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Abstract: Excessive activation of the immune system is the cause of a wide variety of renal diseases.
However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the
kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels,
is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In
addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte
injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly
regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune
system and the pathogenesis of renal inflammation are intertwined. In this review, we present an
overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose
the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role
in the immune system.
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1. Introduction to the TRPC6 Channel Family

The transient receptor potential channel C (TRPC) superfamily includes seven closely
related cation channels with a high permeability for Ca2+ [1]. Based on their structural
homology, the TRPC family can be subdivided into two subfamilies, of which TRPC1,
TRPC2, TRPC3, TRPC6 and TRPC7 form one subfamily, and TRPC4 and TRPC5 form
the other subfamily [2]. TRPC3, TRPC6 and TRPC7 are very closely related with ~75%
amino acid homology [3], whereas TRPC2 is known as a non-functional pseudogene in
humans [4]. All of the TRPC family members share a common subunit structure consisting
of a cytoplasmic C- and N-terminus and six transmembrane domains (Figure 1) [2]. Between
transmembrane domains 5 and 6, a putative pore is formed, thereby enabling the transport
of Ca2+ and other ions across the plasma membrane. To create a functional TRPC channel,
four subunits assemble in a monomeric or heteromeric fashion [5–7].

TRPC membrane activity is, amongst others, regulated by controlled trafficking of
the TRPC channels to the plasma membrane, e.g., via calmodulin activation [8,9]. The
membrane-inserted TRPC channels are constitutively active or need to be activated via
either the receptor-operated Ca2+ entry (ROCE) pathway or the store-operated Ca2+ entry
(SOCE) pathway [8–10]. During ROCE, activation of a G-protein-coupled receptor (GPCR)
leads to the activation of phospholipase C (PLC) [11–13]. PLC catalyzes the conversion of
phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol 1,4,5-
trisphosphate (IP3). DAG directly activates TRPC3, TRPC6 and TRPC7 [11,12]. This still
remains controversial for the other TRPC family members [14].

During SOCE, depletion of the Ca2+ levels in the endoplasmic reticulum (ER) leads to
the activation of the ER-resident protein stromal interaction protein 1 (STIM-1) [15]. STIM1
stimulates calcium-release-activated calcium channel protein 1 (Orai1), resulting in a Ca2+

influx into the cell. The Orai1-mediated Ca2+ gradients lead to both the direct activation
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of TRPC channels as well as the increased trafficking and insertion of the TRPC channels
into the plasma membrane. The gating of the TRPC channels upon insertion in the plasma
membrane is tightly regulated by STIM1 [15]. The activities of TRPC1, TRPC3 and TRPC4
are the best characterized as being regulated by STIM-1-Orai1, whereas TRPC6 activity is
primarily known to be activated by DAG [15,16].
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Figure 1. Overview of the activating mechanisms of the TRPC channels. Left panel: store-operated
Ca2+ entry (SOCE). Depletion of Ca2+ in the endoplasmic reticulum (ER) is sensed by stromal inter-
action protein 1 (STIM-1), which subsequently activates calcium-release-activated calcium channel
protein 1 (Orai1). Increased Ca2+ influx via Orai1 leads to the direct activation of the TRPC channels or
the enhanced trafficking of the TRPC channels to the plasma membrane. For clarity reasons, only one
TRPC subunit is depicted in this figure. Upon insertion in the plasma membrane, the TRPC channel
activity is tightly regulated via an interaction with STIM1. Right panel: receptor-operated Ca2+ entry
(ROCE): G-protein-coupled receptor (GPCR) activation leads to the activation of phospholipase C
(PLC), which converts phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and in-
ositol 1,4,5-trisphosphate (IP3). IP3 interacts with the IP3 receptor (IP3R) leading to Ca2+ release from
the ER. DAG is known to directly stimulate the activity of TRPC3, TRPC6 and TRPC7. Abbreviations:
diacyl glycerol (DAG); endoplasmic reticulum (ER); inositol 1,4,5-trisphosphate (IP3); g-protein-
coupled receptor (GPCR); IP3 receptor (IP3R); calcium-release-activated calcium channel protein 1
(Orai1); phospholipase C (PLC); phosphatidylinositol 4,5-bisphosphate (PIP2); receptor-operated
Ca2+ entry (ROCE); store-operated Ca2+ entry (SOCE); stromal interaction protein 1 (STIM-1). Image
created using Biorender.com.

