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Abstract: Polyamines (Pas) are short molecules that exhibit two or three amine groups that are
positively charged at a physiological pH. These small molecules are present in high concentrations
in a wide variety of organisms and tissues, suggesting that they play an important role in cellular
physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in
age-related diseases that have not been completely elucidated. Aging is a natural process, defined
as the time-related deterioration of the physiological functions; it is considered a risk factor for
degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases;
arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas
in the cellular and molecular processes related to age-related diseases, focusing our attention on
important degenerative diseases such as Alzheimer’s disease, Parkinson’s disease, osteoarthritis,
sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel
biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives
for healthier aging.
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1. Introduction

People around the world are living longer. In 2021, the World Health Organization
(WHO) estimated that by 2030, one in six people will be 60 years of age or older. The number
of people aged 80 years or older will triple from 2020 to 2050, reaching 426 million [1]. The
epidemiological evidence has demonstrated the effects of age-related challenges, especially
in terms of the burdens on economic growth and healthcare systems. These systems are
currently facing the challenges of complex health conditions and age-related diseases [2,3].
Aging is characterized by the progressive decline in physical and psychological capacities
that occurs concomitantly with the onset of chronic degenerative diseases. In this context,
the search for molecular targets that could serve as more effective adjuvants in anti-aging
therapies or in the treatment of age-related diseases is becoming the number-one priority.
The main age-related diseases are cardiovascular, neurodegenerative, and musculoskeletal
diseases; arthritis; and cancer [4]; furthermore, according to the Global Burden of Disease,
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Injuries, and Risk Factors Study in 2017, 31.4% of all diseases were found to be associated
with age [5]. Interestingly, in recent years, a plethora of cellular and molecular hallmarks of
aging have been described, such as genomic instability, a loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, and altered intracellular
communication, among others [6,7]. Organ and tissue analyses of these molecular changes
might provide accessible markers of aging stages and progression and help to identify novel
geroprotective compounds. Possible clinical interventions and treatments include strategies
such as lifestyle interventions (diet, exercise, and weight loss), pharmacological approaches
(antioxidants and senolytic, senomorphic, and anti-inflammatory drugs), modulating the
gut microbiota, cell transplantation, gene therapy, and immunotherapy [8]. All of these
strategies have the final goal of achieving healthy aging and longevity.

Polyamines (Pas) are interesting candidates in the search for anti-aging adjuvants
because of their interactive capacity to participate in essential life functions such as pro-
liferation, differentiation, apoptosis, lipid metabolism, and aging [9]. Pas are well-known
molecules that were discovered more than 300 years ago; they are present in all eukaryotes
and in the majority of prokaryotes [10]. The main mammalian Pas, putrescine (PUT),
spermine (SPM), and spermidine (SPD), are short, positively charged molecules at a phys-
iological pH. They are composed of two or more amine groups that are ubiquitously
expressed and interact with some of the major classes of negatively charged regions of
biomolecules such as nucleic acids and proteins [11]. Our objective is to provide a new
perspective on the participation of Pas in the cellular and molecular processes linked to
age-related diseases, leading us to propose new molecular alternatives for healthier aging.

2. Biosynthesis of Pas

There are three principal sources of Pas in organisms: dietary intake, cellular synthesis,
and gut microbiota synthesis [12–14]. Early reports hypothesized that extracellular Pas
enter cells through different systems: the heparin sulfate and glypican 1 (GPC1) system,
which transports spermine; endocytosis, mediated by Caveolin-1; and the exportation of
putrescine by the transporter SLC3A2 [15]. Recent studies have shown that in different cells
and tissues, the transport of spermine and spermidine is executed through polyspecific
organic cation transporters 1, 2, and 3 (OTC-1-3) [16,17].

