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Abstract: Liver cancer is caused by complex interactions among genetic factors, viral infection, alcohol
abuse, and metabolic diseases. We conducted a genome-wide association study and polygenic risk
score (PRS) model in Taiwan, employing a nonspecific etiology approach, to identify genetic risk
factors for hepatocellular carcinoma (HCC). Our analysis of 2836 HCC cases and 134,549 controls
revealed 13 novel associated loci such as the FAM66C gene, noncoding genes, liver-fibrosis-related
genes, metabolism-related genes, and HCC-related pathway genes. We incorporated the results from
the UK Biobank and Japanese database into our study for meta-analysis to validate our findings.
We also identified specific subtypes of the major histocompatibility complex that influence both
viral infection and HCC progression. Using this data, we developed a PRS to predict HCC risk
in the general population, patients with HCC, and HCC-affected families. The PRS demonstrated
higher risk scores in families with multiple HCCs and other cancer cases. This study presents a novel
approach to HCC risk analysis, identifies seven new genes associated with HCC development, and
introduces a reproducible PRS model for risk assessment.

Keywords: biobank; chronic hepatitis; meta-analysis; polygenic risk score; PheWAS

1. Introduction

Liver cancer is the fifth most common cancer and the second common cause of can-
cer deaths worldwide, and hepatocellular carcinoma (HCC) is the predominant type [1].
In addition to genetic factors, several other factors increase the risk of HCC, including
chronic viral infection, alcohol abuse, diabetes mellitus (DM), obesity, metabolic diseases,
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hemochromatosis, and autoimmune hepatitis [1,2]. More than 70% of patients with HCC
in Asia have a chronic hepatitis B virus (HBV) infection [2,3]. The lifetime risk of HCC
is approximately 10–30% in individuals with chronic HBV infection [4]. The incidence of
noninfectious HCC is increasing in developed countries due to the rising prevalence of
obesity, DM, and metabolic diseases [5,6]. These risk factors lead to liver injury and pro-
gressive inflammation during which liver cells undergo cycles of necrosis and regeneration
and, thus, develop somatic mutations and chromosomal instability [7,8]. Inherited liver
disorders causing chronic inflammation, fibrosis, and cirrhosis can lead to the development
of liver cancer. Because of the rarity and diversity of these disorders, the relative risk of
HCC in these patients and the age at which tumors typically arise cannot be accurately
estimated [9]. Approximately 3–5% of HBV-related HCCs demonstrate familial HCC aggre-
gation that may result from genes with moderate or high penetrance in a population [10].
Multifactorial inheritance can increase the risk of HCC in those with a family history of
liver cancer and lead to an earlier age at onset [11]. By contrast, patients with sporadic
cancer typically have a later age at onset, likely due to interactions between hereditary and
nonhereditary causes.

A genome-wide association study (GWAS) is a powerful method to explore genetic
associations in HCC. Many GWASs have identified genetic factors associated with the de-
velopment of HCC and numerous single-nucleotide variations (SNVs) in different genomic
regions with potential importance in HCC susceptibility, including SNVs in the chromoso-
mal regions 1p36.22, 2q32.3, 6p21.32, 6q15.21, 7q21.13, 8p12, 15q13.3, and 21q21.3 [12–14].
These studies have provided crucial insights into the genetic complexity of HCC. Previous
studies have focused only on one specific etiology of HCC, especially viral-infection-related
HCC, to determine genetic factors associated with HCC development. These studies did not
explore complex interactions among genetic factors, environmental factors, and personal
lifestyle changes in developing countries.

The implementation of various measures to prevent HBV- and hepatitis C virus (HCV)-
related HCC since 1984 in Taiwan and the adoption of more aggressive approaches for
managing HBV and HCV infection have resulted in a decline in the number of HBV carriers,
thus reducing the prevalence of HBV-related HCC in the young population [15,16]. Under
the national health program, Chinese herbs are prescribed for the treatment of various
diseases, including chronic hepatitis, and these herbs may contain HCC-related aristolochic
acid or liver toxins [17,18]. In addition, the booming economy has resulted in an increase in
the prevalence of DM, metabolic disorders, and obesity [13,19]. Thus, due to these complex
interactions, the genomic susceptibility of HCC in Taiwan may differ from other areas that
were mainly caused by HBV, HCV, nonalcoholic fatty liver disease (NAFLD), or alcoholic
liver disease.

We performed a GWAS by including large sample sizes of patients with HCC (n = 2836)
and controls (n = 134,549) to identify novel loci for HCC and subsequently used them to
conduct a polygenic risk analysis. Our results revealed many new HCC-associated loci and
changes in the polygenic risk score (PRS) in the familial cancer group. The findings of this
study enhance our understanding regarding the genetic susceptibility and development
of HCC and provide new targets that can be considered for the prevention and treatment
of HCC.

2. Results
2.1. Study Flowchart

Figure 1 presents the study design. After quality control, we obtained 508,004 variants
for the 173,135 CMUH samples and 686,439 variants for the 88,347 TWB samples. We
combined the genetic data of the two groups and then used Beagle 5.2 to impute more
SNVs. We obtained 15,358,452 variants and 261,482 samples. After performing quality
control based on the aforementioned parameters, we finally included 13,692,222 variants
and 258,066 samples in the following analysis.
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Figure 1. Flowchart of the construction of the GWAS and the calculation of PRS in Taiwanese pa-
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PLINK software suite, allowing replication of our analytic outcomes. The “geno” option assesses 
the missing rate of variants, while “mind” evaluates the missing rate among participants. The “hwe” 
command checks for Hardy–Weinberg equilibrium compliance. “maf” filters for minor allele fre-
quency, and “pca” executes principal component analysis. “het” analyzes the heterozygote ratio. 
Following this quality control sequence, we employed Beagle 5.2 for imputation analysis. Alleles 
with a dosage r-squared (DR2) of less than or equal to 0.3 and a genotype posterior probability (GP) 
of less than 0.9 are excluded from subsequent analysis. 

