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Abstract: Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic
options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint
inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell
death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced
HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle.
Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play
a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic
degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs
possess the capability to influence various facets of the tumor microenvironment, especially at the
HCC tumor–immune synapse. Notably, circRNAs have been observed to control the expression of
immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness
of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis,
and therapeutic regimen determinants. In this review, the authors shed light on the structure and
functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in
HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic
regimen determinants.

Keywords: circular RNAs (circRNAs); hepatocellular carcinoma (HCC); immunotherapy; cytotoxic T
lymphocytes; natural killer cells; tumor microenvironment (TME)

1. Introduction

Liver cancer ranks sixth in primary neoplasm prevalence. In comparison to other ma-
lignancies, liver cancer has an overwhelming impact marked by a high fatality rate. Global
statistics expect liver cancer incidence to exceed one million cases by 2025 [1]. Hepatocellu-
lar carcinoma (HCC) predominates, making up 80–90% of primary liver malignancies [2],
with a bleak five-year survival rate of 18% [3].
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HCC management is intricate due to its diverse presentation in an inflamed liver,
often compelling multidisciplinary teams to cooperate [4]. Surgical options offer a cure for
early HCC; however, <20% of the patients receive a timely diagnosis [5]. Advanced-stage
survival is recorded to be <10% in five years [6]. Unfortunately, more than 70% of HCC
patients experience recurrence post-curative therapy [7,8]. Chemotherapy remained the
primary form of HCC treatment despite all its complications, including chemoresistance
and detrimental overall effects on the patients [9,10]. Yet, recent advances in understand-
ing the molecular drivers of HCC have led to a new era of molecular targeting agents
such as tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (MTOR)
inhibitors [11,12]. Nonetheless, TKIs have limited survival gains and associated intolerance,
prompting innovative strategies.

In the field of oncology, immune checkpoint inhibitors (ICIs) are considered to be
a novel and innovative strategy [13–17]. Their implementation has saved a lot of late-
stage patients, especially patients with advanced unresectable HCC tumors [18,19]. ICIs
brought a fundamental change, capitalizing on HCC’s immune pathogenicity [20]. Re-
cent progress in understanding tumor–immune dynamics emphasizes ICIs targeting cy-
totoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein
1 (PDCD1, also known as PD-1), which enhance therapeutic outcomes across several
malignancies [16,21].

In 2017, nivolumab, a PD-1 inhibitor, was the first Food and Drug Administration
(FDA)-approved monoclonal antibody (mAb) for second-line targeted therapy in the treat-
ment of HCC. A year later, pembrolizumab, another PD-1 inhibitor, was added to the
list. In 2020, the FDA approved two important combinational mAbs as immunotherapeu-
tic regimens for HCC patients, which were nivolumab/ipilimumab and atezolizumab/
bevacizumab [22,23]. In October 2022, tremelimumab/durvalumab became the most re-
cently FDA-approved combinational mAb immunotherapeutic regimen for adult patients
with advanced unresectable HCC [24]. It is worth noting that, nowadays, internationally
endorsed guidelines adopt atezolizumab/bevacizumab as the first-line therapy for ad-
vanced, treatment-naïve HCC patients [24,25]. Recent studies (IMbrave150 trial) underscore
atezolizumab/bevacizumab superiority over sorafenib in overall survival, progression-free
survival, and patient-reported outcomes [26]. Although the impact of ICIs on survival is
significant, they have also been linked to autoimmune-like side effects due to their ability
to stimulate the immune system. These adverse effects are often expressed in the form
of neurological toxicities, hepatotoxicity, and cardiotoxicity [27–29]. Therefore, we need a
better understanding of the molecular mechanisms underlying therapeutic response.

The regulation of ICI pathways mediated by non-coding RNAs (ncRNAs) is a promis-
ing field of research regarding the probability of ICI toxicity. A substantial portion of
the human genome undergoes transcription, yielding a diverse array of ncRNAs [30–32].
Within this spectrum, this discourse focuses on three key types—long non-coding RNAs
(lncRNAs) [33,34], microRNAs (miRNAs) [35,36], and circular RNAs (circRNAs) [37]—that
play fundamental roles in cancer pathogenesis [38–40].

In this review, the authors will focus on the most recently identified class of ncRNAs,
which is circRNAs. circRNAs are closed-loop RNA structures, formed via the back splicing
of precursor mRNA (pre-mRNA) molecules [41]. They are widely expressed in mam-
malian cells and known for stability, evolutionary conservation, and cell/tissue specificity.
CircRNAs have diverse biological roles, including miRNA regulation, gene transcription
modulation, RNA-binding protein (RBP) interaction, and protein/peptide encoding [42].
These functions primarily operate at epigenetic, transcriptional, and post-transcriptional
levels [43,44]. CircRNAs regulate gene expression via an extended array of molecular
mechanisms, influencing tumorigenesis and neoplastic progression [41]. Dysregulated
circRNAs play pivotal roles in diseases, particularly in tumor development, influencing cell
proliferation, apoptosis, and metastasis [45–47]. Most importantly, circRNAs have emerged
as potent modulators of the tumor microenvironment (TME) and have a prospective role in
tuning immunotherapeutic regimens’ efficiency and outcomes [16,39,48–50].
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Coherently, the convergence of preclinical investigations consistently underscores the
potential of manipulating ncRNAs to significantly potentiate the efficacy of immunother-
apeutic interventions in the context of HCC. This scholarly review summarizes recent
advancements in the landscape of circRNAs, followed by an in-depth exploration of
the prospect of employing immunomodulatory circRNAs as plausible therapeutic tar-
gets/agents in HCC, accompanied by a comprehensive analysis of the intricate mechanistic
frameworks that underlie these interactions.