The cellular synthesis of Pas arises from the amino acids arginine, ornithine, and
methionine, and the first stage of synthesis includes the production of ornithine and
agmatine from arginine catalyzed by arginase (EC 3.5.3.1) and arginine decarboxylase
(ADC) (EC 4.1.1.19), respectively. Alternatively, the agmatine could be transformed into
putrescine and urea by agmatinase (EC 3.5.3.11). Once ornithine is obtained, it is then
decarboxylated by ornithine decarboxylase (ODC) (EC 4.1.1.17) to synthetize putrescine and
urea [18]. ODC is considered the rate-limiting factor of PA synthesis; therefore, its inhibition
may be a suitable strategy for the treatment of cancer [19–21]. Subsequently, putrescine
is converted into spermidine and spermidine is converted into spermine via the action of
spermidine synthetase (EC 2.5.1.16) and spermine synthetase (EC 2.5.1.22), respectively [22]
(Figure 1). Spermidine is also cleaved and transferred by deoxyhypusine synthase (DHS)
(EC 2.5.1.46) to eukaryotic translation factor 5A (eIF5A)-Lys to catalyze the interconversion
of deoxyhypusine, which is subsequently hydroxylated by deoxyhypusine hydroxylase
(DOHH) (EC 1.14.99.29) to produce hypusine. This is considered an unusual amino acid
that is essential to the function of eIF5A. The synthesis of hypusine-containing proteins
is the most specific post-translational modification known so far, and it is performed
enzymatically to complete the maturation of eIF5A [23,24] (Figure 1).
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Figure 1. PA transport and metabolism. GPC1 transports spermine, putrescine is exported by the 
transporter SLC3A2, and spermine and spermidine are transported through OCT−1−3. In the first 
stage of PA synthesis, ornithine and agmatine are synthetized from arginine catalyzed by arginase 
and ADC, respectively. Agmatine can be transformed into putrescine and urea by agmatinase. 
Ornithine is then decarboxylated by ODC to synthetize putrescine and urea. Subsequently, 
putrescine is converted into spermidine and spermidine is converted into spermine by the action of 
spermidine synthetase and spermine synthetase, respectively. Spermidine is cleaved and 
transferred by DHS to eIF5A-Lys to catalyze the interconversion of deoxyhypusine, which is 
subsequently hydroxylated by DOHH to produce hypusine. In a second stage, dcAdoMet suffers a 
decarboxylation catalyzed by S−adenosine methionine decarboxylase (pyruvoyl), producing 
S−adenosine methionine−3−aminopropyl methyl sulfonate. The catabolism pathway of PA 
successively converts spermine into spermidine and spermidine into putrescine through the 
acetylated forms of PA (N−acetylspermine and N−acetylspermidine) catalyzed by SSAT and PAO. 
The degradation of PA leads to the production of highly toxic intermediaries such as aldehydes, 
peroxides, and ammonia. In particular, aldehydes are extremely reactive and degrade 
spontaneously, producing acrolein, a highly toxic compound. 
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Figure 1. PA transport and metabolism. GPC1 transports spermine, putrescine is exported by the
transporter SLC3A2, and spermine and spermidine are transported through OCT–1–3. In the first
stage of PA synthesis, ornithine and agmatine are synthetized from arginine catalyzed by arginase
and ADC, respectively. Agmatine can be transformed into putrescine and urea by agmatinase. Or-
nithine is then decarboxylated by ODC to synthetize putrescine and urea. Subsequently, putrescine is
converted into spermidine and spermidine is converted into spermine by the action of spermidine
synthetase and spermine synthetase, respectively. Spermidine is cleaved and transferred by DHS to
eIF5A-Lys to catalyze the interconversion of deoxyhypusine, which is subsequently hydroxylated by
DOHH to produce hypusine. In a second stage, dcAdoMet suffers a decarboxylation catalyzed by
S–adenosine methionine decarboxylase (pyruvoyl), producing S–adenosine methionine–3–
aminopropyl methyl sulfonate. The catabolism pathway of PA successively converts spermine into
spermidine and spermidine into putrescine through the acetylated forms of PA (N–acetylspermine
and N–acetylspermidine) catalyzed by SSAT and PAO. The degradation of PA leads to the production
of highly toxic intermediaries such as aldehydes, peroxides, and ammonia. In particular, aldehydes
are extremely reactive and degrade spontaneously, producing acrolein, a highly toxic compound.

In a second stage, S-adenosylmethionine (dcAdoMet) suffers decarboxylation, cat-
alyzed by S-adenosine methionine decarboxylase (pyruvoyl) (EC 4.1.1.50), producing
S-adenosine methionine-3-aminopropyl methyl sulfonate (also known as decarboxylated
S-adenosyl-l-methionine), which is an aminopropyl donor used by spermidine synthetase
and spermine synthetase to produce spermine and spermidine, respectively. Further-
more, the residual 5’-methylthioadenosin (MTA) can induce apoptosis by itself in abnor-
mal cells [4,22] (Figure 1). The catabolism pathway of PA successively converts sper-
mine into spermidine and spermidine into putrescine through the acetylated forms of
PA (N-acetylspermine and N-acetylspermidine) catalyzed by spermine/spermidine N1-
acetyltransferase (SSAT) (EC 2.3.1.57) and polyamine oxidase (PAO) (EC 1.5.3.11) [25,26].
Despite these various physiological functions and cellular needs, Pas are toxic to cells,
either due to their high concentrations or via their degradation, which leads to the produc-
tion of highly toxic intermediaries such as aldehydes, peroxides, and ammonia. Notably,
aldehydes are extremely reactive and degrade spontaneously, producing acrolein, a highly
toxic compound [27] (Figure 1).

3. Polyamines as Novel Biomarkers for Age-Related Diseases

Aging is a natural process; it controls numerous biological and genetic events that are
the driving force for all age-related diseases. Although most of the existing research has
focused on understanding the molecular mechanisms of aging, developing new strategies
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for the early diagnosis of age-related diseases should be considered a priority to facilitate
better interventions. Our review aims to highlight the advantages of using metabolomics
as a risk stratification tool for the detection of age-related diseases. The potential benefits
of using metabolomics include a simple approach to new biomarkers in biological fluids
or tissues and the provision of predictive information for various clinical variables in
age-related diseases [28,29].