Figure 1. Flowchart of the construction of the GWAS and the calculation of PRS in Taiwanese patients
with HCC. Commands prefixed with double hyphens signify instructions executed via the PLINK
software suite, allowing replication of our analytic outcomes. The “geno” option assesses the missing
rate of variants, while “mind” evaluates the missing rate among participants. The “hwe” command
checks for Hardy–Weinberg equilibrium compliance. “maf” filters for minor allele frequency, and
“pca” executes principal component analysis. “het” analyzes the heterozygote ratio. Following this
quality control sequence, we employed Beagle 5.2 for imputation analysis. Alleles with a dosage
r-squared (DR2) of less than or equal to 0.3 and a genotype posterior probability (GP) of less than
0.9 are excluded from subsequent analysis.
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2.2. Demographic Characteristics of Patients

We used EMRs to select patients with HCC and controls. We used the International
Classification of Diseases, Ninth Edition, Clinical Modification and International Classification of
Diseases, Tenth Edition, Clinical Modification codes (155.0, 155.2, 197.7, C22.8, C22.9, C7B.02,
V10.07, and Z85.05) associated with HCC to identify the case group. Individuals without
a diagnosis of any cancer in our EMRs were included in the control group. We included
2836 patients in the case group and 134,549 individuals in the control group. The proportion
of men (65.37%) was higher in the case group than in the control group. The average
ages of the case and control groups were 65.5 (standard deviation [SD] = ±12.6) and
51.4 (SD = ±17.8) years, respectively. The average BMI values of the case and control
groups were 27.2 (SD = ±5.4) and 25 (SD = ±4.7), respectively. Significant differences in
sex, age, and BMI (Table 1) were noted between the groups. In terms of comorbidities,
the prevalence of cirrhosis (41.78%) and diabetes (34.52%) was significantly higher in the
HCC group than in the control group. In terms of infection status, 118 (4.16%) patients
were infected with both HCV and HBV, 1239 (43.69%) patients were infected with HBV,
707 (24.93%) patients were infected with HCV, and 761 (26.83%) patients were not infected
with either HCV or HBV (Table 1). The rate of HBV or HCV infection was significantly
higher in the case group.

Table 1. Clinical characteristics of case and control in discovery GWAS cohort.

Variables Case Control p-Value c

Demography
Sex male, n (%) 1854 (65.37%) 54,622 (40.60%) 3.9 × 10−155

female, n (%) 970 (34.20%) 79234 (58.89%)
Unknown, n (%) 12 (0.42%) 693 (0.52%)

Age year, mean (SD) 65.5 ± 12.6 51.4 ± 17.8 b 0.0 × 10+00

BMI
kg/m2, mean (SD) 27.2 ± 5.4 25.0 ± 4.7 4.6 × 10−118

Unknown, n (%) 160 (5.64%) 19,104 (14.20%)
Liver Disease

Cirrhosis a n (%) 1185 (41.78%) 93 (0.07%)
0.0 × 10+00

Unknown, n (%) 1651 (58.22%) 134,456 (99.93%)

Virus
Infection

HBVsAg(+), n (%) 1239 (43.69%) 8503 (6.31%) 0.0 × 10+00

HCV(+), n (%) 707 (24.93%) 2118 (1.57%) 0.0 × 10+00

Unknown, n (%) 246 (8.67%) 44,558 (33.12%)
HBVsAg(+) HCV(+), n (%) d 118 (4.16%) 211 (0.16%)
HBVsAg(−) HCV(−), n (%) 761 (26.83%) 75,528 (56.13%)

Metabolism

Diabetes

Type II diabetes, n (%) 979 (34.52%) 12461 (9.26%) 0.0 × 10+00

HBVsAg(+), n (%) 139 (4.90%) 285 (0.21%)
HCV(+), n (%) 294 (10.37%) 205 (0.15%)

HBVsAg(+) HCV(+), n (%) 22 (0.78%) 5 (0.00%)
diabetes (others), n (%) 0 (0.00%) 246 (0.18%)

Non-diabetes, n (%) 1697 (59.84%) 102,747 (76.36%)
Unknown, n (%) 160 (5.64%) 19,095 (14.19%)

Total 2836 134,549

The table show detail number of case and control group in demography, chronic liver and metabolism dis-
eases. The gray color represents the subgroup of above condition (considering two conditions).Abbreviation:
SD, Standard deviation; HBVsAg, Hepatitis B virus antigen; HCV, Hepatitis C virus. a Cirrhosis positive (cirrhosis
had been diagnosised in CMU hospital electronic medical record system). b The Age < 18 were removed from our
study. c Statistical significance of the difference between case and control group were calculated by chi-square
test in the category or student t-test in digit, respectively. d The sample size considered HBV and HCV together,
which sample included part of the HBV and HCV group.

2.3. GWAS for Taiwanese Patients with HCC without a Specified Etiology

A whole-genome scan was performed for 2836 cases and 134,549 controls, and the
heritability variance of the cases determined using genome-wide complex trait analysis and
genome-based restricted maximum likelihood tools was 0.1139 [20]. The findings of the
Manhattan plot indicated that 35 SNVs located on different chromosomes were significantly
associated with HCC, and the most significant SNVs were located on chromosome 6
(Figure 2A). In addition, we performed a meta-analysis by using the data of the BBJ and
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UK Biobank participants and determined a significant difference between variants on
chromosome 19 and 22, which demonstrated a weak association with HCC in our discovery
GWAS study (Figure 2B) [21,22]. Furthermore, we subclassified these SNVs into four
groups. Group 1 contained 13 novel SNPs (Table 2) with new loci that were identified
only in this study, and the region plot of these new loci is presented in Figure S1. Group
2 consisted of SNVs that did not exhibit a significant association with HCC in the BBJ or
UK Biobank but revealed a significant association in our meta-analysis (Table S1). Group 3
consisted of SNVs that did not exhibit a significant association with HCC in our study but
demonstrated a significant association with HCC in other meta-analyses (Table S2). Group
4 consisted of SNVs that exhibited a significant association with HCC in our study and
previous studies (Table S3).
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Figure 2. Results of the GWAS for Taiwanese patients with HCC. (A) Manhattan plot adjusted for sex
and age and QQ-plot. (B) Manhattan plot of the meta-analysis study including BBJ and UK Biobank
summary statistics and QQ-plot.