2. Circular RNAs (CircRNAs)
2.1. What Are CircRNAs?

CircRNAs are a recently discovered class of ncRNA molecules. They are formed
during the process of RNA transcript maturation. Structurally, circRNAs are covalently
closed by a connection between a downstream donor and upstream acceptor RNA splice
sites linked by a phosphodiester bond. CircRNAs were previously regarded as splicing
junk but are now recognized as functional RNA molecules [31]. They have expression
patterns that are particular to different tissues and cell types, and they are produced from
a wide variety of genes [51]. It is noteworthy that circRNAs are implicated in biological
processes that contribute to the development and spread of cancer [52,53].

Additionally, due to their circular shape and resistance to exoribonuclease activity,
circRNAs have longer half-lives than their parental linear counterparts, making it possible
to detect them even when produced at low levels [41,54,55]. For instance, exonic circRNAs
are thought to be extremely stable in cells, with most circRNAs showing half-lives of over
48 h, as opposed to an average mRNA half-life of 10 h [54,56]. These characteristics imply
that circRNAs could serve as useful biomarkers for the diagnosis and prognosis of cancer
patients, as previously described in [41,50]. Yet, the current review focuses on the potential
roles of circRNAs in modulating the HCC immunological profile and, thus, tuning the
immune-suppressive TME in such chemo- and immuno-resistant tumors.

2.2. Biogenesis of CircRNAs

Recent research has shown that “back-splicing”, a type of pre-mRNA splicing, is
responsible for the production of circRNAs [57]. CircRNAs have a distinctive closed-loop
structure, created by linking a downstream 5′ splice donor site and an upstream 3′ splice
acceptor site, in contrast to conventional pre-mRNAs with 5′ caps and 3′ polyadenylated
tails [58,59].

CircRNAs are primarily categorized into four types [60,61] based on the origin of
their genomic regions: exonic circRNAs (EcircRNAs), retained-intron or exonic-intronic
circRNAs (EIcircRNAs), intronic circRNAs (ciRNAs), and tRNA intronic circRNAs (tri-
cRNAs) [62]. Over 80% of the circRNAs that have been discovered are EcircRNAs, and
these circRNAs are mostly found in the cytoplasm [63,64]. As EcircRNAs sponge miRNAs
and/or interact with RBPs, several studies have shown that EcircRNAs play significant
roles in modulating the genetic expression of several coding transcripts [65,66]. EIciRNAs
and ciRNAs, which compose a minor portion of circRNAs compared to EcircRNAs, are
mostly found in the nucleus and, thus, can control the expression of their parental mRNAs,
as shown in Figure 1 [57]. The following section will cover the four associated biogenesis
mechanisms of circRNAs.
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ization of introns (d). ciRNA, intronic circRNA; EcircRNA, exonic circRNA; EIcircRNAs, exon-in-
tron circRNA; RBP, RNA-binding protein; ss, splice site. 
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into closer proximity through the dimerization of RBPs. This dimerization process also 
facilitates splicing by engaging with the sequences both upstream and downstream of the 
circularized exons [68]. 
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Lariat-driven circularization, also known as the exon-skipping mechanism, occurs as 

pre-mRNA partially folds during transcription. This folding brings the 5′ splice site (donor 
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intron, forming a circRNA through back-splicing within the folded region. The remaining 
exons then combine to create a linear mRNA [56]. Moreover, back splicing can occur post-
transcriptionally or co-transcriptionally, involving either a single exon or multiple exons 
with intervening introns [69]. 

Figure 1. Circular RNA (circRNA) biogenesis. Schematic presentation of the different mechanisms of
circRNAs biogenesis: intron painting (a), RBP pairing (b), Lariat driven (c), and the self-circularization
of introns (d). ciRNA, intronic circRNA; EcircRNA, exonic circRNA; EIcircRNAs, exon-intron cir-
cRNA; RBP, RNA-binding protein; ss, splice site.

2.2.1. Intron Pairing-Driven Circularization

The most frequent circularization process of EcircRNA and EIciRNA involves “direct
back-splicing”, also known as intron-pairing-driven circularization, in which a particular
pre-mRNA with ALU repeats is sheared to generate an EcircRNA or an EIciRNA following
reverse-base complementary pairing [56].

2.2.2. RBP-Induced Circularization

RBPs, which are thought to be trans-acting factors and include Quaking (QKI), Mus-
cleblind (MBL), and Fused-in Sarcoma (FUS), may promote circularization by bridging
similar intronic sequences [67]. The 3′ and 5′ termini of circularized exons can be brought
into closer proximity through the dimerization of RBPs. This dimerization process also
facilitates splicing by engaging with the sequences both upstream and downstream of the
circularized exons [68].