Because of the plethora of functions of metabolites such as Pas, they can be con-
sidered disease indicators. For example, in cancer, they have been widely used in diag-
nosis and as markers of tumor progression, as cancer patients have elevated levels of
polyamines [30–34]. As such, there is more than one reason to consider polyamines as
novel biomarkers that could indicate the progression of age-related diseases. For example,
the most recent work concerning Pas as potential biomarkers in age-related diseases was
performed via a metabolomic analysis using serum from individuals with mild cogni-
tive impairment (MCI) and Alzheimer’s disease, where differentially disrupted levels of
polyamines and their metabolites were evident two years before MCI would be diagnosed
as AD, demonstrating their high predictive capacity in the progression to AD, although it
is necessary to establish specific conditions that can be reproduced worldwide [35]. An-
other work group used enzyme-linked immunosorbent assays, showing elevated serum
spermidine levels in MCI subjects with underlying AD, again indicating the potential
of polyamines as biomarkers for the progression from MCI to AD [36]. For Parkinson’s
disease, a metabolomic analysis of the plasma of individuals with the disease showed that
polyamine-acetylated metabolites, such as N8-acetylspermidine and N-acetylputrescine,
were elevated in PD compared to controls, strongly suggesting that Pas function as useful
biomarkers for diagnosis and determining the severity of the disease [37].

There are very few biomarkers corresponding to age-related diseases linked to mobility
disabilities, such as osteoarthritis or sarcopenia, and more are needed. A recent study used
a metabolomic analysis to detect the systemic changes in the amino acids and polyamines
of individuals with severe OA compared to controls after adjusting the bone mass index
(BMI); higher levels of spermidine were found, along with a lower ratio of spermine and
spermidine, suggesting their potential use in clinical practice (Figure 2 and Table 1) [38,39].
The possibility of using polyamines as biomarkers for sarcopenia is almost a reality; the
latest research suggests a progressive decrease in the spermine/spermidine ratio in serum
from healthy to sarcopenic subjects [40,41]. The use of metabolomics is emerging in the
osteoporosis field [42,43], where the newest evidence highlights the use of the metabolome
and its association with fragility fractures; the results have shown higher baseline spermidine
levels to be associated with a higher risk of osteoporotic fractures in the Korean community,
suggesting a new prognostic biomarker for osteoporosis [44].

In addition to determining the potential role of PAs as novel biomarkers for age-related
diseases, it is crucial to establish large-scale biological and statistical validation for clinical
practice. This validation should be conducted across a diverse range of cohorts, including
multicentric and unselected prospective cohorts of healthy individuals, as well as clinic-
based cohorts. The goal is to ascertain whether monitoring fluctuations in PAs, either
independently or in combination with other tools and methods, can improve the precision
of preventing and diagnosing disease, assessing disease severity, and tracking the progress
of age-related diseases.
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of mice. In plasma, there is an increase in SPD and a decrease in its acetylated form, N-Ac-SPD. Glial 
cells show increases in SPD and SPM. (B) Parkinson’s disease: Acetylated forms of SPD, SPM, and 
SPD exhibit higher concentrations, along with an increase in SPD and a decrease in SPM in plasma. 
There is an increase in SPD and decreases in SPM and PUT in blood. PUT increases and SPD 
decreases in cerebrospinal fluid. Glial cells exhibit increases in SPD and SPM. (C) Osteoarthritis: 
PUT decreases in plasma, and SPM decreases at the knee. (D) Sarcopenia: SPM and SPD decrease 
in the muscle, while there is an increase in SPD and a decrease in SPM in blood. (E) Osteoporosis: 
There are decreases in SPD and PUT in osteoporotic bones. Labels indicate putrescine (PUT), 
spermidine (SPD), spermine (SPM), and their acetylated versions (Ac) either at the amino terminus 
(N-) or di-acetylation (Di). A higher concentration is indicated by a red arrow, while a lower 
concentration is denoted by a blue arrow, compared to healthy individuals. * Refers to studies using 
murine models. 
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Figure 2. Alterations of polyamine concentration in various age-related diseases. (A) Alzheimer’s
disease: Predominantly increased polyamines are observed in the brain: SPM, SPD, and PUT increase
in the frontal lobe (navy blue); SPM and SPD increase in the parietal lobe (light blue); SPD increases
in the temporal lobe (green); and SPM increases while SPD decreases in the hippocampus of mice.
In plasma, there is an increase in SPD and a decrease in its acetylated form, N-Ac-SPD. Glial cells
show increases in SPD and SPM. (B) Parkinson’s disease: Acetylated forms of SPD, SPM, and SPD
exhibit higher concentrations, along with an increase in SPD and a decrease in SPM in plasma. There
is an increase in SPD and decreases in SPM and PUT in blood. PUT increases and SPD decreases in
cerebrospinal fluid. Glial cells exhibit increases in SPD and SPM. (C) Osteoarthritis: PUT decreases in
plasma, and SPM decreases at the knee. (D) Sarcopenia: SPM and SPD decrease in the muscle, while
there is an increase in SPD and a decrease in SPM in blood. (E) Osteoporosis: There are decreases in
SPD and PUT in osteoporotic bones. Labels indicate putrescine (PUT), spermidine (SPD), spermine
(SPM), and their acetylated versions (Ac) either at the amino terminus (N-) or di-acetylation (Di). A
higher concentration is indicated by a red arrow, while a lower concentration is denoted by a blue
arrow, compared to healthy individuals. * Refers to studies using murine models.