2. Physiological Function of TRPC6

The TRPC family exerts a wide array of (patho)physiological functions. In this review
we will focus on the (patho)physiological role of TRPC6. TRPC6 is well-known to be ex-
pressed in tissues containing smooth muscle cells, e.g., the lungs, the oesophagus, the colon,
the vasculature and the stomach [17]. Studies have shown that TRPC6 tightly regulates the
Ca2+ currents in smooth muscle cells and consequently smooth muscle cells tone. TRPC6 is
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therefore an important factor influencing blood pressure, intestinal motility and hypoxic
pulmonary vasoconstriction [17–20]. TRPC6 has also been shown to be expressed in the
heart, where it regulates Ca2+ currents and cardiac function [21,22]. A detailed description
of all physiological functions of TRPC6 is beyond the scope of the current paper, and we
kindly refer additional inquiries to the recent review by Dietrich et al. [17]. In this review,
we will focus on the role of TRPC6 in the kidneys and the immune system with particular
emphasis on how the function of TRPC6 in regulating the immune response is linked to
the pathogenesis of immune-related kidney diseases.

3. TRPC6 in the Kidneys

The kidneys are the organs responsible for maintaining the homeostasis of the body’s
internal milieu by excreting toxic substances and by regulating salt and water balance. The
functional unit of the kidney is the nephron, consisting of the glomerulus, the proximal
tubule, Henle’s loop, the distal tubule and the collecting duct. TRPC6 is known to be
expressed in the collecting duct as well as in all three cell types of the glomerulus (i.e.,
podocytes, glomerular endothelial cells and mesangial cells) [23–26]. The role of TRPC6
is primarily characterized in glomerular podocytes [26]. However, this does not exclude
the possibility that TRPC6 plays an important role in other glomerular cell types, i.e.,
glomerular endothelial cells or mesangial cells [26,27]. Podocytes are a crucial component
of the glomerular filtration barrier and restrict the passage of proteins from blood to the
urine, mainly in a size-selective manner. TRPC6 is located in the podocyte foot processes at
or near the site of the slit diaphragm. The slit diaphragm is a mechanosensitive protein
complex that connects the foot processes of adjacent podocytes [26]. The slit diaphragm
responds to alterations in mechanical forces, such as altered blood pressure, by dynamically
rearranging the podocyte actin cytoskeleton. An intact podocyte cytoskeleton is crucial for
glomerular filtration (Figure 2) [28–32]. TRPC6 Ca2+ gradients are crucial for the podocyte’s
cytoskeletal rearrangement under pathological conditions, but TRPC6 also has a pivotal
physiological role in maintaining glomerular integrity under physiological conditions [26].
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Gain-of-function mutations in TRPC6 lead to familial forms of glomerular disease
known as focal segmental glomerulosclerosis (FSGS) [33]. FSGS is characterized by protein-
uria, loss of renal function and eventually kidney failure [34]. Gain-of-function mutations in
TRPC6 have been shown to lead to both increased channel activity and enhanced trafficking
of the channel to the plasma membrane [33]. The increased expression and/or activity of
TRPC6 leads to aberrant cytoskeletal rearrangements in podocytes, podocyte foot process
effacement and eventually podocyte death (Figure 2) [35–38]. Loss of podocytes will result
in the development of proteinuria, which is decreased filtration capacity of the kidney, and
kidney failure.

Most kidney diseases are not caused by genetic defects, like hereditary forms of FSGS,
but are a result of systemic pathogenic mechanisms, e.g., hypertension, diabetes mellitus
and auto-immunity. TRPC6-mediated signalling has been shown to be involved in the
pathogenesis of these acquired forms of kidney diseases as well. For example, TRPC6 is
functionally involved in the progression of diabetic kidney disease (DKD) and acquired
forms of FSGS by inducing podocyte injury, podocyte foot process effacement and podocyte
loss [39–41]. Intriguingly, an increasing number of studies suggests that TRPC6 is also
tightly linked to the development of immunological kidney disorders. For example, TRPC6
is strongly associated with the infiltration of immune cells into the kidney and consequently
with kidney inflammation in the context of ischemia/reperfusion kidney injury (I/R),
unilateral ureteral obstruction (UUO) and DKD [42–46]. These findings suggest that TRPC6
might play an as-yet underappreciated role in the immune system and consequently an
important role in the pathogenesis of inflammatory kidney diseases. Taken together, TRPC6
is well known for playing a crucial role in both kidney physiology and pathophysiology
at the site of the podocyte by regulating podocyte cytoskeletal integrity. An increasing
number of studies suggests, however, that TRPC6 is also a key factor in immune-mediated
kidney diseases.