For group 1, seven of the thirteen novel-loci-related coding or noncoding genes, namely
F11/F11-AS1, PFKFB3, PRMT8, FAM66C, NAV2/NAV2-AS1, FRMD4A, and KIAA0232, have
been demonstrated to be correlated with the development of HCC or other cancers in many
studies. Noncoding transcripts related to rs148610742 (F11-AS1) and rs150098717 (FAM66C)
exhibited a function of decoy for miRNA regulation involving the development of HCC or
other cancers [23–25]. The rs148610742-related gene F11 exhibiting C8A/B complement
binding was reported to be a prognostic predictor in HBV-infection-related HCC [26]. Genes
related to rs77404202 (NAV2) and rs17155112 (FRMD4A) are involved in the Wnt/beta-
catenin pathway for NAV2 and the Hippo pathway for FRMD4A, respectively, which are
HCC-development-related pathways [27,28]. The rs77404202 (NAV2-AS1) is a noncoding
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transcript that suppresses gene expression by binding complementary mRNA and inducing
double-strand RNA degradation, such as in NAV2 and DBX1. Genes related to rs117719091
(PFKFB3) and rs140233124 (KIAA0232) play crucial roles in cancer metabolism; PFKFB3 in-
duces glycolysis and activates hepatic stellate cells and then promotes liver fibrosis [29,30],
and KIAA0232 stimulates insulin secretion to regulate cancer metabolism [31,32]. The gene
related to rs144225287 (PRMT8) encodes a protein arginine methyltransferase that can
enhance cancer stem-cell function and cell proliferation [33,34]. The functions of the re-
maining six (rs187199523, rs144285059, rs6140450, rs74333160, rs80115676, and rs118180127)
of the thirteen novel loci in HCC remain unknown. The rs187199523 locus has a binding
site for the transcription factor ZKSCAN5 and is located on a related gene (RP11-563D10.1)
intron, and RP11-563D10.1 is a long noncoding RNA (lncRNA), which might be associ-
ated with cholangiocarcinoma [35]. The rs144285059 locus is located on the LINC02511
intron, and LINC02511 can modify the RNA of N6-methyladenosine-related lncRNA and,
thus, predict the prognosis of ovarian cancer [36]. The rs74333160 locus has binding sites
for various transcription factors, including ZNF354A and HNF1A/B, and the variant
is located downstream of AL355836.4. The rs80115676 locus has binding sites for vari-
ous transcription factors, including STAT2 and IRF1, and RPL13P12 is the nearest gene.
Rs6140450 is located on the Isl1 transcription factor binding site, and RP1-209B9.2 is the
nearest gene, which is a HSPBAP1 pseudogene. For rs118180127, we discovered a tran-
scription factor binding site of ZNF282, which is located 4 bp downstream of the variant,
and CTD-3023L14.3 is the nearest gene (Table 2). We used expression-quantitative trait loci
(eQTL: GTEx_Analysis_v8 of liver tissue) to determine the effect of these loci on nearby
genes, and the results revealed no eQTL for the six novel loci. Additionally, we conducted
validation of the newly discovered 13 single nucleotide polymorphisms (SNPs) using an
independent cohort (Case: 977; Control: 142,515) (Figure S2). Among these SNPs, only one
(rs144285059) exhibited a statistically significant difference (Table S4, p = 0.01009). In order
to gain a better understanding of the disease associations of the 13 novel SNPs in our insti-
tution, we employed the pheWAS approach to explore the diseases associated with these
SNPs in our patient population (Figure S3). Surprisingly, the pheWAS analysis revealed
that 8 SNPs showed associations with various types of cancer, with a direct correlation
between rs187199523 and hepatocellular carcinoma (HCC). For a detailed overview of
the findings, please refer to Supplementary Table S5, where we present the diseases that
achieved statistical significance after Bonferroni correction.

Table 2. Summary statistics of 13 significant novel variants were found in discovery GWAS.

Marker
Variant MAF Discovery

Nearest Gene
Chr Position RA/EA PAF a

(%) Case (AF, %) Control (AF,
%) OR (95% CI) p-Value b

rs187199523 1 194027489 A/T 2.48 5672 (4.60) 283,510 (3.05) 1.49 (1.30–1.69) 2.17 × 10−9 RP11-563D10.1
(ENSG00000227240) *

rs140233124 4 6834347 A/- 6.05 5664 (7.20) 257,060 (4.91) 1.40 (1.26–1.55) 4.34×10−10 KIAA0232 *
rs144285059 4 136895711 -/A 4.29 5672 (4.76) 272,166 (3.19) 1.44 (1.27–1.64) 1.99 × 10−8 LINC02511
rs148610742 4 186288789 C/T 3.22 5668 (3.42) 276,154 (2.12) 1.54 (1.33–1.79) 1.43 × 10−8 F11 */F11-AS1 *

rs118180127 8 8513430 T/A 5.31 4894 (1.94) 260,472 (3.90) 0.55 (0.44–0.67) 7.30 × 10−9 CTD-3023L14.3
(ENSG00000253343)

rs117719091 10 6227313 C/T 4.05 4932 (0.85) 264,072 (2.66) 0.40 (0.29–0.54) 3.02 × 10−9 PFKFB3 *
rs17155112 10 14357172 G/A 2.77 5526 (2.01) 273,888 (1.22) 1.74 (1.43–2.12) 3.02 × 10−8 FRMD4A *
rs77404202 11 20117743 C/T 3.87 5144 (1.32) 268,176 (2.91) 0.50 (0.39–0.64) 2.46 × 10−8 NAV2 */NAV2-AS1
rs144225287 12 3568611 G/- 4.01 5668 (5.51) 269,502 (3.59) 1.46 (1.29–1.64) 5.27 × 10−10 PRMT8
rs150098717 12 8198462 C/T 3.43 5040 (0.83) 266,258 (2.25) 0.41 (0.30–0.56) 1.81 × 10−8 FAM66C/DEFB109F

rs74333160 14 101184577 T/G 5.21 5664 (6.94) 257,812 (4.51) 1.47 (1.32–1.64) 1.42 × 10−12 AL355836.4
(ENSG00000288245)

rs80115676 17 17375355 A/G 6.25 5014 (1.76) 264,032 (3.61) 0.53 (0.43–0.66) 6.34 × 10−9 RPL13P12 *

rs6140450 20 7873320 T/C 5.11 5016 (1.42) 264,980 (3.14) 0.51 (0.40–0.65) 2.79 × 10−8 RP1-209B9.2
(ENSG00000277315)

Abbreviation: Chr, chromosome; RA, reference allele; EA, effect allele; AF, allele frequency; PAF, publish allele
frequency; OR, odds ratio; CI, confidence interval; MA, meta-analysis; MAF, minor allele frequency. a effect allele
frequency in East Asian of gnomAD v3.1.2. b p-value was adjusted by the sex, age. * It is mean that the gene is
expressed in normal liver tissue from GTEx Analysis Release V8.