Table 1. Polyamine impairment and age-related diseases in humans.

Disease Type of Sample Polyamine Impairment Effect Ref.

Alzheimer’s Disease
Temporal cortex
and occipital cortex
tissue

- Spermidine was increased (70%) and putrescine was
decreased (28%) in temporal cortex.

- Spermine was reduced 35% in occipital cortex.
[45]

Cortical surface
tissue

- Higher levels of S-adenosyl methionine and spermidine.
- Polyamine-associated gene transcripts were

significantly dysregulated.
[46]

Brain tissue

- Ornithine decarboxylase activity was significantly
increased in temporal cortex (76%) and reduced in
occipital cortex (70%).

[47]
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Table 1. Cont.

Disease Type of Sample Polyamine Impairment Effect Ref.

- Spermidine and acetyl-spermidine were increased.
- Putrescine, spermine, and acetylated spermine levels

were also elevated.
[48]

- Spermidine and spermine levels were significantly
increased.

- Putrescine, Ac-SPD, and Ac-SPM were increased.
- Ornithine levels did not change significantly.

[49]

- Polyamine-associated gene transcripts, including ODC
(FC = 2.15), ASS1 (FC = 1.78), and AZIN2 (FC = 2.43),
were significantly increased.

[50]

Plasma and CSF

- Polyamine metabolism was one of the most affected
pathways in plasma of AD patients compared with mild
cognitive impairment patients.

[51]

Serum
- Mild cognitive impairment patients showed

significantly higher serum spermidine levels. [36]

Parkinson’s Disease Brain tissue - Increased polyamine levels. [52]

- Putrescine levels were decreased.
- Spermidine levels were decreased in putamen. [53]

CSF

- Polyamines were altered: N1-acetylcadaverine (1.40
±0.70), putrescine (0.2 ± 0.02), cadaverine (3.34 ± 1.03),
N8-acetylspermidine (0.38 ± 0.14),
spermidine (0.07 ± 0.01).

[54]

CSF and serum
- N-acetylcadaverine and N-acetylputrescine showed a

significant change. [55]

CSF and red blood
cells

- Increased levels of spermidine and spermine.
- Decreased levels of putrescine in red blood cells.
- Higher concentrations of putrescine, cadaverine,

N1-acetyl-Cad, and N1-acetyl-Spd.
- Lower levels of Spd in CSF.

[56]

Serum

- N8-acetyl spermidine was increased in patients with
rapid-progressor phenotype compared to both control
subjects and slow progressors.

[57]

- Ornithine metabolite was increased. [58]
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Table 1. Cont.

Disease Type of Sample Polyamine Impairment Effect Ref.

Plasma

- Elevated N8-AcSpd (ratio: 1.44) and N-acetylputrescine
(ratio: 1.20).

- Spm/Spd ratio in blood was decreased.
[37]

Osteoporosis
- Low spermine and putrescine levels were associated

with individuals with osteoporotic fractures. [44]

Osteoarthritis Serum
- Spermine/spermidine ratio was decreased

(0.898 + 0.227 vs. 1.060 + 0.279). [39]

Sarcopenia Whole blood
- Spermidine levels were higher.
- Spermine/spermidine ratio was lower. [40]

* Mouse skeletal
muscle

- A downregulation of two of the key encoding enzymes
involved in polyamine biosynthesis (Odc1 and Amd1)
was observed (2.65- and 1.97-fold, respectively) in
24-month-old muscle.

[59]

- Spermidine and spermine were significantly decreased.
- The mRNA level of ornithine decarboxylase increased

(1.4-fold).
- RNA of S-adenosylmethionine decarboxylase and

spermine oxidase decreased (0.3-fold and 0.2-fold,
respectively).

[60]

* Refers to studies using murine model.

