators and target genes related
to epigenetic regulation. In particular, the CRNDE module serves as a prognostic information tool for
pancreatic cancer patients (bottom panel).

Emerging evidence has also revealed the underlying crosstalk between lncRNA and
genomic instability, a relevant hallmark of cancer. Novel approaches integrating chip-seq,
WGS, and WES data revealed an unexpected relationship between oncogenic lncRNAs
and epigenetic alterations that contribute to chromosome fragility in cancer. To char-
acterize the lncRNA-based mechanism by which aberrant epigenetic signatures can be
generated, the authors used as a conceptual, the sub-telomeric chromosomal locus 8q24,
which contains the cMYC gene and a large histone domain H3 (CENP-A) variant, both of
which were altered in cancer cells of various solid tumors. This region also encoded five
unique lncRNAs sequences, namely PCAT1, PCAT2, CCAT1, CCAT2, and PVT1, which
negatively modulated the occupancy of CENP-A at the chromosomal locus. Their results
indicated a competition between the lncRNAs transcription and R-loop occupancy that
strongly contributed to the maintenance of CENP-A invasion, which ultimately affected
the chromosome stability [115].

An oncology milestone that was already mentioned is the TMB, which is related to
the infiltration of various immune cell populations that can enhance or limit cancer pro-
grams [116]. Recently, increasing evidence has shown that lncRNAs may play fundamental
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roles in the regulation of the immune system, but few immune-related lncRNAs have been
described in cancer. Therefore, novel approaches have been developed to shed light on
these roles [117,118]. Through an integrative analysis of the lncRNA expression, tumor
immune response signatures, and genome-wide DNA methylation data in 9626 tumor sam-
ples across 32 cancer types, the lincRNA-based immune response (LIMER) tool revealed
7528 lincRNAs associated with the tumor immune signature [119]. Of interest, EPIC1 was
identified as a relevant immune-related lncRNA that was inversely correlated with the
MHC expression and CD8+ T activation and infiltration. The in vitro and in vivo models
demonstrated that EPIC induced tumor immune evasion and resistance to immunotherapy
by epigenetically suppressing the tumor cell antigen presentation through EZH2 interaction.
Another interesting tool is ImmLnc, which systematically infers the candidate lncRNA
modulators of the immune-related pathways by matching the gene and lncRNA expression
profiles. The tool prioritizes cancer-related lncRNAs by comprehensively characterizing
the lncRNA landscape and its correlation with the immunome. One of the first findings
was that the tumors derived from similar tissues were likely to share lncRNA immune
regulators. Furthermore, the novel subtypes identified by ImmLnc showed a distinct
mutation burden, immune cell infiltration, expression of immunomodulatory genes, and
response to chemotherapy and prognosis [117].

7. Challenges and Opportunities of Machine Learning to Deepen the Functional and
Biological Roles of lncRNAs in Cancer

In this section, we provide a summary of the approaches we took to address biological
data integration and discuss the pitfalls of overcoming and optimizing the use of data
from multiple sources and technologies in an analysis pipeline. A first challenge was the
difference between the samples, replicates, and technology used, which favored batch
effects. Additionally, the different modalities for measuring the cell levels with different
measurements posed a significant computational challenge, as there was no common
virtual space to integrate the samples.

Machine learning methods have been increasingly used in attempts to better under-
stand the biology of molecules, such as lncRNAs. These methods can be generally classified
into supervised and unsupervised learning. The former includes dimension reduction
and clustering, while the latter includes regression and classification. In the context of the
lncRNA landscape, one of the challenges that has arisen is the accurate identification of
true lncRNAs from other types of RNAs, along with the definition of their biological roles.
The main approach for the identification of lncRNAs is based on their coding potential
and length. Later, other features were integrated, such as the presence of an open reading
frame (ORF), nucleotide composition, kmers, secondary structure, codon usage, ribosome
release score, conservation scores, and others. Among the most used algorithms for data
integration are logistic regression, random forest (RF), support vector machine (SVM), and
deep learning (Figure 2). From a mechanistic point of view, to better understand the role
of lncRNAs in complex diseases such as cancer, in addition to the coding potential, some
studies included computational frameworks based on machine learning methods, such as
the Genetic Importance Calculator (GIC), which considers the interaction of lncRNAs with
other omics levels. Through these methods, it is possible to accurately identify unknown
lncRNA interactions. The number of methods developed for these purposes has increased
steadily in recent years and discussing them all is beyond the scope of this review. However,
some of the limitations and strengths of these methods have been extensively reviewed
elsewhere [84,120–122].