2.2.3. Lariat-Induced Circularization Driven by Spliceosomes

Lariat-driven circularization, also known as the exon-skipping mechanism, occurs as
pre-mRNA partially folds during transcription. This folding brings the 5′ splice site (donor
site) of the upstream intron close to the 3′ splice site (receptor site) of the downstream
intron, forming a circRNA through back-splicing within the folded region. The remaining
exons then combine to create a linear mRNA [56]. Moreover, back splicing can occur
post-transcriptionally or co-transcriptionally, involving either a single exon or multiple
exons with intervening introns [69].

2.2.4. Self-Circularization of Introns

Intron self-circularization occurs when a pre-RNA contains 7 nucleotides (nt) of gua-
nine (G) and uracil (U)-rich sequence close to one exon and an 11 nt cytosine (C)-rich
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sequence close to another exon. This allows the introns to avoid branching and degradation
during splicing, resulting in a stable intronic lariat structure [57].

2.3. Functional Roles of CircRNAs

CircRNAs typically function as regulatory ncRNA molecules, either directly by con-
trolling gene transcription or indirectly by modifying other regulators, such as proteins
and miRNAs. Further, the term “regulatory coding RNAs” refers to a subset of circRNAs
that encode short functional peptides, as shown in Figure 2 and described below [53].
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or decoy (3) protein scaffolding, (4) transcriptional regulation, (5) translation to proteins, and peptide
(6) regulation of epigenetic alterations.

2.3.1. miRNA Sponge

Some circRNAs may behave as miRNA sponges or sequesters because they include
well-conserved canonical miRNA response elements (MREs) [70–72]. Some circRNAs that
act as miRNA sponges can positively or adversely affect the expression of the corresponding
targeted genes. Cerebellar degeneration-related protein 1 antisense (CDR1-AS or ciRS-7), a
well-studied circRNA, has been linked to a variety of malignancies, including HCC and
gastric cancer, as well as sponges miR-7 in embryonic zebrafish [73–75]. Indeed, a growing
body of research has shown that the circRNA-miRNA-mRNA regulatory network may
have significant effects on several diseases, including HCC [76,77].
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For instance, circ-ZNF609 increases the expression of the myocyte-specific enhancer
factor 2A (MEF2A), which improves vascular endothelial dysfunction by acting as an
endogenous miR-615-5p sponge to decrease miR-615-5p activity [78]. Our previous work
has also validated the tumor suppressor and immunomodulatory effects of miR-615-5p in
HCC cell lines and primary natural killer (NK) cells isolated from HCC patients [79]. Thus,
we highlighted that the potential activity of circ-ZNF609 in HCC patients deserves further
investigation.

According to Zhong et al., circ-MYLK can ease the inhibition of its target vascular endothe-
lial growth factor A (VEGFA), a crucial component of the VEGFA/VEGFR2/RAS/MAPK1
signaling pathway, in addition to being associated with the stage and grade of bladder
carcinoma [80]. By sequestering miR-143 and increasing the production of its target BCL2,
increased levels of circ-UBAP2 stimulate the proliferation of osteosarcoma cells while pre-
venting apoptosis both in vitro and in vivo [81]. Similarly, circ-ABCB10 has been shown by
Liang et al. to sponge miR-1271, promoting proliferation and inhibiting the apoptosis of
breast cancer cells [82].

2.3.2. Protein Sponge or Decoy

CircRNAs can also bind and sequester proteins using their protein-binding sites,
functioning as an antagonist to impede their physiological function [83]. RBPs are one of
the most common protein classes that can bind to circRNAs. For instance, circ-TNPO3
functions as a protein decoy for the insulin-like growth factor 2 mRNA binding protein 3
(IGF2BP3) to inhibit the capacity of gastric cancer cells to proliferate [84]. It is also worth
noting that our previous work has highlighted the potent role of IGF2BPs in regulating
HCC tumor activity and their potential regulation with miRNAs, including miR-1275 [85].
The expression of MYC proto-oncogene, as well as bHLH transcription factor (MYC) and
its target, snail family transcriptional repressor 1 (SNAI1), is inhibited when circ-TNPO3
sequesters IGF2BP3, which reduces the ability of gastric cancer cells to proliferate and
metastasize [84]. It was also reported that circ-SIRT1 binds to the eukaryotic translation
initiation factor 4A3 (EIF4A3) in colorectal cancer cell lines, preventing its inhibitory impact
on epithelial–mesenchymal transition and encouraging the proliferation and invasion of
colorectal cancer cell lines [86].

CircRNAs can also decoy proteins by attaching themselves to cellular proteins and
changing how they normally carry out their physiological functions [44,87]. Circ0000079
(ciR79) inhibits the induction of fragile X-related 1 (FXR1) protein and prevents its com-
plexation with protein kinase C iota (PRKCI), thus preventing the FXR1/PRKCI-mediated
phosphorylation of glycogen synthesis kinase 3β (GSK3B) and activator protein 1 (AP-1),
suppressing SNAI1 protein levels and hindering non-small cell lung cancer growth [88].