4. Polyamines and Neurodegenerative Diseases

It is known that PAs play essential roles in the central nervous system (CNS). PAs are
considered primordial stress inducers because they elicit the polyamine stress response
(PSR) in response to various temporary stimuli, such as reactive oxygen species (ROS), heat,
ultraviolet light (UV), and even aging. This response offers beneficial effects for survival,
but its persistent effect leads to other disorders that contribute to neurodegeneration,
commonly with arginine deprivation and increased polyamine levels [61,62], suggesting
that PA levels are important for the replication and maintenance of neurons [22]. In the
mammalian CNS, PAs play a regulatory role in glutamate receptors and have the potential
to modulate N-methyl-D-aspartate (NMDA) receptors. These NMDA receptors are crucial
for controlling synaptic plasticity, which, in turn, regulates various neurological functions,
including memory [63].

In general, PAs can enhance the opening of channels and regulate glutamate signaling,
with an impact on neuronal excitability, memory, and aging [64]. Aging is the principal risk
factor for neurogenerative diseases [65], which are believed to share the familiar mechanism
of the protein aggregation of diverse misfolded proteins, leading to the degeneration of
the CNS. The early detection of neurodegenerative diseases could offer an opportunity for
the treatment and prevention of disease progression [66]. In this context, although PAs
and their metabolite products have been widely studied in other diseases, there is still the
need to understand the connection between the molecular mechanisms of PA metabolism
and neurodegenerative diseases in order to identify possible therapeutic approaches for
these conditions.
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4.1. The Role of PAs in Alzheimer’s Disease

It has long been known that the dysregulation of PA metabolism or PAs’ upstream
regulators is involved in the neurodegeneration of the CNS [37,45,67]. Metabolic profiles
of the brain have shown that PAs have the capacity to bind the amyloid (A) beta peptide
(1–40) to promote the classic aggregation of AD, a complex neurodegenerative disease
distinguished by progressive memory and cognitive decline, accompanied by alterations in
behavior and visuospatial orientation. AD is the most common cause of dementia [68]. As
mentioned above, in AD, PA levels are disrupted, even though spermidine and spermine
significantly increase their levels; however, the possible mechanism has not been completely
elucidated [45,47,49]. Nevertheless, the evidence demonstrates that the disruption of
arginase, an upstream PA pathway regulator, may constitute one of the main causes of AD-
related polyamine metabolism; arginase activity is elevated and, as a result, the deficiency of
its substrate, arginine, promotes oxidative stress. Moreover, this facilitates the consumption
of ornithine to produce putrescine, which further increases PA levels and the PSR to initiate
a cycle of neurodegeneration [62].

The most recent research about spermidiIe in AD demonstrates two different per-
spectives on the involvement of spermidine in mild cognitive impairment (MCI) and AD.
On the one hand, one research group demonstrated that in 43 samples from American
individuals over 65 years old at the Oregon Alzheimer’s Disease Center, an increase in
serum levels of spermidine corresponded to the progression from MCI to AD (Figure 2
and Table 1), suggesting the viability of measuring serum spermidine as a key molecule
in AD pathology and as a potential biomarker for AD progression [36]. On the other
hand, a study with a rural Chinese population of approximately 3,700 individuals over 35
years old with no history of dementia revealed a non-linear relationship between spermi-
dine and MCI, implying that high levels of spermidine may decrease the burden of MCI
(Table 1) [69]. These contradictory reports raise the possibility that factors such as race, diet,
and geographic location could change the general perspective on the role of spermidine in
AD or MCI.

In recent years, alterations in autophagic flux have been considered a significant
factor in the pathology and progression of AD. Spermidine has been found to induce
autophagy by inhibiting the negative regulator EP300 (E1A-binding protein p300) [70]. This
is particularly important due to EP300’s involvement in aging and age-related diseases,
including neurodegeneration in AD. Enhancing autophagy, which aids in the removal
of accumulated molecules, may offer protection against the disease or potentially delay
the onset of the disease [71,72]. In addition, novel findings in an AD-like mouse model
revealed spermidine’s potential to induce autophagy, showing that spermidine promotes
the autophagic degradation of the NLRP3 inflammasome, an essential component of the
activation of inflammatory signaling pathways; in this scenario, spermidine represents a
promising approach to reducing neuroinflammation in an AD mouse model. Moreover,
in the same animal model, spermidine demonstrated an increase in the degradation of
soluble amyloid beta peptides, but the condition of the plaques and their size were not
altered. These results may lead us to debate the effect of spermidine on AD pathology in
comparison with its effect on insoluble amyloid beta peptides [73].