4. TRPC6 in Immune Cells
4.1. Neutrophils

Neutrophils are part of the first line of defence of the host immune system. An im-
portant tool of neutrophils to exert their anti-pathogenic function is the production of
reactive oxygen species (ROS) via activation of the NADPH oxidase complex (NOX) [47].
Interestingly, TRPC6 has been shown to be required for the complete activation of NOX and
the subsequent ROS production in neutrophils [48]. ROS production is also functionally
linked to TRPC6 expression and activity in podocytes [49,50], highlighting the parallel
functions of TRPC6 in immune cells and podocytes. TRPC6 also plays an important role in
neutrophil migration and chemotaxis in response to the chemo attractants macrophage in-
flammatory protein-2 (MIP-2) and chemokine ligand 2 (CXCL2) [51,52]. TRPC6 was shown
to be crucial for neutrophilic actin remodelling upon stimulation with MIP-2 and CXCL2.
TRPC6 knockout resulted in an impaired neutrophil migration in vitro and a defective
chemotaxis of neutrophils in vivo. As discussed previously, TRPC6 has been shown to have
a similar function in the kidneys by reorganizing the cytoskeleton of podocytes [35–38].
Interestingly, TRPC6 knockout did not affect the migration of neutrophils in response to
N-Formylmethionyl-leucyl-phenylalanine (fMLP) [53]. This finding highlights the context-
dependent role of TRPC6 in reassembling the neutrophilic cytoskeleton, as TRPC6 does play
a role in MIP-2 and CXCL2-mediated chemotaxis but not in fMLP-mediated chemotaxis.
Neutrophilic TRPC6 is also important for the adhesion of neutrophils; TRPC6 increased
the β2-integrin activation in neutrophils and the subsequent enhanced ICAM-1 binding in
response to chemokine ligand 1 (CXCL1) stimulation [45].

Another important antimicrobial defence mechanism of neutrophils is the formation of
neutrophil extracellular traps (NETs). NETs are released from neutrophils and are web-like
structures of chromatin decorated with anti-microbial proteins, which serve to immobilize
and subsequently kill pathogens [54]. NETs were originally thought to be mainly formed
via the canonical NOX-dependent pathway [55]. In the NOX-dependent pathway, ROS,
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produced via the NOX complex, initiate a cascade of events, eventually resulting in the
release of NETs [56,57]. As TRPC6 is known to be important for the complete activation of
the NOX in neutrophils and subsequent ROS production, this might suggest that TRPC6
plays a role in the NOX-dependent NET formation [48].

Significantly, an increasing number of studies suggest that NETs can also be formed via
a NOX-independent pathway [58,59]. In the NOX-independent pathway, ROS production
is not involved in NET formation, and neutrophils release the NETs via nuclear membrane
blebbing [60–62]. Also of note, NET formation via the NOX-independent pathway is
induced by Ca2+-ionophores, like A23187, thereby suggesting the important role that the
Ca2+ transients play in NET formation [63–68]. Moreover, the neutrophils from cystic
fibrosis (CF) patients are characterized by a disrupted Ca2+ homeostasis and subsequently
impaired NET formation [69]. The TRPC6 blocker 2-aminoethoxydiphenylborane (2-APB)
normalized NET formation and restored the antimicrobial killing capacity of neutrophils
from CF patients [69,70]. Taken together, these findings might suggest an important role
for TRPC6in NET formation via the NOX- independent pathway by mediating the Ca2+

gradients in neutrophils. Moreover, TRPC6 might also be involved in NET formation via
the NOX-dependent pathway via the production of ROS (Table 1). The roles of TRPC6 and
NETs in immune-mediated kidney injury will be discussed in section seven.

Table 1. Overview of the roles of TRPC6 in different immune cell types.

Expressed in Function References

Neutrophils

SOCE
Superoxide production
Chemotaxis/migration

Adhesion
NOX-dependent NET formation

NOX-independent NET formation

[48]
[48]

[51–53]
[45]
[48]

[69,70]

Macrophages Phagocytosis [71]

Mast cell Degranulation [72]

T-cells
ROCE

Cytokine production
Apoptosis

[73,74]
[75]
[76]

ROCE; receptor-operated Calcium entry, SOCE; store-operated Calcium entry.