2.3.3. Protein Scaffolding

CircRNAs with enzyme and substrate binding sites are believed to serve as scaffolds
that help two or more proteins to come into proximity and interact. CircFoxo3, which
includes binding sites for MDM2 and p53, serves as an indicative case of this observation.
In order to support the idea that circFoxo3 can serve as a protein scaffold, the mutation of
these binding sites or circRNA silencing reduced the amount of p53 that an MDM2 antibody
could pull down. Further research revealed that circFoxo3 promoted the ubiquitination of
p53 by MDM2, which is then destroyed by the proteasome. Additionally, circACC1 forms
a ternary complex with the regulatory β and γ subunits of AMP-activated protein kinase
(AMPK), stabilizing and enhancing the enzymatic activity of the AMPK holoenzyme [89].
More circRNAs acting as scaffolds are expected to be identified in the future because of the
longer half-lives of circRNAs [90].

2.3.4. Transcriptional Regulation

CircSEP3 derived from SEP3 exon 6 enhances the abundance of homologous exon
6-skipped variant by attaching to the host DNA locus and creating an RNA-DNA hybrid
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or R-loop, which causes transcription to pause and splicing factor recruitment [91]. Sim-
ilarly, circSMARCA5 induces the expression of the shortened non-functional isoform by
causing transcriptional termination of the SWI/SNF-related, matrix-associated, and actin-
dependent regulator of chromatin, subfamily a, member 5 (SMARCA5) at exon 15 through
R-loop formation [92]. EIciRNAs can interact with the U1 small nuclear ribonucleoprotein
to increase the expression of parental genes through RNA-RNA interactions with snRNA
molecules [93]. As lariats evade debranching, circRNAs can amass at their formation sites
and enhance the activity of RNA polymerase II, resulting in the increased expression of the
respective genes [57].

2.3.5. Translation to Proteins and Peptides

The ability of circRNAs to undergo translation was originally discovered by Pamudurti
et al. in 2017 [94]. According to bioinformatics studies, some circRNAs contain an open
reading frame (ORF), which indicates that they can be translated. Ribosome profiling, which
can sequence ribosome-covered RNAs to track translation in vivo, has shown convincing
evidence that some circRNAs comprising internal ribosome entry sites (IRES) are translated
based on an IRES-dependent mechanism [94], whereas other circRNAs are translated
independently of IRES elements. The translation of circSHPRH into the SNF2 histone linker
PHD RING helicase (SHPRH)-146aa protein was demonstrated to be IRES-dependent. It
was discovered that SHPRH-146aa is a tumor suppressor protein that guards against the
degradation of the SHPRH full-length protein. Therefore, incorrect circSHPRH translation
affects tumor malignancy [95].

Other circRNAs have also been discovered to encode functional peptides and proteins
that have tumor-promoting or -suppressing properties [95–97]. Finally, certain circRNAs
can encode peptides without the need for IRES. Protein translation is made easier, for
instance, by the m6A modification. The m6A reader protein YTH N6-methyladenosine
RNA binding protein F3 (YTHDF3) interacts with translation initiation factors to start
protein synthesis by binding to circRNAs that include m6A modification sites [98–100].

2.3.6. Regulation of Epigenetic Alterations

Cancer commonly exhibits abnormal DNA methylation and histone alterations that
are linked to the epigenetic regulation of gene expression [101,102]. It has been discovered
that certain circRNAs control these epigenetic changes. According to Chen et al. [103],
circFECR1 significantly reduced the amount of CpG DNA methylation in the promoter
of Fli-1 proto-oncogene, ETS transcription factor (FLI1), which epigenetically activated
FLI1. Through binding to the DNA methyltransferase 1 (DNMT1) promoter, circFECR1
has been shown to suppress the transcription of DNMT1, a crucial methyltransferase
enzyme necessary for the upkeep of DNA methylation. Additionally, tet methylcytosine
dioxygenase 1 (TET1) DNA demethylase might be attracted by circFECR1 to the FLI1
promoter and cause DNA demethylation. A component of polycomb-repressive complex 2
(PRC2), as an enhancer of zeste homolog 2 (EZH2), serves as an H3K27 methyltransferase
and controls histone methylation [104,105]. Moreover, hsa-circ0020123 can upregulate
EZH2 and zinc finger E-box binding homeobox 1 (ZEB1) using sponging miR-144, while
circBCRC4 can enhance the expression of EZH2 by interacting with miR-101 [106,107].

2.4. Involvement of circRNAs in HCC Tumor Development and Progression

It has been reported that circRNAs have a fundamental role in the etiology of several
human diseases, including several oncological conditions [108]. According to earlier
investigations, circRNAs are thought to be important to the onset, development, and
growth of HCC. For instance, circ0008450 induces HCC cellular proliferation, invasion,
and migration and reduces apoptosis caused by sponging miR-548 [109]. Additionally,
circRNA-104718 can similarly enhance HCC cellular proliferation, invasion, and migration
and inhibit apoptosis by regulating the miRNA-218-5p/TXNDC5 axis [110]. The circular
RNA hsa_circ_0078710 enhances cell proliferation by sequestering miR-31, resulting in the
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upregulation of histone deacetylase 2 (HDAC2) and cyclin-dependent kinase 2 (CDK2)
expression [111]. Circ-ZEB1.33 facilitates the proliferation of HCC cells by modulating
the miR-200a-3p/CDK6axis [112]. Hsa_circ_0016788 expedites HCC growth through the
regulation of miR-481 and its downstream target cyclin-dependent kinase 4 (CDK4) [113].
Furthermore, hsa_circ_0091581 promotes the proliferation of HCC cells by elevating MYC
levels, acting as a sponge for miR-526b [114]. Additionally, circBACH1 directly interacts
with the RNA binding protein HuR, promoting the cytoplasmic accumulation of HuR, thus
leading to decreased cyclin-dependent kinase inhibitor 1B (CDKN1B) expression [115],
which influences cell cycle progression.