A polyamine called spermiIwhich is derived from spermidine, has been identified as
a molecule that plays a role in the aggregation of Tau protein. This discovery was made via
sophisticated experiments using molecular dynamics simulations. These experiments also
showed that spermine has a greater affinity for the phosphorylated form of Tau, which, in
turn, alters the structure and distribution of Tau and contributes to the formation of fibrillar
deposits in neurons [48]; these findings provide a new outlook for therapeutic development
and for understanding the molecular basis of the disease. Further research on PA could lead
to the development of interesting therapeutic strategies for neurodegenerative diseases,
such as AD. This potential is derived from their natural presence in the human body and
the possibility that they could be more effectively tolerated when administered through
dietary supplements, either on their own or in combination with other medications.
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4.2. The Role of PAs in Parkinson’s Disease

The second most common neurodegenerative disorder is Parkinson’s disease (PD),
which affects more than 1% of the world’s population over 65 years old; estimation studies
indicate its prevalence will double by 2030 [74]. This disease leads to alterations in cardinal
motor features, slowed movement, rigidity, and tremors, along with other non-motor
disturbances such as cognitive decline; these represent the heterogeneity of the symptom
burden. As is the case in AD, protein aggregation is a molecular hallmark of PD. Alpha-
synuclein (α-synuclein) accumulates in intraneuronal inclusions, causing toxicity and
cellular dysfunction [74].

More than a decade ago, it was demonstrated that PD patients with a worse pheno-
type of the disease showed an increase in putrescine levels in their cerebrospinal fluid
(CSF), along with a decrease in spermidine levels (Figure 2 and Table 1) [54]. To date, the
molecular role and regulation of the PA levels in a healthy brain or a brain with PD are not
well elucidated. Even less is known about how a polyamine’s metabolic changes might
impact neurodegenerative diseases. However, a recent study shed light on certain forms of
acetylated polyamines, particularly spermidine, which were significantly elevated in the
blood serum of PD patients when compared to control groups. Spermidine, a product of
the interconversion between spermidine and spermine catalyzed by Spd/Spm acetyltrans-
ferase, is now being proposed as a potential biomarker for diagnosing PD and assessing its
severity. These findings could also help distinguish PD from other neurological diseases
such as AD and progressive supranuclear palsy (PSP) [37].

Regarding protein homeostasis in PD, one interesting molecule is ATP13A2, a lysoso-
mal transporter with five different transmembrane domains. ATP13A2 plays an essential
role in maintaining neuronal wellbeing through the regulation of metal ions and the
organelle homeostasis of the endoplasmic reticulum, lysosomes, and mitochondria. Inter-
estingly, ATP13A2 also promotes the degradation of polyamines and α-synuclein [75]. The
loss of ATP13A2 has been reported in an atypical form of PD, which was determined to
cause dysfunction in lysosomal membrane integrity, as it alters the dysfunction of spermi-
dine/spermine exports and consequently promotes the accumulation of α-synuclein [76,77].
Nowadays, efforts to measure the ATP13A2 levels in serum or saliva raise the possibility
of it functioning as a potential marker of PD development and complications [78,79]. In
general, these findings highlight the importance of studying PA export dysfunction related
to ATP13A2 loss in neurodegeneration and through autophagy regulation, which may
represent a therapeutic target for delaying these neurodegenerative conditions.

5. Polyamines and the Burden of Chronic-Disease Disability

An essential aspect of dealing with the economic burden of age-related diseases is to
maintain “successful aging” through the preservation of mobility and physical function so
the elderly can live independently and improve their quality of life [80]. Certain health con-
ditions, such as osteoarthritis, sarcopenia, and rheumatoid arthritis, compromise mobility,
cause extreme discomfort, and impact quality of life. In this context, new findings related
to basic research or adjuvant therapies with natural compounds such as PAs could offer
a new perspective on the prevention, diagnosis, and treatment of mobility issues related
to aging.

5.1. The Role of PAs in Osteoporosis

Among the prevalent age-related diseases, osteoporosis is often at the top of the list.
This disease is characterized by a significant decline in bone mass, accompanied by high
bone frailty, significantly altering the quality of life of those affected by the disease and
increasing mortality, with a high cost for the global economy [81]. Osteoporosis is a complex
condition due to its multifactorial etiology, where age, sex, changes in hormone levels, diet,
and lifestyle, among other factors, play a pivotal role in the onset of the disease [82]. One
of the main challenges with osteoporosis is that it almost never shows symptoms until
a fracture occurs, and it is estimated that one in three women and one in five men over



Int. J. Mol. Sci. 2023, 24, 16469 10 of 17

50 years of age have osteoporotic fractures [83,84]. Osteoporosis remains an incurable
disease with a large gap in the prevention and management of fractures; this is why new
effective strategies are urgently needed to prevent, diagnose, and treat osteoporosis [85].