4.2. Mast Cells, Macrophages and T-Cells

TRPC6 has also been shown to play a functional role in mast cells, macrophages
and T-cells. For example, the TRPC6-mediated Ca2+ transients are important for mast
cell degranulation [72]. Furthermore, TRPC6 is linked to the phagosoma degradation
of pathogens by macrophages. The increased insertion of TRPC6 into the phagosome
using the small molecule (R)-roscovitine restored the impaired phagosomal acidification of
macrophages from CF patients [71]. TRPC6 is also known to regulate theCa2+-currents in
Jurkat T-cells upon the T-cell receptor activation [73] or DAG stimulation [74]. Furthermore,
mice with a systemic TRPC6 knockout produced lower levels of T-helper type 2 (Th2)
cytokines (i.e., interleukin-5 (IL-5) and interleukin-13 (IL-13)) as compared with the control
mice [75]. In addition, T-cell apoptosis was suppressed using the TRPC6 inhibitor SKF96365
in rats [76].

The nuclear translocation of the nuclear factor of activated T-cells (NFAT) is a crucial
transcription factor for T-cell activation and B-cell development [77,78]. Interestingly,
TRPC6-mediated Ca2+ influx in podocytes is known to lead to activation of Calcineurin
as well as subsequently increased activity and the nuclear translocation of NFAT via a
feed-forward loop [36]. Future studies should clarify if and how the TRPC6-mediated Ca2+

currents are involved in the immune cell functions via NFAT activation.
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4.3. TRPC6 in the Endothelium

TRPC6 is also involved in inflammatory responses that involve the endothelium by
promoting transendothelial-leukocyte migration. For example, TRPC6 activity has been
shown to lead to endothelial cell contraction and, consequently, increased endothelial
permeability [79,80]. Furthermore, endothelial TRPC6 is activated via an interaction with
cluster of differentiation 31 (CD31) on leukocytes [81]. Activation of TRPC6 leads to
trafficking of the lateral border recycling compartment (LBRC) to the leukocyte. LBRC
subsequently supports the migration of leukocytes across the endothelial cell layer.

5. TRPC6-Mediated Calpain Activation in the Immune System

The cysteine protease Calpain plays a key role in the migration and chemotaxis of
various types of immune cells, including neutrophils, eosinophils, dendritic cells and
macrophages [82–86]. TRPC6-mediated Calpain activation might play an important role
in the immunologic role of TRPC6, as TRPC6 has been shown to bind to and activate
Calpain [87,88]. Calpain exerts its effect on immune cell migration via the degradation of
the Talin protein family. Talin is a high-molecular-weight cytoskeletal protein, which links
the actin cytoskeleton to integrins at the site of focal adhesions. Calpain-mediated Talin
degradation has been shown to be the rate-limiting step during focal adhesion turnover, a
key event during cell migration [89,90]. Significantly, it has been shown that TRPC6 also
regulates podocyte cytoskeletal rearrangements and eventually leads to podocyte injury
via the activation of Calpain [38]. This signalling pathway also appears to play a role
in podocyte autophagy [91]. In addition to immune cell migration, Calpain also plays a
key role in T-cell activation by activating the nuclear factor kappa-light-chain-enhancer
of the activated B-cells (NF-kB) pathway [92,93]. Furthermore, Calpain might regulate
T-cell activation by controlling Talin expression at the site of the immunological synapse
between the antigen presenting cell and the T-cells [94–97]. Talin is known to orchestrate
the actin dynamics at the immunological synapse, a crucial process for ensuring optimal
T-cell activation [95,96]. Calpain-mediated Talin degradation at the immunological synapse
might therefore interfere with T-cell activation. Finally, Calpain regulates interleukin-17 (IL-
17) expression in T-lymphocytes and is involved in calcium-regulated NOX-independent
NET formation and the phagocytic clearance of bacteria by macrophages [65,98–101]. This
suggests that TRPC6 might exert a wide variety of interactions with the immune system
via the activation of Calpain.

6. TRPC6-Mediated Calpain Activation in the Immune System

Increased TRPC6 expression and activity, either acquired or due to genetic mutations,
have been shown to play key roles in the pathogenesis of glomerular diseases. Increased
TRPC6 expression in podocytes and, consequently, an enhanced Ca2+ influx leads to
cytoskeletal rearrangements, podocyte injury and eventually podocyte death.