In recent years, a number of strategies based on the use of deep learning and complex
network analyses have emerged to uncover the relevant dysregulations of lncRNAs and
their potential value in identifying their relationships with cancer diagnosis, prognosis, and
treatment [123–127]. One of the limitations of such algorithms is the lack of reliable and
verified negative samples. In addition, they use known biomolecule–disease associations
that cannot be applied to new diseases. Finally, these data integration tools, while useful



Int. J. Mol. Sci. 2023, 24, 16600 23 of 33

for efficiently learning the structure of high-dimensional omics data, generally decrease
the interpretability of the model, which is a limitation in a biomedical application where
we wish to understand the relationship between the learned latent variables and the
observed variables, such as disease. In recent years, formal work has begun to overcome
this obstacle [128,129].

In addition, all the data have different calculation rules, which can lead to inaccuracies.
Moreover, the link between lncRNAs and cancer goes beyond identifying the molecules
that may be actively involved in the disease. Other aspects have been explored, such as the
identification of biomarkers that are capable of predicting prognosis or even a response to
drugs [130,131]. For this area, the combination of different approaches has been proposed,
such as the least absolute shrinkage and selector operation (LASSO) and the support vector
machine recursive feature elimination (SVM-RFE) [132,133].

In general, the methods for lncRNA identification, the prediction of their functions,
and their relationship to disease, even as part of precision medicine tools for prognosis
and drug response prediction, continue to improve by using higher level features and
generating more and new information to feed the algorithms for better classifications.
Despite these efforts, the integration of all the available information in a biologically
meaningful way remains a challenge. During biological analysis, and more specifically
in omics data analysis, subsequent functional validation steps are essential to provide
new, more complete, and useful insights for future applications that can be transferred
to the clinic. Thus, designs should include a holistic view integrating computational and
experimental characterization.

8. Perspective on the New Directions in lncRNA Research and Its Implication in
Cancer through Multi-Omics Analysis

What is the best way to answer new questions and discover the novel and contro-
versial mechanisms of lncRNAs in a disease state through multidimensional analysis? A
good example is the milestone discovery that lncRNAs are completely unable to produce
peptides, even though there is evidence that some lncRNAs are found in the cytoplasm and
can associate with ribosomes, suggesting the possibility of translation and the production
of microproteins [134].

Unlike other protein by-products, such as insulin, which are derived from larger
proteins, microproteins are small and translated directly from short open reading frames
(sORFs) of less than 300 nucleotides that produce a protein of up to 100 amino acids. These
sORFs are often found within the lncRNAs sequence. Despite the difficulties, researchers are
making progress in characterizing the functions of the microproteins generated by lncRNAs
that are altered in cancer and are related to the clinical behavior of tumors [135–137].

Although the complete repertoire of functional sORFs is unknown, new techniques
and computational approaches are being developed based on the search for conserved DNA
sequences, natural selection, ancient phylogenetic origins, and ribosomal profiling—a tool
based on deep sequencing that allows for detailed measurements of translation [138–140].
Combining these methods, the lncRNA sORFs capable of encoding a microprotein have
been identified. The data have shown that these microproteins are signaling molecules
that regulate enzymes and act as receptor ligands and critical transmembrane components.
More microproteins are being described which have implications in cancer. Here, we list
some of the microproteins produced by lncRNAs linked to cancer (Table 2).
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Table 2. Studies focused on describing the microproteins translated from the lncRNA sequences with
relevant implications in cancer.

lncRNA Micropeptide Biological Effect Method Citation

lncRNA
AC025154.2 MIAC

Inhibits the actin cytoskeleton by
interacting with Aquaporin 2 to suppress
tumor growth and metastasis

RNA-seq data from kidney
renal clear cell carcinoma
patients

[141]

LINC-PINT PINT87aa

Suppresses glioblastoma cell proliferation
by interacting with PAF1c and preventing
the transcriptional elongation of
cancer-related genes

RNA-seq of circRNAs
(transcriptome sequencing)
and RNC-RNAs
(translatome sequencing)

[142]

LINC02381 LINC02381-aa

LINC02381-aa contained in exosomes
enhances ferroptosis by promoting the
glucose transporter SLC2A10 in
glioblastoma

Machine learning to integrate
the multi-omics data to
identify microproteins

[143]

NR_029453 CASIMO1

Interacts with the enzyme squalene
epoxidase and increases the
phosphorylation of ERK, a relevant actor
of the MAPK pathway affecting cell
proliferation

Transcriptome analysis and
DNA conservation
evaluation

[144]

lncRNA
CTD-2256P15.2 PACMP

PACMP acts as an activator of the
PARP1-dependent pathways (DNA repair
process), enhancing tumor growth and
limiting the cell response to PARP
inhibitors

RNA-seq [145]