As noted above, polyamines are essential for life. Regarding bone, mutations in the
gene encoding spermine synthase (SMS) result in Snyder–Robinson Syndrome (SRS), an
X-linked condition characterized by intellectual disability, seizures, severe osteoporosis,
and other symptoms. Loss-of-function mutations in SMS lead to the accumulation of
spermidine and decreases in spermine levels, disrupting the strict control of PA homeosta-
sis [86]. A recent nine-year follow-up epidemiological investigation of individuals from 40
to 69 years of age showed that high levels of spermidine and low levels of spermine and
putrescine are associated with the risk of osteoporotic fractures, suggesting a central role of
SMS in this condition and its possible use as a prognostic marker (Figure 2 and Table 1) [44].
Exogenous polyamines also upregulate the expression of osteogenic genes (e.g., RUNX2,
ALP, osteopontin, and OCN) while downregulating the expression of adipogenic genes
(e.g., PPAR-γ) [87]. This regulation reduces fat accumulation, could promote the miner-
alization of the extracellular matrix, and enhances osteogenesis, which is beneficial for
bone health [16]. Evidence suggests a role of PA in promoting bone mineralization, but
the precise molecular mechanism of its osteogenic potential remains to be elucidated [88].
Other studies have demonstrated that the daily oral supplementation of a diet rich in
polyamines, such as polyamine-rich yeast, inhibits osteoclastic activation in mice that
underwent ovariectomy (OVX). This suggests that the dietary intake of polyamines can
have a positive impact on bone health [89].

5.2. The Role of PAs in Osteoarthritis

Osteoarthritis (OA) is a degenerative joint disease associated with aging; it is com-
monly ignored in terms of its pathophysiology and leads to suffering in the elderly popula-
tion [90]. To date, there are no effective treatments to prevent, cure, or stop the development
of OA. In this context, naturally occurring compounds such as PAs could offer us a better
chance of combatting OA. The molecular role of polyamines in joint diseases, such as OA,
remains understudied, despite their ubiquitous presence in all tissues, including cartilage.
Some results indicate that the PA synthesis pathway could be catalogued as a regulator
of chondrocyte differentiation in OA, as it increases the expression of master molecules
such as SOX9 [88]. Spermidine has been widely recognized as an inducer of physiological
autophagy across different species such as mice, yeast, nematodes, flies, etc. [91]. In recent
years, the role of spermidine in human primary chondrocytes has also been described as an
inducer of autophagy due to its inhibition of acetyltransferase EP300, an important histone
that interacts with key proteins such as LC3 and beclin. Interestingly, spermidine treat-
ments in human and murine chondrocytes showed increases in key chondrogenic markers
such as SOX9, aggrecans, and COL2A1, suggesting a potential regenerative response in
cartilage [70]. Other studies have reported the chondroprotective and antioxidant effects of
spermidine in human samples, improving the autophagic flux in OA [92]. Even though
spermidine is known to have anti-inflammatory effects, its effects on OA were not reported
until recent years; spermidine has been found to ameliorate OA progression in mouse
models by attenuating synovitis, cartilage degeneration, and osteophyte formation through
the inhibition of the TNF-α-induced NF-κB/p65 signaling pathway [93]. Another work
group demonstrated the ability of PAs to regulate cell differentiation from adipose stem
cells to skeletal cells, including chondrocytes; this peculiarity demonstrates that spermine
and spermidine can impede oxidative DNA damage indicated by a reduction in γH2AX.
These findings offer a promising outlook for therapeutic applications in OA treatment and
joint regeneration [94].

All these findings present polyamines, especially spermidine, as natural compounds
that could be used for dietary supplementation, serving as adjuvants to ameliorate the
burdensome effects of OA.
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5.3. The Role of PAs in Sarcopenia and Frailty

The roles of polyamines (PAs) and the mammalian target of rapamycin (mTORC1)
in regulating protein synthesis and cell growth, especially in skeletal muscle, are well
established. Recent research has revealed that PA pathway enzymes demonstrate versatility
in responding to various stressors that can promote either muscle growth (hypertrophy)
or muscle loss (atrophy). These responses are under the control of mTORC1, highlighting
the potential of polyamines in remodeling muscle and aiding in the treatment of muscle
diseases, such as sarcopenia [95]. Sarcopenia is recognized as a disease characterized by a
significant decline in muscle mass, which entails a substantial decrease in quality of life
and increases physical disability; it is accompanied by higher mortality risk, mainly in the
elderly [96]. With no currently approved treatment for this disease, the search for new
approaches to deal with sarcopenia is a priority.

Novel perspectives on the polyamine spermidine have been gaining attention as
potential treatments for sarcopenia, particularly in terms of its association with the androgen
receptor (AR). Even though the molecular mechanisms and effects of the androgen receptor
(AR) in muscle are not completely understood, novel perspectives regarding its relationship
with polyamines, specifically spermidine, are considered interesting insights into the
treatment of sarcopenia. Earlier this year, in an AR-KO mouse model that developed
the sarcopenia phenotype, a downregulation of gene-related polyamine biosynthesis was
demonstrated; there were no significant changes in muscle mass, but an impact on muscle
strength was observed in control and middle-aged mice [97]. A metabolomic analysis of
skeletal muscle in aged mice demonstrated the significantly decreased expression of the
enzymes S-adenosylmethionine decarboxylase and spermine oxidase, which are involved
in the synthesis and metabolism of spermine and spermidine, leading to decreases in their
levels (Figure 2 and Table 1). Consequently, this could enhance the aging phenotype, such
as decreased cell proliferation in primary myoblasts [60]. Other recent studies in mice
and rats have shown the upregulation of spermidine/spermine N1-Acetyltransferase 1
when the AR is selectively modulated (by the agonist TEI-SARM2), hypothesizing that the
hyperacetylation of polyamines could aid mitochondrial regulation for muscle function [98].
In blood samples from Japanese individuals, the spermine/spermidine ratio was shown to
be inversely correlated with the progression of sarcopenia (Figure 2 and Table 1) [40].