6.1. TRPC6 and Immune Cell Infiltration into the Kidneys

An increasing number of studies also suggests that TRPC6 contributes to the devel-
opment of glomerular injury by mediating immune cell infiltration in the kidneys. As
discussed previously, TRPC6 plays an important role in regulating the adhesion of neu-
trophils by enhancing the activation of β2-integrins [45]. Furthermore, TRPC6 is crucial for
neutrophil migration due to its role in regulating cytoskeletal remodelling [51,52]. More-
over, TRPC6 is involved in endothelial cell contraction, which might facilitate renal immune
cell infiltration [79,80]. Based on these lines of evidence, TRPC6 might be involved in the
pathogenesis of glomerular diseases that are characterized by glomerular infiltration of
neutrophils, macrophages or T-cells, such as I/R, DN, and glomerulonephritis [102–106].
Indeed, neutrophil influx and renal damage upon I/R was reduced when bone marrow
cells from TRPC6 knockout mice were transplanted in WT mice, as compared to WT mice
transplanted with WT bone marrow cells [45]. Bone marrow cells from TRPC6 knock-
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out mice showed decreased neutrophilic integrin activation, ICAM-1 binding, neutrophil
adhesion and neutrophil influx into the kidneys upon I/R.

UUO is an experimental disease model that mimics renal fibrosis and is characterized
by the infiltration of macrophages into the kidney [107,108]. The renal infiltration of
immune cells is a direct consequence of the formation of tubulointerstitial fibrosis due
to tubular pressure overload during UUO. The non-immunological role of TRPC6 in the
pathogenesis of UUO has been shown previously as the inhibition of TRPC6 in interstitial
fibroblasts using BTP2 decreased renal fibrosis [108]. Interestingly, several studies have
also highlighted the important immunological role of TRPC6 in the pathogenesis of UUO.
For example, a systemic TRPC6 knockout reduced the infiltration of macrophages and
T-cells into the kidneys upon inducing UUO [43]. Furthermore, the TRPC6 inhibitor BI
749327 diminished the CD3+ T-cell infiltration in the kidneys after UUO [44]. In addition,
Huangkui capsule, an herbal adjuvant therapy propagated for chronic kidney disease
(CKD), reduced the influx of macrophages into the kidneys and consequently reduced the
progression of renal fibrosis via the inhibition of TRPC6 [46].

Puromycin aminonucleoside (PAN)-induced nephrosis is a widely used experimental
model that mimics glomerular injury. PAN directly damages the cytoskeleton of the
podocytes, leading to glomerular injury and proteinuria [109,110]. In line with the central
role of TRPC6 in cytoskeletal rearrangements during podocyte injury, podocyte-specific
TRPC6 expression is indeed increased during PAN-nephrosis. Moreover, the TRPC6
knockout decreases proteinuria during PAN-nephrosis [42,111–113]. Notably, PAN-induced
nephrosis is also associated with an increased glomerular influx of macrophages [42]. Also
importantly, TRPC6 inactivation using CRISPR/Cas9 resulted in a reduced glomerular
influx of macrophages as compared to WT littermates upon PAN-induced nephrosis [42].
Rats with an inactivated TRPC6 showed reduced glomerulosclerosis, podocyte foot process
effacement and glomerular basement thickening.

Kidney inflammation is a crucial factor for the development of DKD, and DKD is
characterized by the renal infiltration of the macrophages and T-cells [104]. Intriguingly, the
immunosuppressive drug Tacrolimus inhibited the renal infiltration of the macrophages
and subsequently inhibited glomerular injury in an experimental model of diabetic kidney
disease. The underlying protective mechanism was at least partially attributed to the inhi-
bition of the NFAT/TRPC6 pathway in proximal tubular cells, which eventually resulted in
decreased macrophage infiltration [114].

In summary, TRPC6 could play an important role in glomerular inflammation and
tubulointerstitial fibrosis in several types of kidney diseases that are characterized by
immune cell infiltration (Figure 3A and Table 2). Additional studies are still required to
further elucidate the underlying mechanisms that would explain how TRPC6 is involved in
immune cell infiltration. For example, by using cell-type-specific TRPC6 KO animal models,
it can be better determined whether TRPC6 expressed by immune cells or TRPC6 expressed
by e.g., endothelial cells is the main driver of immune cell infiltration in the kidneys.

Table 2. Overview of the (putative) roles of TRPC6 in immune-related kidney disorders DKD
and UUO.