HOXB-AS3 HOXB-AS3
peptide

Suppresses cancer growth by limiting
PKM splicing and, subsequently, the
metabolic reprogramming

Transcriptome analysis and
RNA affinity purification
analysis

[146]

LINC00665 CIP2A-BP

Decreases cell invasion in vivo and
correlates with better patient survival.
Competes with PP2A for CIP2A binding,
suppressing the oncogenic
P13K/AKT/NFkB pathway

Ribosome profiling and RNA
sequencing data analysis [147]

9. Perspective on the Future Use of lncRNAs for Therapeutic Purposes through
Multi-Omics Oncology

The field of lncRNA research has developed rapidly over the past decade, moving from
understanding their basic biological properties to exploiting their clinical relevance. As a
result, lncRNAs have been proposed as biomarkers and therapeutic targets that are being
actively explored. In this section, we review the emerging strategies for the therapeutic
exploitation of lncRNA.

It would be appropriate to begin by discussing the value of circulating lncRNAs as
biomedical tools for the detection and monitoring of various diseases. Despite the im-
portant progress in translating the clinical utility of circulating molecules as biomarkers,
such as proteins, metabolites, or free mRNA, there are still relevant limitations. This is
why the study of lncRNA has been postulated as a new source of biological information
that presents relevant advantages over other circulating analytes, such as a greater resis-
tance to degradation, stability in biofluids due to their secondary structures, and their
transport in extracellular vesicles. These characteristics present them as reliable cancer
biomarkers [148,149].

The case of PCA3 is a good example to illustrate the potential use of lncRNAs as
informative biomarkers in cancer clinics. In 1999, Bussemakers and colleagues discovered
that the ncRNA prostate cancer antigen 3 (PCA3), which they initially named differential
display code 3 (DD3), was overexpressed in prostate cancer tissues compared to non-
neoplastic prostate tissues [106]. Interestingly, PCA3 non-coding RNA is involved in the



Int. J. Mol. Sci. 2023, 24, 16600 25 of 33

control of prostate cancer cell survival and modulates androgen receptor signaling [99].
Although PCA3 is the only lncRNA that has received FDA approval for the diagnosis,
prognosis, or prediction of treatment response in any type of cancer, there are other reports
describing new potential lncRNA biomarkers with high sensitivity and specificity for
detecting specific neoplasms [150]. Thus, the diagnostic and monitoring utility of circulating
lncRNAs biomarkers has not yet reached its full potential. For example, MIR205HG, the
host gene of miR-205, is involved in prostate cancer cell differentiation and has been
described as a potential marker that is capable of differentiating prostate cancer samples
from normal ones [151].

A rapidly growing area of interest in the field of oncology is the phenomenon of
drug resistance, which is the major limiting factor in achieving a cure for cancer patients.
Emerging preclinical evidence supports that the lncRNA expression patterns predict a
response to anticancer drugs [130,152]. By comparing the publicly available transcriptional
profiles of different RNA species at baseline and after drug treatment with hundreds of
compounds in the cancer cell lines, many lncRNAs such as GAS5 and ZEB2AS1 were shown
to be highly predictive of the sensitivity to various anticancer drugs. Therefore, lncRNAs
could explain new signals of how cancer cells become resistant to anticancer therapies
and represent a new source of biomarkers. In addition, recent evidence showed that the
lncRNAs EGFR-AS1 and MIR205HG could significantly improve the response prediction to
erlotinib and gefinitib, better than EGFR somatic mutations and amplifications, suggesting
a critical role for these lncRNAs in cancer precision medicine [153].

Given that lncRNAs can act as competitive endogenous RNAs (e.g., siRNAs or miRNA
sponges), they could potentially control resistance-related biological processes. By con-
structing a ceRNA network, including lncRNA and mRNA, several drug resistance-related
modules were identified as novel drug resistance markers. For example, the GAS5-RPL8
ceRNA pair regulated the drug resistance, as the GAS5 down-expression enhanced the
RPL8 miRNA inhibition, which was reported to be associated with chemotherapy resis-
tance [154]. The integration of multi-omics data revealed another relevant ceRNA module,
consisting of HOXA-AS2, which was regulated by EIF4A3, FMR1, and HNRNPA2B1 and
was down-expressed mainly in breast cancer patients, leading to adriamycin resistance.
These alterations also down-expressed the expression of miR-107 [155]. Taken together,
these studies demonstrated the potential viability of lncRNAs as complementary biomark-
ers and drug targets.