Pu et al. observed a significant increase in hsa_circ_0000092 expression in HCC tissues
and cell lines. Depleting hsa_circ_0000092 inhibited HCC cell proliferation, migration,
invasion, and angiogenesis in vitro and in vivo. This circRNA promotes HCC angiogenesis
by acting as a miR-338-3p sponge, leading to increased expression of Jupiter microtubule-
associated homolog 1 (JPT1), matrix metallopeptidase 9 (MMP9), and VEGFA [116]

Recent research highlights the pivotal roles of circRNAs in the regulation of apoptotic
mechanisms within HCC. Specifically, these circRNAs target key components involved in
both anti-apoptotic and pro-apoptotic signaling pathways. Notably, circ-BIRC6 exhibits
significant overexpression in HCC tissue samples and correlates with the overall survival
of HCC patients. Silencing circ-BIRC6 expression effectively enhances apoptosis in HCC
cells by modulating BCL2 apoptosis regulator (BCL2) levels through the sequestration of
miR-3918 [117]. Moreover, circ-0051443 displays reduced expression in HCC tissues and
plasma. Exosomal circ-0051443 exerts a suppressive influence on the biological behaviors
of HCC cells, primarily by promoting apoptosis through the interaction with miR-331-
3p and the regulation of BCL2 antagonist/killer 1 (BAK1) [118]. On the other hand,
certain circRNAs have inhibitory influences on the development of HCC. For instance,
circADAMTS14 regulates miR-572/RCAN1, leading to the abrogation of HCC cellular
hallmarks and inducing HCC cellular apoptosis machinery [119]; circRNA-5692 has a
similar inhibitory impact on HCC progression by controlling the miR-328-5p/DAB2IP
axis [120]. Table 1 represents a comprehensive list of all characterized oncogenic and tumor
suppressor circRNAs in HCC.

Table 1. Oncogenic and tumor suppressor circular RNAs in hepatocellular carcinoma (HCC).

Circular RNA Class Molecular Targets In Vitro/In Vivo/Ex Vivo
Model References

SCD-circRNA2 Oncogenic MAPK1, RBM3

Huh7
HepG2
HCT-15

NCI-N87

[121]

circRHOT1 Oncogenic NR2F6 HCC Tissues [122]

circ-100338 Oncogenic MMP2, MMP9

Hep3B
HLE
Huh7

BEL7402
SMCC7721

MHCC97L MHCC97H
HCCLM3 HCCLM6

[123]

circ-0000092 Oncogenic miR-338-3p

Hep3B
LM3 MHCC97L

SK-hep1
HepG2

[116]

circPRMT5 Oncogenic miR-188-5p/HK2 axis HCC tissues HCCLM3
SNU-387 [124]
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Table 1. Cont.

Circular RNA Class Molecular Targets In Vitro/In Vivo/Ex Vivo
Model References

circMAT2B Oncogenic PKM2

HepG2
Huh7

SMMC-772
MHCC-97L
MHCC-97H

[125]

circASAP1 Oncogenic MAPK1 MHCC97L MHCC97H
HCCLM3 [126]

circβ-catenin Oncogenic β-catenin Huh7 [97]

circUHRF1 Oncogenic UHRF1
HepG2

HCCLM3 SMMC-7721 Huh 7
PLC/PRF/5 Hep3B

[127]

circ-CDYL Oncogenic PI3K-AKT-MTORC1/β-catenin
and NOTCH2

HCCLM
SMMC7721 [128,129]

circ-0046600 Oncogenic HIF-1α HepG2
SK-HEP-1 [130]

hsa_circ_0101432 Oncogenic MAPK1

Huh-7
SK-HEP-1

HepG2
HLE

[131]

circMAN2B2 Oncogenic MAPK1 HL-7702 [132]

circPTGR1 Oncogenic MET
HepG2

97L
LM3

[133]

circ-DB Oncogenic miR-34a, and USP7
HepG2

Hepa 1-6
3T3L1

[134]

circRNA Cdr1as Oncogenic AFP

SMMC-7721
Bel-7402 HepG2

Hep3B
Huh-7
HB611

[135]

circRNA PVT1 Oncogenic miR-203/HOXD3 pathway SMMC-7721 Huh-7 [136]

circPVT1 Oncogenic TRIM23/miR-377 axis SNU-387
Huh-7 [137]

hsa_circ_0008450 Oncogenic EZH2
SMMC7721

Sk-Hep-1 HepG2
Huh-7 HCCLM3

[138]

circ_0008450 Oncogenic miR-548
HepG2

Huh-7, SMMC7721
Sk-Hep-1 HCCLM3

[109]

hsa_circRNA_103809 Oncogenic miR-377-3p/FGFR1/MAPK1 axis

MHCC97L
Huh7

SK-HEP-1 Hep3B
HCCLM3

[139]

circRNA-104718 Oncogenic miR-218-5p/TXNDC5 HCC nude mice model [110]

circMYLK Oncogenic miR-362-3p/Rab23 Huh7
Hep3B [140]

circ-ZNF652 Oncogenic miR-29a-3p/GUCD1 Axis SNU-387
Huh-7 [141]



Int. J. Mol. Sci. 2023, 24, 16484 10 of 23

Table 1. Cont.