(Putative) Mechanism (Putatively) Involved in the
Pathogenesis of References

Immune cell infiltration I/R, UUO, PAN-induced nephrosis, DN [42–46]

Tubulointerstitial inflammation DN, PAN-induced nephrosis, I/R [25,41,42,114–118]

Antigen presentation by podocytes I/R, DN [16,119–124]

ROS-induced overexpression of TRPC6 CKD [31,49,50,125–128]

Platelet hyperactivation and subsequent
NOX-independent NET formation LN [69,70,129–137]

CKD; chronic kidney disease DN; diabetic kidney disease, I/R; Ischemia/reperfusion injury, LN; lupus nephritis,
PAN; Puromycin aminonucleoside, UUO; unilateral ureteral obstruction.
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Figure 3. Proposed mechanisms regarding how TRPC6 is involved in immune-related kidney dis-
orders. (A) Infiltration of macrophages, neutrophils and T-cells into the kidney, e.g., via increased
integrin activation (via TRPC6 expressed by endothelial cells) and/or remodelling of the actin cy-
toskeleton (via TRPC6 expressed by immune cells) (B) Mediating tubulointerstitial inflammation by
TRPC6 expressed by tubular epithelial cells via e.g., the production of pro-inflammatory cytokines
IL-6 and IL-8 (C) T-cell activation via podocytic or glomerular endothelial cell antigen presenta-
tion. (D) ROS produced by neutrophils activate deleterious TRPC6 signalling in podocytes and
subsequent podocyte cytoskeletal rearrangements and podocyte death (E) Increased neutrophil
activation and subsequent NET formation via the NOX-independent pathway via aberrant platelet
activation. (F) NOX activation and subsequent NOX-dependent NET formation by TRPC6 results in
NET deposition on e.g., glomerular endothelial cells.

6.2. TRPC6 and Tubulointerstitial Inflammation

In addition to immune cell invasion, TRPC6 also contributes to the progression of
renal inflammation by promoting tubulointerstitial inflammation. Tubulointerstitial inflam-
mation is a crucial event for the disease progression of several renal disorders, including
DKD [138]. Enhanced glomerular TRPC6 expression is correlated with the increased se-
cretion of the pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) by
tubular epithelial cells [115,116]. Furthermore, a recent study showed that Tacrolimus could
prevent tubulointerstitial inflammation and tubulointerstitial injury in experimental DKD
via the inhibition of the NFAT-TRPC6 pathway [114]. In addition, TRPC6 expression in the
kidneys of DKD patients correlated positively with tubulointerstitial inflammation [114].
Moreover, a systemic TRPC6 knockout during PAN-induced nephrosis resulted in reduced
tubulointerstitial fibrosis, tubulointerstitial inflammation and tubular injury [41,42]. As
PAN-induced nephrosis is a glomerular injury model, reduced tubulointerstitial fibrosis
could be a secondary result of reduced glomerular injury, decreased proteinuria and tubular
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protein overload after TRPC6 KO. Finally, a systemic TRPC6 knock-out or TRPC6 inhibition
via SAR7334 prevented apoptosis of the proximal tubular cells during I/R and eventually
prevented further progression of renal inflammation [25]. The underlying mechanism
unveiled that TRPC6 normally inhibits cytoprotective autophagy in proximal tubular cells
upon I/R-related oxidative stress. The absence of TRPC6 resulted in enhanced cytopro-
tective autophagy and thereby improved the survival of tubular cells. Some controversy
remains about the role of TRPC6 in the context of tubulointerstitial inflammation; two
other studies showed that TRPC6 protects against I/R progression via the inhibition of the
necroptosis of the tubular epithelial cells [117,118]. A possible explanation for these oppos-
ing results might be that different experimental models were used to mimic I/R. TRPC6 also
plays an important role in immune-mediated kidney injuries by regulating tubulointerstitial
inflammation and the further development of kidney inflammation (Figure 3B and Table 2).
Whether this effect is mediated by the TRPC6 expressed by glomerular cells and tubuli
or by the TRPC6 expressed by immune cells can be investigated in future studies using
methods such as chimeric bone marrow transplantation models.