To evaluate the role of the 13 novel loci in the development of HCC, we analyzed
differential gene expression in 34 noncancerous tissues and 71 HCC tissues by using edgeR.
The results indicated that KIAA0232 (p = 1.85 × 10−8) and LINC02511 (p = 4.4 × 10−4) were
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significantly overexpressed and F11 (p = 4.14 × 10−3), FRMD4A (p = 2 × 10−2), and PFKFB3
(p = 1.06 × 10−9) were significantly under-expressed in the HCC tissues (Figure 3A–E).
Moreover, we determined the clinical significance of these loci and observed that F11-AS1
expression was correlated with poor survival in the patients with HCC (p = 0.034; Figure 3F;
Table S6.1,2).
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***: 10−4 < p ≤ 10−3; ****: p ≤ 10−4

We also used TCGA [37] and HCCDB (a database of hepatocellular carcinoma expres-
sion atlas) [38] to confirm our results. We noted that the differentially expressed genes
exhibited similar expression trends in other databases (Figure S2). The expression of the
rs148610742-related F11/F11-AS1 gene was downregulated in TCGA and HCCDB, and
the mutation rate of the F11 gene was 5.2% (19/360) in TCGA. The downregulation of
F11-AS1 and F11 was correlated with the survival of the patients with HCC in TCGA. The
expression of the rs187199523-related LINC02511 gene was noted in HCC tissues but not in
noncancerous tissues in TCGA and normal liver tissues in the GTEx cohort. In addition, we
observed that the rs187199523-related gene RP11-563D10.1 was downregulated in the HCC
tissues of the TCGA cohort. The rs77404202-related NAV2 gene was upregulated in the
HCC tissues of the TCGA cohort. The mutation rate of the NAV2 gene was 8.6% (31/360) in
TCGA–Liver Hepatocellular Carcinoma (LIHC) data, and the NAV2 gene was reported to
be associated with hepatitis but not HCC [39]. No mutations or expressions were observed
in LINC02511, F11-AS1, NAV2-AS1, DEFB109F, and RPL13P12 genes in the LIHC data in
the TCGA (Figure S5).

For group 2, the loci-related genes HLA-DPA2, HLA-DQA2, HLA-DQB1, HLA-DQB2,
HLA-DQB3, and COL11A2P1, were determined to be associated with HCC in the Taiwanese
patients enrolled in this study but not in the UK Biobank and BBJ participants. We used
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the summary statistics of these studies and our data to perform a meta-analysis and found
a significant association between these SNVs and HCC, indicating that these SNVs are
unique for Taiwanese patients with HCC (Table S1).

For group 3, the loci-related genes IFNL3, IFNL4, HLA-DPA1, and HLA-DPB1 have
been demonstrated to be associated with HCC in the UK Biobank and BBJ participants;
however, no such association was observed in this study. We used the summary statistics
of these studies and our data to perform a meta-analysis. The results revealed a decreas-
ing association power between these SNVs and HCC, indicating that these SNVs are
weakly associated with HCC in the Taiwanese population (Table S2). We observed that the
p values of the 71 SNVs were located at a significant border range (5 × 10−8 < p < 1 × 10−5)
and found 25 SNVs that did not exhibit a significant association with HCC in this study,
although these loci have been identified to play a crucial role in the development of HCC
in other studies.

For group 4, our study and previous studies have reported an association with HCC,
and the results revealed that most loci of this group were HLA-related SNVs. These HLA-
related SNVs belonged to HLA-DQB2 and HLA-DPB1 (Table S3). After combining our data
with those of other studies to perform a meta-analysis, we identified that several SNVs for
HLA-DQ and COL11A2P1 were also associated with HCC in Taiwanese participants (Table
S1), and some subtypes of IFNL3 and IFNL4 exhibited a stronger correlation with HCC in
Japanese participants (Table S2).

2.4. Detailed Analysis of HLA Loci

Because HLA plays a crucial role in the development of HCC, we used imputation
methods to subtype MHC class I and II to explore their association with HCC in the Tai-
wanese population. The allelic genotype of HLA genes was predicted using the HIBAG
R package [40]. For MHC class I, the results revealed A*24:02 (p = 1.12 × 10−7, OR = 0.89,
95% CI = 0.85–0.93) and A*30:01 (p = 1.56 × 10−7, OR = 1.5, 95% CI = 1.28–1.76) for
HBV infection (Table S7.2), B*54:01 (p = 1.27 × 10−4, OR = 0.72, 95% CI = 0.61–0.85) for
HCC (Table S7.4), B*40:01 (p = 6.09 × 10−7, OR = 0.9, 95% CI = 0.86–0.94) and B*58:01
(p = 2.98 × 10−17, OR = 1.27, 95% CI = 1.2–1.34) for HBV infection (Table S7.5), B*58:01
(p = 1.45 × 10−3, OR = 0.89, 95% CI = 0.82–0.96) for HCV infection (Table S7.6), C*03:02
(p = 1.52 × 10−16, OR = 1.24, 95% CI = 1.18–1.31) and C*07:02 (p = 2.53 × 10−6, OR = 0.91,
95% CI = 0.88–0.95) for HBV infection (Table S7.8), and C*0302 (p = 9.32 × 10−5, OR = 0.87,
95% CI = 0.82−0.93) and C*07:04 (p = 9.32 × 10−3, OR = 1.72, 95% CI = 1.12–2.78) for HCV
infection (Table S7.9). For MHC class II, DPA1, DPB1, DQA1, DQB1, and DRB1 were associ-
ated with the development of HBV infection, HCV infection, or HCC, including DPA1*01:03
(p = 9.95 × 10−5, OR = 1.13, 95% CI = 1.06–1.2) and DPA1*02:02 (p = 8.18 × 10−5, OR = 0.9,
95% CI = 0.85–0.95) for HCC (Table S7.10), DPA1*01:03 (p = 1.30 × 10−86, OR = 1.4, 95%
CI = 1.35–1.45) and DPA1*02:02 (p = 2.24 × 10−88, OR = 0.73, 95% CI = 0.71–0.76) for HBV
infection (Table S7.11), and DPA1*01:03 (p = 1.29 × 10−2, OR = 0.94, 95% CI = 0.9–0.99) and
DPA1*02:02 (p = 4.52 × 10−2, OR = 1.04, 95% CI = 1–1.09) for HCV infection (Table S7.11).
The top-10 risk or protection subtypes of MHC class I and II are listed in Table 3.