Circular RNA Class Molecular Targets In Vitro/In Vivo/Ex Vivo
Model References

circ_0000267 Oncogenic miR-646
HepG2

Huh-7 SMMC7721
Sk-Hep-1 HCCLM3

[142]

circ-FOXP1 Oncogenic miR-875-3p, miR-421, SOX9 factor

SNU-387 HepG2
Hep3B
Huh7

SMMC-7721 HCCLM3

[143]

circRNA_104075 Oncogenic YAP-dependent tumorigenesis
through regulating HNF4a

Bel-7402
SMMC-7721 Huh7

HepG2
Hep1

Bel-7404 THLE-3
HL-7702

[144]

hsa_circ_101280 Oncogenic miR-375/JAK2 HepG2
SNU-398 [145]

circRNA-101368 Oncogenic HMGB1/RAGE HCCLM3 HepG2 [146]

circ-ZEB1.33 Oncogenic miR-200a-3p-CDK6

97H
Huh7

HepG2
SNU423 SNU475

L02

[112]

circFBLIM1 Oncogenic miR-346 HCC tissues
HCC mouse model [147]

hsa_circ_0103809 Oncogenic miR-490-5p/SOX2 signaling
pathway

MHCC97H
HepG2

Huh7 SMMC7721
SK-Hep1

[148]

hsa_circ_0016788 Oncogenic miR-486/CDK4

HepG2
Hep3B

Huh7 HCCLM3
MHCC97L

[113]

hsa_circRBM23 Oncogenic miR-138

HCC tissues
HepG2
Huh7

Bel-7402

[149]

hsa_circ_0005075 Oncogenic miR-431 SMMC-7721 [150]

circABCC2 Oncogenic miR-665
HepG2

Bel-7402
MHCC97H

[151]

hsa_circ_100338 Oncogenic MTOR signaling pathway SMMC7721 Bel-7402
Hep3B [152]

circ_0091581 Oncogenic miR-591/FOSL2 axis THLE-2 [153]

circPCNX Oncogenic miR-506

HL-7702
SMMC-7721 HuH-7

Hep3B
HepG2

[154]
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Table 1. Cont.

Circular RNA Class Molecular Targets In Vitro/In Vivo/Ex Vivo
Model References

hsa_circ_0056836 Oncogenic miR-766-3p/FOSL2 axis

Huh7
HepG2
SNU449

SK-HEP-1

[155]

circ- HOMER1 Oncogenic miR-1322 on CXCL6

Sk-Hep-1 SMMC7721
HCCLM3

Huh-7
HepG2

[156]

circ_0091579 Oncogenic
miR-136-5p/TRIM27

miR-1270/YAP1
miR-1225/PLCB1

HCCLM3 MHCC97H
Huh-7 [157–159]

circ_0001955 Oncogenic
miR-516a-5p

miR-646
miR-145-5p/NRAS

Huh-7
HepG2

SMMC-7721 Bel-7402
Hep-3B

[160–162]

circTRIM33-12 Tumor
suppressor miR-191

HCC tissues
MHCC97-L

MHCC97-H LM3
[163]

circHIAT1 Tumor
suppressor PTEN

Hep3B
SMMC-7721 HepG2

LM3
[164]

circLARP4 Tumor
suppressor

miR-761/RUNX3/p53/CDKN1A
pathway

Huh7
Hep3B SMMC7721 HepG2 [165]

circMTO1 Tumor
suppressor miR-9-5p/NOX4 axis HepG2

Hep3B [166]

circITCH Tumor
suppressor miR-184

Huh7
HCCLM3 SMMC-7721

MHCC97H HepG2
[167]

circFBXW4 Tumor
suppressor miR-18b-3p/FBXW7 axis LX-2 [168]

mmu_circ_34116 Tumor
suppressor miR-661/PTPN11 HepG2, SNU449 [169]

hsa_circ_0007874/cMTO1 Tumor
suppressor miR-338-5p

HCCLM3
MHCC97-L Hep3B
SMMC-7721 Huh7

Bel-7402 MHCC97-H

[170]

circ608 Tumor
suppressor miR-222/PINK1 Primary hepatic stellate cells

(PHSCs) from C57BL/6 mice [171]

hsa_circ_0070963 Tumor
suppressor

miR-223-3p
LEMD3 LX2 [172]

hsa_circ_0004018 Tumor
suppressor miR-626/DKK3

Huh7
Bel7402 SNU182

Hep3B
SNU449

[173]

3. Immunotherapy

Cancer immunotherapeutic modalities include several strategies, such as chimeric
antigen receptor (CAR) T-cells, tumor vaccines, oncolytic viruses, and ICIs [174]. CAR T-cell
therapy is a type of treatment through which a patient’s T cells are modified in a laboratory
to attack cancer cells. This is performed by adding a gene for a particular receptor called a
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CAR to the T cells [49]. The modified CAR T cells are then grown in large numbers and
infused back into the patient to kill tumor cells [175].