6.3. TRPC6 and Antigen Presentation by Podocytes

In addition to their known role in glomerular filtration, podocytes might also con-
tribute to the development of glomerular inflammation. It was elegantly proven by Gold-
wich et al. that podocytes are professional antigen-presenting cells by the expression of
MHC-II and activation of the CD4 and CD8+ cells [119]. The contribution of the podocytic
antigen presentation to the development of renal inflammation was recently demonstrated
by a podocyte-specific knockout model of the neonatal Fc receptor (FcRn). Notably, FcRn
can contribute to antigen presentation by the most efficient professional antigen-presenting
cells, i.e., dendritic cells [120]. Podocyte-specific FcRn knockout decreased interleukin-6
(IL-6) production in podocytes and reduced disease progression in a nephrotoxic serum-
induced nephritis disease model [121,122]. TRPC6 might be involved in the process of anti-
gen presentation in podocytes via STIM1. STIM1-mediated Ca2+ entry leads to increased
TRPC6 externalization and Ca2+ entry via TRPC6 [139], while STIM1-mediated Ca2+ entry
has been shown to be crucial for antigen cross-presentation in dendritic cells [123,124].
Increased expression of podocytic TRPC6, as observed during I/R and DN, might lead to
enhanced antigen presentation by podocytes, increased activation of the immune system
and the progression of renal inflammation [33,108,112,140,141] (Figure 3C and Table 2).
Future studies should elucidate if and how TRPC6 contributes to podocyte antigen pre-
sentation and, subsequently, glomerular inflammation. For example, podocyte- specific
TRPC6 KO animal models should be developed to investigate the contribution of TRPC6 to
antigen presentation in podocytes during renal inflammation.

6.4. Activation of Deleterious TRPC6 Signalling by Neutrophil-Derived ROS

Immune-cell-specific TRPC6 might also cause further kidney injury by activating the
deleterious TRPC6 signalling pathway in the podocyte. As discussed previously, the NOX
complex activation and the subsequent ROS production by neutrophils is dependent on
TRPC6 channel activity [125]. Interestingly, several studies have shown that ROS increases
the surface expression and activity of TRPC6 in podocytes [31,49,50,126]. These findings
might suggest that elevated extracellular ROS production, for example by neutrophils,
might directly lead to enhanced TRPC6 expression and activity in podocytes (Figure 3D and
Table 2). The subsequently increased deleterious TRPC6 signalling activity in podocytes
aggravates the already damaging effect of the glomerular inflammation. For example,
during CKD, which is characterized by an increased neutrophil influx in the kidneys
and chronic kidney inflammation [142,143], ROS-induced TRPC6 activation in podocytes
might play an important pathogenic role. ROS-induced TRPC6 activation might also
play an important role in the pathophysiology of DKD. For example, it is known that
hyperglycemia, as observed during DKD, results in the elevated activation of Angiotensin
II (Ang II) [144]. Increased activation of Ang II might lead to the enhanced synthesis of ROS
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via NAPDH Oxidase 4 (NOX4) activation. Elevated ROS synthesis results in an increased
TRPC6 activation and the further disease progression of DKD [49,145–147]. In this way,
TRPC6 contributes to the disease progression of DKD in addition to its abovementioned
role in immune cell infiltration.

6.5. Pro-Inflammatory Role of TRPC6 in the Context of Lupus Nephritis

TRPC6 might also play a pro-inflammatory role in glomerular diseases that are charac-
terized by the deposition of immune complexes on the GBM, e.g., systemic lupus erythe-
matosus (SLE) [148]. These immune complexes trigger inflammation and eventually lead
to tissue damage. A frequent and dangerous complication of SLE is the development of
lupus nephritis (LN) in up to 50–60% of the patients, which in many cases leads to renal
failure within a few years [149]. Intriguingly, a single nucleotide polymporphism (SNP) in
TRPC6 altered the functionality of the peripheral blood mononuclear cells (PBMC) of SLE
patients [150]. PBMC from SLE patients with this SNP in TRPC6 were more dependent on
TRPC6 for Ca2+ currents. Furthermore, interleukin-17 (IL-17) synthesis in PBMC from SLE
patients, but not from healthy subjects, relied on the TRPC6-mediated Ca2+ gradients. Al-
though the SNP in TRPC6 was primarily associated with neurological complications, these
findings highlight the involvement of TRPC6 in the pathogenesis of SLE and potentially in
LN. Future studies should determine if other SNPs in TRPC6 are also linked to LN.

Urine-derived podocytes from SLE patients were also characterized by elevated TRPC6
mRNA levels [151]. The increased TRPC6 mRNA levels correlated with both the severity
of the LN and the invasion of the CD8+ T-cells, macrophages and B-cells in the kidneys.
However, it remains uncertain whether the elevated TRPC6 expression in podocytes is
mechanistically involved in the immune pathogenesis of LN, as it can also be elevated due
to the activation of a final common pathway in the podocyte injury. It is important to note
that neutrophils from SLE patients are characterized by enhanced ROS production [152].
As discussed previously, enhanced neutrophil-derived ROS production might lead to an in-
creased podocyte-specific TRPC6 expression, deleterious TRPC6 signalling and, eventually,
podocyte death.