The therapeutic targeting of non-coding RNAs is an attractive approach for the treat-
ment of cancer. Although no lncRNA-based therapy has been introduced into clinics, the
functional diversity of lncRNAs provides an opportunity for their therapeutic modulation
through transcriptional and post-transcriptional inhibition, the steric hindrance of pro-
moters or secondary structures, exogenous synthetic lncRNAs, and editing tools such as
CRISPR-Cas systems [122,123,156,157]. Each of these approaches has its own challenges,
and future studies are needed to demonstrate their therapeutic efficacies.

10. Conclusions and Future Directions

With the advent of new technological resources, such as single-cell and spatial ge-
nomics and transcriptomics and the popularization of and ease of access to machine
learning frameworks, multi-omics data integration approaches will further establish them-
selves as a powerful paradigm in the study of lncRNAs in cancer. The current state of
knowledge includes a variety of studies and reviews that offer different perspectives on
the topic. These range from studies that focus on elucidating the biological role of lncR-
NAs in cancer, to their proposed utility as molecular markers in clinical cancer research
and the revision of computational methods for predicting lncRNA interactions with other
molecules. However, many questions remain regarding the pragmatic application of the
different molecular technologies and bioinformatics algorithms for mining multi-omics
data. Furthermore, there is no clear consensus on how to integrate the different omics
platforms and what information can be obtained from such approaches that can be used
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for the biological and pathological characterization of lncRNAs. Although many papers in
the literature claim to have discovered the biological role or association between different
lncRNAs and cancer using multi-omics strategies, only a fraction of them integrated infor-
mation from different molecular platforms. Others explored different aspects of the same
molecular features interrogated by each platform (e.g., RNA expression (gene expression,
microRNAs expression), DNA somatic mutations, copy-number variations (CNV), or DNA
methylation). In this review, we referred to multi-omics as the paradigm of using data
obtained from and including two or more of the aforementioned molecular features. There
is little doubt that these methods will complement our set of resources to unravel the
relationships between lncRNAs and other biological factors that critically modulate cancer
cell fitness and demonstrate new resources for studying tumor-relevant lncRNAs using
dedicated multi-omics computational tools. It is highly desirable that, in the foreseeable
future, researchers make efforts to become native users of these technologies to keep up
with the current and future challenges in the field of cancer lncRNAs.

A crucial step in the study of lncRNAs as disease markers from a statistical point of
view is the validation of their performance as predictors. However, there is still vague
information and discrepancies about the biostatistical and machine learning approaches
that have been used to discover and evaluate the performance of lncRNAs signatures, the
power of these approaches, and the recall and sensitivity they report. In this regard, it
is in the best interest of the entire research community to reach a consensus on the best
practices for producing a more robust statistical model and description of the many steps
in the selection of these models and validation methods. For example, the studies that
used feature selection strategies to select lncRNAs as the variables of interest followed by
the use of univariable or multi-variable regression models (e.g., Cox proportional hazards
regression analysis) should provide additional rationales for the chosen method. In order to
increase the scientific validity of statistical or machine learning approaches based on multi-
omics data, it is important that researchers ensure the reproducibility of their findings
by incorporating cross-validation information, which would give researchers a clearer
perspective on the bias and general application of such models.

As the pace of technological advancement accelerates, an even greater amount of
data will be generated from which researchers can extract novel features to describe the
biological, physiological, and pharmacological properties of lncRNAs. Perhaps the two
most notorious state-of-the-art paradigms in transcriptomic analysis are single-cell and
spatial RNA-seq technologies, which seek to explore the repertoire of RNA molecules and
their differential expressions at a single cell level and histological coordinates. Beyond
the obvious cost of computational resources, this scenario comes at the expense of simple
modeling, as incorporating these data into our research will add new layers of complexity.
In this context, the lack of parsimony could become a more latent risk when generating new
models explaining the associations between lncRNAs and different cancer hallmarks and
their observable pathophysiological consequences (i.e., tumor invasion, metastasis, immune
evasion, immune infiltration, etc.). By integrating single-cell and spatial transcriptomics
data into multi-omics frameworks, researchers would be able to obtain new features such as
the proportion and identity of cells within a given tumor that express a particular lncRNA.
Even more, these data could be used to refine the association of lncRNA molecules with
features such as the TMB, which is currently of value in cancer prognosis, the proportion of
specialized cells harboring a somatic aberration in a locus containing functional lncRNAs, or
the specific wiring of epigenomics interactions and signals in which lncRNAs are involved
within such a cell. From a clinical point of view, having these features as the predictor
variables associated with a particular outcome could indeed make the modeling process
more demanding and complex, with the risk of overfitting. However, this risk can be
mitigated if the precautions mentioned in the previous paragraphs are taken into account.
Ultimately, the addition of these new dimensions could enhance the potential use of
lncRNAs as diagnostic, prognostic, and predictive factors with more objective real-world
applications in cancer clinics.
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