2.5. PRS Analysis of HCC in the Taiwanese Population

We divided GWAS data into three groups before the analysis: base, target, and val-
idation. These three groups were considered to be independent samples. We used data
from the base group to calculate summary statistics and then built a model using data from
the target group. Finally, we used data from the validation group to verify the accuracy
of the model (Figure 4 and Table S8.1,2). The PRS distribution and statistical test results
of the target group are presented in Figure 4A, and the PRS of the patients with HCC was
significantly higher than that of the controls (Figure 4A, left, and Figure 4A, right). The
odds ratio of PRS stratification with percentile is depicted in Figure 4B, and the results
revealed an increase in the case-to-control ratio with progressively higher decile categories.
Next, we confirmed the results using data from the validation group (Figure 4C). The
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PRS of the patients with HCC was higher than that of the controls (Figure 4C, left), and a
significant difference in the PRS was noted between the patients with HCC and controls
in the validation set (Figure 4C, right). We plotted the AUC to evaluate the performance
of the PRS and determined that the PRS exhibited only a slight improvement in risk pre-
diction. However, the addition of age, sex, BMI, albumin, HBV surface antigen, and HCV
antibody as covariates considerably improved the performance of the prediction of HCC
risk (Figure 4D). We also used the AUC to evaluate the performance of PRS with 20%,
15%, 10%, and 5% distribution, and the results indicated that a higher distribution of PRS
exhibited better performance in terms of HCC-risk prediction (Figure S6, Table S8.3). The
forest plot of the odds ratios of covariates in the combined model demonstrated that the
PRS had a higher odds ratio than other factors (Figure 4E). We predicted the risk of HCC
based on the percentile of PRS and age stratification (Figure 4F). We observed that the
risk of HCC progressively increased with age, although the patients had a similar PRS.
In addition, we performed PheWAS analysis on the results of the polygenic risk score
(PRS). We categorized the samples into two groups based on the PRS, with one group
having scores greater than 90% and the other group having scores less than 10%. From the
PheWAS results, we observed significant differences between patients with high PRS for
hepatocellular carcinoma (HCC) and those with low PRS in terms of cancer of the liver
and intrahepatic bile duct, viral hepatitis B, and viral hepatitis (Figure S7, Table S9). This
indicates that our PRS is able to identify individuals at higher risk for these diseases. The
findings indicated that PRS only considers genomic information, but a disease onset is
a complex condition that is affected by many factors including environmental changes,
lifestyle, sex, and age.

Table 3. The top 10 risk and protect of HLA subtype association with different traits.