TRPC6 might also be functionally involved in the pathogenesis of LN at the levels of
platelets. CF patients are characterized by hyperactive platelets, which lead to excessive
neutrophil activation, NOX-independent NET formation and lung inflammation [153,154].
The TRPC6 knockout prevents platelet hyperactivation, NET formation and the progression
of lung inflammation [69,129]. Platelets are known to be potent inducers of NET formation
via the NOX-independent pathway, thereby suggesting that TRPC6 stimulates NET for-
mation via the NOX-independent pathway [155,156]. However, as TRPC6 is also linked to
NOX-dependent NET formation the effect of TRPC6 KO on reduced NET formation could
be caused via both the NOX-dependent and the NOX-independent pathways [48].

Notably, platelets also play a key role during the pathogenesis of LN, and SLE pa-
tients are also characterized by hyperactive platelets and high levels of NOX-independent
NET formation [130,131]. Furthermore, glomerular NET deposition correlates with the
disease progression of LN [132], while the TRPC6 activity is fundamental for platelet
activation [133–137]. Future studies should elucidate whether TRPC6 is responsible for
platelet hyperactivation in the context of SLE, increased neutrophil activation, increased
NET formation and the disease progression of LN using cell-type specific TRPC6 knockout
animal models.

Most studies suggest that the role of TRPC6 in the context of immune-mediated kidney
diseases is a pathogenic one. However, one study showed that acute activation of TRPC6 in
the podocyte protected against the development of acute complement-mediated glomerular
disease [157]. Mice overexpressing TRPC6 in podocytes demonstrated decreased podocyte
foot effacement and proteinuria as compared to systemic TRPC6 knockout mice in nephro-
toxic serum-induced nephritis. These results might suggest that short-term TRPC6 activa-
tion in podocytes is important for regulating a controlled immune response and preventing
further organ damage. By contrast, chronic TRPC6 activation leads to an excessive inflam-
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matory response, the activation of deleterious TRPC6 signalling and the progression of
podocyte injury.

A similar controversial role of TRPC6-mediated Ca2+ entry in the context of immune-
related glomerular diseases has been described for type 1 diabetes. In one experimental
model of type 1 diabetes performed on Akita mice, TRPC6 KO resulted in increased
insulin resistance and subsequently caused increased glomerular injury and disease pro-
gression [158]. By contrast, in a different experimental model for type 1 diabetes performed
on, Dahl-sensitive rats, the KO of the NOX4 resulted in a reduced Ca2+-influx and decreased
disease progression [147]. A potential explanation regarding the context-specific role of
TRPC6 per disease model was given by a study showing that the NOX expression was
increased in mesangial cells and podocytes in DKD [159–161]. In sharp contrast, the NOX
expression was decreased in the proximal tubular cells in experimental models of chronic
kidney disease [162].

7. Concluding Remarks

In conclusion, TRPC6 is known to be an important regulator of immune cell function.
In addition, podocyte TRPC6 is well-known as being involved in podocyte injuries and
glomerular disease by mediating deleterious intracellular signaling pathways and podocyte
cytoskeletal rearrangements. In this review, we have highlighted how TRPC6 can also
function as a key pathogenic mediator in inflammatory kidney diseases (Figure 3) via at
least the following six potential mechanisms: (1) regulation of the immune cell infiltration of
the kidneys, (2) mediation of tubulointerstitial inflammation, (3) activation of the immune
cells secondary to antigen presentation by podocytes, (4) induction of ROS-activated
deleterious TRPC6 signaling in podocytes, (5) stimulation of platelet hyperactivation and
subsequent NET formation via the NOX-independent pathway and (6) NET formation
via the NOX-dependent pathway (Figure 3 and Table 2). A better understanding of the
role of TRPC6 in inflammatory kidney diseases might open new therapeutic avenues for
the treatment of immune-mediated kidney injury by the pharmacological modulation of
TRPC6 activity. Notably, the first clinical trial using a TRPC6 inhibitor (i.e., BI 764198) for
the treatment of FSGS is currently ongoing [163]. It would be highly interesting to learn
from this study if the (potential) therapeutic effect of BI 764198 on the development of FSGS
is mediated primarily via a direct effect on the podocyte or via the therapeutic inhibition of
the immune system.
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