Cancer vaccine activates the body’s anti-tumor defenses by introducing tumor antigens.
These antigens can be administered in various forms, such as whole cells, peptides, or
nucleic acids. An ideal cancer vaccine aims to counteract the immune suppression present
in tumors and stimulate both humoral and cellular immunity [176].

Oncolytic viruses are used as therapeutic agents to stimulate the selective destruction
of tumor cells, allowing the targeted eradication of tumor cells while leaving normal tissues
unaffected, and triggering anti-tumor immunity [177].

ICIs such as anti-CTLA4 and anti-PD-1 antibodies target immune checkpoint molecules
present on immune cells to inhibit their activities, as previously described, thereby alleviat-
ing immunosuppression and prompting CD8+ T cells to eliminate cancerous cells in the
body [178].

While the clinical outcomes of ICI appear to be promising, the overall level of response
remains inadequate, as only 20% of individuals with solid tumors experience complete
remission (CR) following treatment [179]. Such recent advancements in cancer immunother-
apy and its combination regimens have greatly affected the HCC treatment outcomes, and
clinical studies are continuing to pave the way for leveraging the additional benefits for
HCC patients.

3.1. HCC Immunotherapy

HCC patients who solely depend on surgery, chemotherapy, or radiotherapy not only
have low chances of survival but also do not experience significant improvements in their
quality of life [12,18,85,180]. However, the introduction and rapid advancements in cancer
immunotherapy, as described earlier, have provided increasingly promising results [79,181].
The presence of immune cells within the TME is crucial to fighting against tumors. However,
cancerous cells can avoid the immune system and establish a complex equilibrium wherein
diverse types of immune cells may contribute to the advancement of the tumor, spread to
other parts of the body, and show resistance to treatment. Novel immunotherapy strategies
are focused on reinstating the original equilibrium and enhancing the immune response
against cancer through various means [182].

Immunotherapeutic regimens have successfully increased the survival rates, minimiz-
ing the side effects and providing long-term cancer control in advanced unresectable HCC
patients [183]. Yet, a reliable marker for selecting the patients who would benefit the most
from HCC immunotherapeutic regimens and those who would exhibit severe side effects
is still missing [31,47].

Cell-free or circulating nucleic acids (CNAs) such as circRNAs in the blood have
recently been identified as a new class of promising cancer–immune diagnostic/prognostic
biomarkers to achieve the best outcome in HCC patients [31,184]. Prostate cancer-associated
3 (PCA3) has, in particular, been approved by the FDA and is currently being sold as Pro-
gensa by Hologic Gen-Probe (Marlborough, MA, USA) for prostate cancer diagnosis [185].
Circulating ncRNAs such as PCA3 are more reliable than other CNAs due to their high sta-
bility in the bloodstream and resistance to nuclease-mediated fragmentation, as extensively
studied and reviewed by our research group in [186–191]. Plasma lncRNAs, in particular,
were reported to be less sensitive to degradation induced via repetitive freeze–thaw cycles,
as well as prolonged exposure to 45 ◦C and room temperature [192]. In this section of the
review, the authors will shed light on the roles of circRNAs in HCC immunotherapy.

3.2. CircRNAs in HCC Immunotherapy

Since circRNAs have the potential to regulate many aspects of tumor immunity, they
play a significant role in tumor immunotherapy; circRNAs have been observed to regulate
the expression of immune checkpoint molecules in tumor cells, thereby allowing circRNAs
to potentially hamper the therapeutic efficacy of ICIs [193]. Blocking the PD-1/PD-L1
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checkpoint is one of the immunotherapeutic tactics widely used for treating various tumor
types, including HCC [194].

CircRNAs in HCC can trigger immune system suppression and result in resistance
to anti-PD-1 therapy. Evidence suggests that certain circRNAs can induce immune sup-
pression and resistance against anti-PD-1 therapies in HCC. An illustrative case is circMET,
an oncogenic immunosuppressor circRNA that triggers immune suppression through the
SNAI1/DPP4/CXCL10 axis. Notably, sitagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor,
augments CD8+ T cell infiltration in HCC tissues in diabetic individuals, potentially en-
hancing PD-1 blockade-based immunotherapy in selected HCC patients [195]. Therefore,
the use of a DPP4 inhibitor or circMET siRNAs may significantly improve the effectiveness
of immunotherapy with PD-1 blockade for the studied group of HCC patients.

CircPRDM4 is another immune-suppressor circRNA that works via a direct modula-
tory effect on the immune checkpoint, namely PD-L1 expression on HCC cells. CircPRDM4
induces the elevation of PD-L1 expression and facilitates the recruitment of HIF-1α onto
the CD274 promoter under hypoxic conditions, resulting in CD8+ T cell-mediated im-
mune evasion, as shown in Figure 3 [196]. This suggests that circPRDM4 is a promising
onco-immune target in HCC. The presence of circRHBDD1 hinders the effectiveness of
anti-PD-1 therapy in individuals with HCC. In HCC patients who respond to anti-PD-1
treatment, circRHBDD1 is found to be significantly elevated. However, when circRHBDD1
is targeted, the efficiency of anti-PD-1 therapy is enhanced in an immune-competent mouse
model [197].