Trait
Risk Protect

HLA-Type OR (95% CI) p-Value a HLA-Type OR (95% CI) p-Value a

HCC

DQA1*04:01 1.71 (1.22–2.46) 3.30 × 10−3 B*54:01 0.72 (0.61–0.85) 4.19 × 10−3

DQB1*04:02 1.69 (1.21–2.45) 4.33 × 10−3 DRB1*14:54 0.72 (0.62–0.84) 2.22 × 10−4

DRB1*06:09 1.53 (1.21–1.96) 5.75 × 10−4 DQA1*06:01 0.74 (0.68–0.80) 1.16 × 10−10

DRB1*13:02 1.52 (1.21–1.94) 8.28 × 10−4 DRB1*12:01 0.75 (0.65–0.87) 9.88 × 10−4

DPB1*04:02 1.41 (1.05–1.92) 9.03 × 10−2 DRB1*12:02 0.78 (0.71–0.85) 7.90 × 10−7

DQB1*06:02 1.38 (1.17–1.63) 4.08 × 10−4 B*38:02 0.81 (0.70–0.94) 8.79 × 10−2

DQB1*03:02 1.35 (1.21–1.51) 4.43 × 10−7 DQB1*03:01 0.81 (0.76–0.86) 4.34 × 10−10

DQA1*03:01 1.29 (1.14–1.47) 2.66 × 10−4 DQA1*01:04 0.85 (0.77–0.95) 8.45 × 10−3

DRB1*15:01 1.24 (1.10–1.40) 9.61 × 10−4 DPB1*05:01 0.87 (0.82–0.92) 5.21 × 10−5

DQA1*01:02 1.17 (1.08–1.26) 3.35 × 10−4

HBV infection

DRB1*13:01 5.45 (3.14–10.35) 2.21 × 10−14 DPB1*05:01 0.69 (0.67–0.72) 1.56 × 10−102

DQB1*06:03 4.60 (2.53–9.34) 9.95 × 10−10 DRB1*14:54 0.70 (0.64–0.76) 1.48 × 10−16

DRB1*13:02 3.48 (2.93–4.17) 1.12 × 10−63 DQA1*06:01 0.73 (0.69–0.76) 5.18 × 10−38

DQB1*06:09 3.45 (2.90–4.14) 1.30 × 10−62 DPA1*02:02 0.73 (0.71–0.76) 8.94 × 10−88

B*44:03 2.33 (1.46–3.95) 6.49 × 10−4 DPB1*19:01 0.76 (0.67–0.86) 2.09 × 10−05

DPB1*09:01 2.09 (1.72–2.56) 8.39 × 10−16 DQB1*03:01 0.76 (0.74–0.79) 2.22 × 10−54

DPB1*17:01 1.90 (1.54–2.37) 1.45 × 10−10 DPB1*13:01 0.77 (0.72–0.82) 3.61 × 10−15

DQB1*03:02 1.89 (1.77–2.03) 6.72 × 10−85 DRB1*12:02 0.78 (0.74–0.82) 5.66 × 10−23

DRB1*01:01 1.84 (1.37–2.52) 3.11 × 10−5 DQA1*01:04 0.81 (0.76–0.85) 6.36 × 10−14

DQA1*03:01 1.80 (1.67–1.95) 2.22 × 10−57 DQB1*03:03 0.82 (0.79–0.86) 7.67 × 10−22

HCV infection

C*07:04 1.72 (1.12–2.78) 5.90 × 10−2 DPB1*104:01 0.48 (0.27–0.91) 8.26 × 10−2

C*08:01 1.14 (1.03–1.26) 7.51 × 10−2 DRB1*07:01 0.81 (0.70–0.95) 7.87 × 10−2

DPB1*13:01 1.13 (1.02–1.25) 7.41 × 10−2 DRB1*13:02 0.82 (0.71–0.95) 5.97 × 10−2

DQB1*03:01 1.10 (1.04–1.16) 2.12 × 10−3 DQB1*06:09 0.83 (0.72–0.97) 7.61 × 10−2

DPB1*05:01 1.06 (1.01–1.12) 7.73 × 10−2 DRB1*03:01 0.86 (0.79–0.93) 4.01 × 10−3

DPA1*02:02 1.04 (1.00–1.09) 9.04 × 10−2 DQB1*02:01 0.87 (0.81–0.94) 4.22 × 10−3

C*03:02 0.87 (0.82–0.93) 1.77 × 10−3

DQA1*05:01 0.88 (0.82–0.95) 2.32 × 10−2

B*58:01 0.89 (0.82–0.96) 4.78 × 10−2

DPB1*02:02 0.90 (0.82–0.99) 9.99 × 10−2

a The p-value had been adjusted with fdr-bh, and the significance threshold was 0.1.
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Figure 4. Results of PRS analysis: (A) The PRS distribution and statistical results of the target group.
Left, the PRS distribution (the X axis: normalized PRS, Y axis: density); right, the statistical results for
HCC cases and controls. (B) The odds ratio of PRS stratification with percentile. The 40–50 percentile
was used as a reference to compare other groups to calculate the odds ratio, and 95% CI is shown as a
line. (C) The PRS distribution and statistical results of the validate group. Left, the PRS distribution
(the X axis: normalized PRS; Y axis: density); right, the statistical results for HCC cases and controls.
(D) The ROC curve of the validate group. PRS only: only PRS was used in modeling; combined:
using PRS, demography (age, sex, and BMI), and bioclinical data (Albumin, HBV surface antigen,
and HCV antibody) in model building. (E) The forest plot of the odds ratios of covariants in the
combined model with 95% CI. (F) Predicted HCC cancer risk by quintile stratification of HCC cancer
PRS with increase in age. *: 0.01 < p ≤ 0.05; ****: p ≤ 10−4. “N” is the number of samples, and “p” is
the statistical value (Odds ratio, 95% CI, p-value).

2.6. PRS Analysis of the Family Members of Taiwanese Patients with HCC

To evaluate the effect of PRS on healthy individuals who have family members without
cancer or with HCC or other cancer. The PRS distribution and statistical test results are
shown in Figure 5 and Table S10. The results revealed that the families with one member
with other cancer (n = 3980) had the lowest average PRS, followed by the families with
more than one member with other cancer (n = 1580), the families without a member with
cancer (n = 11,665), the families with one member with HCC (n = 798), and the families
with more than one member with HCC and other cancer (n = 560), and a significant
difference was noted between the families without cancer and the families with more
than one member with HCC and other cancer (p = 1.61 × 10−3; Figure 5A). We found no
significant difference between the families with one member with HCC and the healthy
families (p = 0.29; Table S10, Figure 5A). However, when we rearranged these individuals
into three groups as family members with HCC, with other cancer or without any cancer,
a significant difference was noted between the families without a member with cancer
and the families with at least one member with HCC (n = 1358; p = 5.9 × 10−3; Table S10,
Figure 5B).
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Figure 5. Results of PRS distribution and statistical difference between the members of the cancer
family and noncancer family: (A) The distribution of PRS in different groups (left); the significant
difference between groups is shown (right). HCC: one person in the family with HCC; Other Cancer:
one person in the family with cancer (not HCC); HCC+: more than one person in the family with
HCC and other cancers; Other Cancer+: more than one person in the family with cancer (not HCC);
Healthy: no member in the family with cancer. (B) The distribution of PRS for HCC, other cancer
(non-HCC), and healthy groups (left); the statistical difference between the different groups is shown
(right). *: 0.01 < p ≤ 0.05; **: 10−3 < p ≤ 0.01; ***: 10−4 < p ≤ 10−3; ****: p ≤ 10−4; ns: not significant.

3. Methods and Materials
3.1. Participants and Cohorts

We collected the details of one cohort including 88,347 participants from the Taiwan
Biobank (TWB) [41] and another cohort including 175,997 participants from China Medical
University Hospital (CMUH). The demographic data of the TWB cohort were collected
from the TWB website (https://healthy.twbiobank.org.tw/ (accessed on 6 July 2021.)). The
participants from CMUH were enrolled from three cohorts. Cohort 1 included patients

https://healthy.twbiobank.org.tw/
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enrolled in the Precision Medicine Project of CMUH that was initiated in 2018 and remained
operational when this study was conducted. This project was performed to explore genetic
factors associated with the development of common diseases in Taiwanese individuals
and to develop a more precise system for predicting and preventing the occurrence of
common diseases. This project mainly focuses on patients from CMUH. Cohort 2 consisted
of patients whose data were collected from electronic medical records (EMRs) between 1992
and 2021, including their family history and laboratory data (e.g., DNA microarray results)
for examining the side effects of drugs. The Department of Laboratory Medicine of CMUH
(accredited by American College of Pathologists) uses the Taiwan Precision Medicine
Initiative (TPMI) array to detect SNVs related to the side effects of drugs, including some
crucial human leukocyte antigen (HLA) types, and this array contained 709,593 SNVs.
Moreover, the TPMI array can be used to perform a GWAS of common diseases. Cohort 3
included the whole-genome sequencing and microarray data of patients enrolled in The
Cancer Genome Atlas (TCGA) Sequencing project of CMUH (CMUH110-REC3-221). In
this project, the genomes of more than 1000 patients with different types of cancers were
sequenced using samples from the tissue bank of CMUH.

The Institutional Review Board (IRB) of the TWB (CMUH108-REC1-091) approved
the inclusion of the TWB cohort. The IRB of CMUH (CMUH110-REC3-005) approved the
inclusion of the cohort from the TPMI of CMUH. The IRB of CMUH (CMUH110-REC3-157)
approved the collection of data from the EMRs of CMUH. We mixed the participants from
the two cohorts in this study.

3.2. SNV Genotyping

Human genomic DNA was extracted from peripheral blood leukocytes by using a
QIAamp DNA Micro Kit (Qiagen, Heidelberg, Germany) in accordance with the man-
ufacturer’s protocol. The DNA concentration was quantified using the NanoDrop1000
spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA) and a Qubit fluo-
rometer (Invitrogen, Carlsbad, CA, USA). During the discovery phase, we genotyped
175,997 samples by using the TPMv1-customized SNV array (Thermo Fisher Scientific, Inc.,
Santa Clara, CA, USA), which was designed by the Academia Sinica and TPMI teams.
The array contained approximately 714,431 SNVs. All the samples in our study had a
call rate of >97%. To ensure the quality of SNVs, we excluded individuals and variants
with missing rates (--geno 0.1 for variants and --mind 0.1 for individuals) and filtered out
variants with a Hardy–Weinberg equilibrium p value of <10−6 (--hwe 1E-6) and a minor
allele frequency (MAF) of <10−4 (--maf 0.0001), as determined using PLINK1.9 [42]. In
addition, we removed the individuals by using principal component analysis (PCA); --pca)
and heterozygotes (--het) as outliers. Finally, 508,004 variants and 173,135 individuals
passed the filters and quality-control processes for autosomal chromosomes and were, thus,
included in the subsequent analysis.