All of these findings highlight the importance of studying polyamines as new potential
adjuvants for the diagnosis and treatment of sarcopenia.

6. Conclusions

As the global healthcare system faces the challenges of age-related diseases and the
aging population continues to grow [1], we have an urgent need to find more information
about the molecular mechanisms involved in aging. This will allow us to identify possible
therapeutic adjuvants and biomarkers that will help prevent, diagnose, and monitor age-
related diseases. Because polyamines are essential molecules that play pivotal roles in
biochemical and physiological processes in all living organisms, they should be considered
molecules that are central to aging [99].

The metabolism of polyamines is tightly regulated, and any disruption of polyamine
levels is associated with various diseases, including cancer, where polyamine levels are
frequently elevated [30,31]. Furthermore, elevated polyamine levels are also linked to
age-related diseases such as PD and AD [67,100]. This contrasts with the conventional
perspective, which primarily attributes the decline in polyamine homeostasis to the aging
process [101]. This paradox highlights the challenging nature of categorizing the dynamics
of polyamines in age-related diseases and their potential use as therapeutic adjuvants. This
complexity may arise from treating polyamines as a homogeneous family of molecules
with similar roles when, in fact, they can have diverse and even opposing functions in
health and disease [102], as well as in different tissues. In general, spermidine (alone or as
a dietary supplement) is the best-studied PA and is considered a geroprotective molecule;
it has beneficial effects on lifespan and aging in most tissues and species, exhibiting highly
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versatile mechanisms of action. Nevertheless, its versatility regarding action/functionality
can impede our understanding of its therapeutic use, so research on the dose-dependent
effects of PAs will improve their possible clinical effectiveness in aging and age-related
diseases [103]. To date, there have been very few clinical trials of PAs; those related
to aging have evaluated molecular mechanisms such as autophagy and the metabolic
response to low-dose spermidine supplementation (ClinicalTrials IDs: NCT05459961 and
NCT04823806). Time will tell whether these studies can provide more information about
the clinical use of PAs and their effectiveness in aging. All this evidence indicates that, as a
next step, we have to gather evidence from individual Pas and PAs as a family to elucidate
their effects on therapeutic implementation.

As for age-related diseases that impact disability and mobility, such as osteoarthritis,
sarcopenia, and osteoporosis, declines in PA levels have been widely reported. Therefore,
strategies to restore the lacking PAs in these age-related diseases via dietary intake could
serve as adjuvants in the treatment of these conditions, consequently improving the futures
and quality of life of the elderly.

Nowadays, there is an obvious need for biomarkers that lead to the detection of many
diseases in the elderly; in this context, metabolomics has been a valuable tool for measuring
the perturbation of many metabolites in different biofluids such as serum [29], including
PAs. Metabolomics has positioned PAs as central mediators of aging and as new biomarkers
for diagnosing and monitoring age-related diseases. Even if metabolomics has the potential
to decipher metabolite profiles in aging and age-related diseases, the challenge of providing
conclusive information about useful biomarkers is yet to be resolved.
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α-syn Alpha-synuclein
AD Alzheimer’s disease
ADC Arginine decarboxylase
ATP13A2 ATPase cation transporting 13A2
BMI Bone mass index
CNS Central nervous system
CSF Cerebrospinal fluid
COL2A1 Collagen type II alpha 1 chain
DHS Deoxyhypusine synthase
DOHH Deoxyhypusine hydrolase
EP300 E1A-binding protein P300
elF5A Eukaryotic translation initiation factor 5A
GPC1 Glypican 1
MCI Mild cognitive impairment
MTA 5’-methylthioadenosin
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NMDA N-Methyl-D-aspartate
NLRP3 NLR family pyrin domain containing 3
OCT-1-3 Organic cation transporters 1, 2, and 3
ODC Ornithine decarboxylase
OA Osteoarthritis
OVX Ovariectomy
PD Parkinson’s disease
PAO Polyamine oxidase
PA Polyamines
PUT Putrescine
PSP Progressive supranuclear palsy
PSR Polyamine stress response
dcAdoMet S-adenosylmethionine
SRS Snyder–Robinson Syndrome
SLC3A2 Solute Carrier Family 3 (Amino Acid Transporter Heavy Chain)
SPD Spermidine
SMS Spermidine synthase
SPM Spermine
SSAT Spermine/spermidine N1-acetyltransferase
SOX9 SRY-box transcription 9
WHO World Health Organization
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