Additionally, it was reported that the overexpression of exosomal circTMEM181 se-
creted by tumor cells could impede the effectiveness of anti-PD-1 therapy in HCC and
promote immunosuppression by upregulating the expression of CD39. Additionally, it
hinders the ATP-adenosine pathway by targeting CD39 on macrophages. Conversely,
rescuing the resistance to anti-PD-1 therapy in HCC can be achieved by targeting CD39
on macrophages [198]. Lastly, HCC-derived circCCAR1 was also reported to have an
unfavorable effect on TME by inducing the permeant cellular dysfunction of CD8+ T-cells,
and it is, thus, considered one of the most deleterious immune-evasion tactics orchestrated
by HCC tumors (Figure 3). CircCCAR1 also plays a role in causing resistance to anti-PD-1
immunotherapy, suggesting a potential onco-immune target for HCC patients [199].

Regulatory T cells have the potential to disrupt the immune microenvironment of
tumors and encourage immune evasion by suppressing the activation of effector T cells,
such as CD4+ and CD8+ T cells [200,201]. Huang et al. conducted a study revealing that
T cells can take up exosomes containing circGSE1. This uptake process plays a crucial
role in enhancing the differentiation of CD4+ T cells into regulatory T cells by activating
the miR-324-5p/TGFB1/SMAD3 pathway. The expansion of regulatory T cells, in turn,
contributes to the increased proliferation, migration, and invasion of HCC. Consequently,
exosomal circGSE1 holds promising potential as a target for immunotherapy [202].

NK cells play a crucial role in HCC TME, from the adaptive immune to the innate
immune arm. Thus, the augmentation of NK cell infiltration and functionality increases
patient survival across the spectrum of HCC patients [18]. This finding provides a novel
vantage point for manipulating NK cell activity to augment the responsiveness of im-
munotherapeutic regimens among HCC patients [79,203]. Noteworthy investigations have
unveiled instances of NK cell dysfunction within the HCC context, although the precise
underpinnings of this phenomenon remain ambiguous. Zhang and collaborators have
proffered insights into the mechanistic terrain, delineating how circUHRF1 orchestrates
HCC progression and immune repression via an exosome-mediated and NK cell-dependent
modality [127]. Mechanistically, circUHRF1 engenders NK cell dysfunction by sequestering
miR-449c-5p, thus fostering hepatitis A virus cellular receptor 2 (HAVCR2, also known
as TIM-3) expression. Significantly, circUHRF1 potentiates resistance to anti-PD-1 im-
munotherapy. Therefore, the strategic targeting of circUHRF1 emerges as a promising path
for enhancing the therapeutic potency of anti-PD-1 immunomodulation in the HCC do-
main [127]. Moreover, Ma et al. utilized a particular plasmid to induce the overexpression
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of circARSP91 and then investigated how HCC cells would respond to NK cell cytotoxicity.
They discovered that the UL16 binding protein 1 (ULBP1) showed a increased expression
level, suggesting its potential influence on activating NK cells. Ultimately, their findings led
them to conclude that circARSP91 can enhance the cytotoxicity of NK cells acting against
tumors by upregulating ULBP1 (Figure 3) [204].
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EIF4A3, eukaryotic translation initiation factor 4A3; HCC, hepatocellular cancer; HIF-1a, hypoxia
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NK, natural killer; NKG2D, killer cell lectin-like receptor K1; PD-1, programmed cell death protein 1;
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phosphoinositide-3-kinase regulatory subunit 1; RHBDD1, rhomboid domain containing 1; Snail,
snail family transcriptional repressor 1; TIM-3, hepatitis A virus cellular receptor 2; ULBP1, UL16
binding protein 1; YTHDF1, YTH N6-methyladenosine RNA binding protein F1.
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4. Conclusions and Future Perspectives

In conclusion, this review focuses on circRNAs as a novel investigational course
of treatment in the field of tumor immunotherapy, highlighting the promising roles of
circRNAs in the context of immunomodulation, which holds encouraging potential for
improving the survival rates and outcomes of HCC patients. The authors shed light on
the biogenesis of circRNAs, their functional modes, and their roles in HCC development
and progression. However, special focus was given to summarizing the current literature
discussing the roles of circRNAs as potential regulators of the immunogenic profile of HCC
cells, cytotoxic T cells, and NK cells at the TME. Also, the review shed light on the promising
roles of circRNAs as messengers between cancer and immune cells at the cancer–immune
synapse at the TME. Yet, the authors also highlighted the gap in the literature concerning
the mechanistic roles of circRNAs as possible modulators of other immune cells present at
the TME, such as tumor-associated macrophages, tumor-associated fibroblasts, dendritic
cells, and T regulatory cells. Nonetheless, the roles of circRNAs in regulating the immune-
suppressive cytokine storm surrounding the tumor at the TME are under-investigated in
HCC. This review paves the way for future possible usage of circRNAs to potentially offer
a novel approach to enhance anti-tumor immune responses and overcome the challenges
associated with current immunotherapeutic approaches available for HCC patients.
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