3.3. Phasing and Imputation Workflow

Before performing the imputation, we first constructed a haplotype reference panel and
preprocessed SNV array data. From the whole-genome sequence (WGS) reference panels for
the TPMI and TWB, we filtered out variants with a minor allele count (MAC) of <3, missing
genotypes, multiple alleles (other than SNP/INDEL), and a Hardy–Weinberg equilibrium
p value of <10−7 and then phased these reference panels by using SHAPEIT2 [43]. Using
the pre-phasing WGSs of 1363 participants from the TWB as reference panels, we applied
SHAPEIT4 to phase TPMI and TWB arrays. Finally, we performed imputation using
Beagle5.2 [44], which is more effective and accurate than other imputation tools. The
imputed data were filtered using an R-square alternate allele dosage of <0.3 and a genotype
posterior probability of <0.9 as the criteria [45]. The SNPs present on the TPMv1 and TWB2
chips are identical; the discrepancy in naming arises from the chips being produced by
different entities.
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3.4. MHC Class I and Class II Allele Imputation and Subtyping

We developed an imputation method to predict HLA genotypes based on multiple
SNVs present in the proximity of HLA regions and used this method to fine-map asso-
ciated signals in complex regions. In this study, HLA imputation and model training
were performed using HIBAG R package software [46]. HLAs were imputed using at-
tribute BAGging, and SNV information was extracted from an extended MHC region
ranging from 28,510,120 to 33,480,577 bp loci of chromosome 6 based on hg38 positions
(6p21.3-22.1). Four-digit HLA imputation and typing were performed on HLA-A, HLA-B,
HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 by using the
Taiwanese population as reference. For post-imputation quality control, a call threshold of
>0.9 was applied to remove poorly imputed HLA alleles [47].

3.5. GWAS

To determine associated variants, we used PLINK 1.9 to obtain the summary statistics
of Taiwanese patients with HCC. We collected the data of patients who were diagnosed
as having HCC in the EMRs of CMUH or the TWB and had data until the 4th follow-up
questionnaire. In addition, we collected the data of controls who had no history of cancer
and were aged >18 years. Finally, we included 2836 patients with HCC and 134,549 controls
in the study. To determine the familial history of second-degree relatives, we obtained the
data for only one person from a familial group for the targeted group but for both cases
belonging to different phenotype groups. We determined the membership of the same
family by using PLINK 2.0 Kindship. An additive genetic model is usually employed in
case-control-based GWASs. Logistic regression was performed to analyze associations
among traits after adjustment for multiple covariates (sex and age), and the most significant
variant was selected to prevent a high level of collinearity in linkage disequilibrium (LD)
that causes overestimation. The variant with a p value of <5 × 10−8 was considered to
indicate a significant association between a case and a control. We plotted the Manhattan
plot and quantile–quantile plot using an R package (“qqman”) and presented the region
plot of the variants of interest by using LocusZoom tools [48].

3.6. Phenome-Wide Association Study (PheWAS)

We proceeded to perform subsequent PheWAS analysis on the newly discovered
13 SNPs in our study. Additionally, we conducted an analysis using the calculated polygenic
risk score (PRS) for hepatocellular carcinoma (HCC). A total of 97,735,180 ICD-9 or ICD-10
diagnosis codes were collapsed into 1791 phecodes. The association between the PRS and
each phecode was tested using logistic regression models and the “PheWAS” R package
in R [49]. The PheWAS results were combined in a meta-analysis of multiple populations,
with significance determined using Bonferroni correction.

3.7. Meta-Analysis

To validate variants detected from the summary statistics, we performed a fixed-effect
meta-analysis based on three cohorts, namely the UK Biobank participants of European an-
cestry (154 cases and 420,117 controls; Pan-UKB team, https://pan.ukbb.broadinstitute.org,
accessed on 30 November 2021) [50], the Japan Biobank (BBJ) participants of Japanese an-
cestry (1866 cases and 195,745 controls) [51], and the CMUH-TWB participants of Han
Chinese ancestry. We used METAL with the sample size “effective N” as the weight for each
cohort [52]. We transformed all the variants of the BBJ, UK Biobank, and our study to the
rsID of dbSNP v.153 to determine significant variants before performing the meta-analysis
to prevent the database difference between hg37 and hg38.

3.8. Statistical Analysis

We compared differences between the groups by using Student’s t test for the results
of the digital data analysis and the chi-square test for the categorized data of clinical
phenotypes (Table 1). Differential gene expression was analyzed, and the adjusted p value

https://pan.ukbb.broadinstitute.org
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was evaluated using edgeR of the R package. Survival analysis was performed using the
log-rank test. For the PRS distribution, we used the Mann–Whitney U test to analyze the
PRS with z-score normalization between the cases and controls.

For the familial cancer study, 25,554 individuals with familial relationships were
selected on the basis of the data of the third follow-up questionnaire of the TWB. Moreover,
the Mann–Whitney U test was performed to evaluate the PRS in different target groups.
The p value was adjusted using the false-discovery-rate Benjamini–Hochberg Procedure
to prevent type I error, and an adjusted p value of <0.05 was considered statistically
significant [53].

3.9. PRS Analysis

To calculate the PRS, we divided the CMUH cohort into three datasets: base, target,
and validation. We used the base dataset to explore the association of the studied variables
with HCC by using PLINK1.9 and then constructed a list of PRSs by using the target
dataset and PRSice2 tools after filtering variants with a MAF of >0.01. We used the
1000 genome-phase v.3 of the East Asian population as a reference [54]. The PRS was
calculated based on z-score normalization.

We used PRS, clinical data (including the albumin level, HBV surface antigen, and
HCV antibody), or both to construct logistic regression models, and the last two models
were adjusted by age, sex, and body mass index (BMI). Because extreme imbalance between
cases and controls results in inflated performance, we used the oversampling method
R “ROSE” package to eliminate this problem and validated the models through 10-fold
cross-validation. Moreover, we used the validate dataset to confirm the PRS models.

3.10. RNA Sequencing Analysis of HCC Tumor Tissues

RNA was extracted from the tumor and adjacent noncancerous tissues of the patients
with HCC by using TRIzol Reagent (Thermo Fisher Scientific, Inc., Santa Clara, CA, USA) or
the NucleoSpin RNA kit (Macherey-Nagel, Takara Bio Inc., Kusatsu, Japan) in accordance
with the manufacturer’s instructions. The quality of RNA (RNA integrity number, RIN
> 6) was determined using the Agilent Bioanalyzer 4200 (Agilent Technologies, Santa
Clara, CA, USA). One microgram of RNA and the TruSeq Stranded mRNA Library Prep
kit (Illumina, San Diego, CA, USA) were used for library preparation in accordance with
the manufacturer’s instructions. Briefly, total RNA was purified using magnetic beads to
remove ribosomal RNA and fragmented through enzyme treatment. Subsequently, double-
strand cDNA synthesis, end repair, adaptor ligation, and an enrichment polymerase chain
reaction were performed. The samples were subjected to 2 × 150-bp paired-end sequencing
using the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). We used the
DRAGEN bioinformatics workflow to analyze RNA sequences (Illumina DRAGENTM
Bio-IT platform v3.7) and used gencode v35 as the gene model for RNA-read annotation.

4. Discussion

Most GWASs on HCC have focused on its unique etiology (such as HBV or HCV
related HCC), including previous studies conducted in Taiwan [55,56], and these studies
have explored only single-etiology-associated genetic loci. In this study, we adopted the
mixed etiology approach to perform a GWAS for HCC, and this approach revealed not only
complex interactions involved in the development of HCC in the Taiwanese population
but also the association of loci with HCC identified in previous studies. In this study,
we discovered many new associated loci and those already associated with other single
etiologies. For example, rs2281293 (PNPLA3), a well-known SNV associated with alcoholic
liver disease and NAFLD, was not found to be related to HBV- and HCV-related HCC
in previous Taiwanese studies [55,57], but this association was observed in our study.
The expression of this SNV was determined to be enhanced in our meta-analysis. Thus,
our approach for performing a GWAS of HCC can be more suitable for exploring the
associations between regions with complex interactions and HCC development.
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In this study, we found 13 new loci, including sponge-like noncoding genes, liver-fibrosis-
related genes, stem-cell-related genes, metabolism-related genes, and HCC-related pathway
genes. The noncoding transcripts rs148610742 (F11-AS1) and rs150098717 (FAM66C) had a
sponge-like function to prevent miRNA from targeting cancer-related genes involved in
the development of HCC or other cancers [40,51,52]. The rs148610742 (F11) that binds
with the C8A/B complement had been suggested as a prognosis marker in HBV-related
HCC [41]. Rs77404202 (NAV-AS1) and rs144285059 (LINC02511) are lncRNAs that regulate
target mRNA, and they were considered HCC-related lncRNAs in LncRNADisease v2. [58]
Rs77404202 (NAV2) and rs17155112 (FRMD4A) have been shown in the Wnt/beta-catenin
and Hippo pathway in HCC, respectively, and these pathways play crucial roles in HCC
development [42,43]. The rs117719091-related gene PFKFB3 can induce glycolysis and acti-
vate hepatic stellate cells to promote liver fibrosis, and the knockdown of PFKFB3 inhibited
HCC growth by damaging DNA repair function, leading to G2/M phase arrest and apop-
tosis [44,45]. The rs140233124-related gene KIAA0232 affects the platelet count and insulin
secretion and may play a role in the cancerous metabolism of HCC [46,47]. The rs144225287-
related gene PRMT8 controls embryonic stem cell pluripotency through the PI3K/AKT
signaling pathway and may induce HCC progression through cell-cycle control [48,59].
The rs74333160 (AL355836.4), rs80115676 (RPL13P12), rs6140450 (RP1-209B9.2), rs187199523
(RP11-563D10.1), and rs118180127 (CTD-3023L14.3) are novel RNA or pseudogenes. These
five loci-related genes may involve the development of HCC directly or indirectly through
unknown mechanisms, which need further study. Compared with previous GWASs for
HCC, this GWAS revealed several new findings, such as sponge-like noncoding genes and
hepatic stellate cells, which induce liver fibrosis and play vital roles in HCC development.
Our results may provide new approaches to prevent HCC development.

HLA plays crucial roles in the development of virus-related HCC [13,60–64]. We com-
prehensively analyzed the subgroups of MHC classes I and II and determined that class
I plays a vital role in HCC development in the Taiwanese population, such as A*30:01
(p = 1.56 × 10−7, OR = 1.5, 95% CI = 1.28–1.76) for HBV infection, B*58:01 (p = 2.98 × 10−17,
OR = 1.27, 95% CI = 1.2–1.34) for HBV infection, B*58:01 (p = 1.45 × 10−3, OR = 0.89,
95% CI = 0.82–0.96) for HCV infection, C*03:02 (p = 1.52× 10−16, OR = 1.24, 95% CI = 1.18–1.31)
for HBV infection, and C*03:02 (p = 9.32 × 10−5, OR = 0.87, 95% CI = 0.82–0.93) for HCV
infection, and these results revealed that the MHC class I of the same subtype may have an
opposite effect on different virus-related HCC (Table S7).

In familial cancer studies, most researchers have focused on the family studies of
breast and prostate cancer [65,66], and studies have rarely explored the familial association
for HCC risk using PRS. We used GWAS-related SNVs to develop the HCC-related PRS and
found the PRS can be used to identify individuals with a higher HCC risk in the general
population, and the PRS can predict family members with a high risk of HCC. We also
found that the PRS of the family with one member with HCC did not significantly differ
from that of the healthy group (p = 0.29), indicating that not only the genotype but also
other factors, such as environment and lifestyle, may play similar roles in the development
of HCC. Interestingly, we found the family member with one or more other cancer had
the lower PRS than that of the healthy group. The PRS model building based on the HCC
cohort may not be suitable for predicting non-HCC cancer patients, and low PRS was only
a marker for the risk of HCC but not for the risk of other cancer.

In this study, certain limitations warrant consideration. While we excluded individuals
in the control group who had previously developed cancer, we were unable to effectively
exclude patients in the control group who may have developed cancer outside of our
institution or those who belong to high-risk populations for future HCC development. The
precise categorization of high-risk factors for HCC, such as alcohol consumption, severity
of fatty liver, and the extent of liver cirrhosis, was not achieved [67]. One significant
contributing factor to this limitation is that finer categorization would result in reduced
sample sizes, potentially affecting the statistical significance of genetic associations. In the
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future, our research will focus on individuals who have not been exposed to known risk
factors but still develop HCC.

5. Conclusions

In this study, we encompassed a cohort comprising 2836 HCC cases alongside 134,549
matched controls. Our research has elucidated thirteen hitherto unidentified loci, with
a minimum of seven implicated genes demonstrating associations with HCC or other
neoplastic conditions. An extensive examination of the MHC subtypes revealed that certain
subtypes are pivotal in the context of various viral etiologies and the pathogenesis of HCC.
Utilizing PRS, we assessed the susceptibility of individuals with HCC, as well as those with
familial ties to the disease. The insights gleaned from our investigation hold promise for
the establishment of an innovative risk-stratification framework, aimed at forecasting HCC
risk and susceptibility within families. The implications of our findings could potentially
pave the way for novel preventative strategies against HCC.
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