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Abstract: Behçet’s disease (BD) is a complex, recurring inflammatory disorder with autoinflammatory
and autoimmune components. This comprehensive review aims to explore BD’s pathogenesis,
focusing on established genetic factors. Studies reveal that HLA-B*51 is the primary genetic risk
factor, but non-HLA genes (ERAP1, IL-10, IL23R/IL-12RB2), as well as innate immunity genes (FUT2,
MICA, TLRs), also contribute. Genome-wide studies emphasize the significance of ERAP1 and
HLA-I epistasis. These variants influence antigen presentation, enzymatic activity, and HLA-I
peptidomes, potentially leading to distinct autoimmune responses. We conducted a systematic
review of the literature to identify studies exploring the association between HLA-B*51 and BD and
further highlighted the roles of innate and adaptive immunity in BD. Dysregulations in Th1/Th2
and Th17/Th1 ratios, heightened clonal cytotoxic (CD8+) T cells, and reduced T regulatory cells
characterize BD’s complex immune responses. Various immune cell types (neutrophils, γδ T cells,
natural killer cells) further contribute by releasing cytokines (IL-17, IL-8, GM-CSF) that enhance
neutrophil activation and mediate interactions between innate and adaptive immunity. In summary,
this review advances our understanding of BD pathogenesis while acknowledging the research
limitations. Further exploration of genetic interactions, immune dysregulation, and immune cell roles
is crucial. Future studies may unveil novel diagnostic and therapeutic strategies, offering improved
management for this complex disease.
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1. Introduction

Behcet’s disease (BD) is a recurrent and multisystem inflammatory disease that was
first described by Dr. Hulusi Behçet, a Turkish dermatologist, in 1937 [1]. The disease
typically affects individuals in their third to fourth decade of life and does not display a
gender preference. However, severe morbidities are more prevalent in men [2]. With age,
the disease activity tends to decrease after severe repetitive attacks in the young productive
population. Therefore, BD imposes a considerable economic burden on society. BD is
considered an orphan disease in the Western world due to its low prevalence (1–10/100,000),
whereas in many developing countries, such as Turkey, BD is more common, with a
prevalence of 0.4–4/1000. Japan and Middle Eastern countries also have a higher prevalence
of BD [3,4].

Currently, BD is diagnosed only based on clinical findings and there is no definitive
laboratory test to confirm the diagnosis. According to The International Study Group
criteria published in 1990 for BD, oral lesions plus two of uveitis, genital lesions, other skin
lesions, and a positive skin pathergy test (SPT) are required for BD diagnosis [4]. Although
mucocutaneous symptoms are the most common presenting symptoms [5], patients may
exhibit vasculitis and multisystemic involvement resulting in significant morbidity [3,6].
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Vascular involvement is a defining feature of BD, and both venous and arterial involvement
are unique features of the disease. Patients may experience recurrent deep vein thromboses,
arterial aneurysms, and intracardiac thromboses [6]. Colchicine is the first-line therapy for
mucocutaneous symptoms, and immunosuppressive or immunomodulatory treatments
are administered in refractory cases or patients with systemic disease involvement [3,6].
However, current therapeutic techniques may be insufficient in some individuals to control
recurring episodes.

BD is a mixed-pattern disease characterized by both autoinflammatory and autoim-
mune features that develop in genetically susceptible individuals exposed to environmental
factors [7]. The genetic background is strong in BD pathogenesis. Familial aggregation is
substantial with risk ratios ranging from 11.4 to 52.5 among siblings in different popula-
tions within Turkey [8,9]. A previous study in Korea, with over 21 million individuals in
12 million families, found that the risk of developing Behçet’s disease (BD) was significantly
higher among first-degree relatives, especially for twins, with a 165-fold increase [10].

The most significant genetic association related to disease risk is the presence of the
human leukocyte antigen (HLA) class I allele HLA-B*51. In recent years, genetic variations
in non-HLA genes such as the endoplasmic reticulum aminopeptidase enzyme (ERAP1),
interleukin-10 (IL-10), and interleukin-23 receptor/interleukin-12 receptor beta-2 (IL23R/IL-
12RB2) have been identified as susceptibility loci for BD [4]. In individuals with genetic
susceptibility, external factors such as microbial agents or internal self-antigens like heat
shock proteins are suggested as triggers of autoimmune responses, leading to systemic
inflammation and the clinical manifestations of BD [3,11]. Immune response aberrations
result in the activation of a cytokine cascade and alterations in the levels of cytokines,
driving inflammatory cells to migrate to the tissues, causing damage [11].

The current literature points out the role of both innate first-responder cells such as
neutrophils and adaptive immune cells such as lymphocytes. The goal of this review is to
give a comprehensive assessment of the studies on BD and HLA class I association and
discuss the pathophysiology of BD, with an emphasis on HLA, genetics, and inflammation.

2. Methods

We performed systematic literature research on PubMed and Google Scholar, searching
for eligible records up to October 30, 2023. We searched the electronic databases for relevant
articles with the keywords “HLA” or “HLA-B*51” or “MHC class I” or “GWAS” AND
“Behcet” or “Behçet” or “Behçet’s”. EndNote 20 was used to collect the references.

The initial search yielded 488 references excluding review papers. After removing
duplicates, 407 citations remained. Following title and abstract screening, 334 reports
were considered irrelevant. Consequently, 73 articles underwent a complete review. We
finally included case-control studies, retrospective studies, meta-analyses, and genome
wide association studies investigating HLA-B*51 association with BD. The full-text review
resulted in the exclusion of 39 studies, and 34 articles remained for the final analysis.
Figure 1 shows the study selection process.
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Figure 1. Flowchart of study selection according to PRISMA guidelines.

3. Results
3.1. HLA-B*51:01 Association: The Strongest Genetic Risk Factor

The role of genetic factors in BD has been widely studied, and the HLA-B*51 allele has
been identified as the primary risk factor for the disease [12,13]. Furthermore, the presence
of this gene in populations around the globe correlates with the prevalence of BD. Our
search revealed 34 studies, which are summarized in Table 1.

In Silk Road nations, up to 20–25% of the general population and 50–80% of BD patients
carry the HLA-B*51 allele. In contrast, in the USA and northern Europe, HLA-B*51-positive
individuals are 2–8% of the general population and about 15% of BD patients [14,15].
In Turkey, the prevalence of the HLA-B*51 allele in BD patients is high, ranging from
50% to 70%, whereas in the general population, around 25% of individuals are HLA-
B*51-positive [16–21]. Carrying the HLA-B*51 allele increases the risk of developing BD
almost 6–10-fold, with a risk ratio of 5.90 for HLA-B*51 carriers [19,20,22]. The clinical
subtypes associated with HLA-B*51 carriage status have been investigated. Although the
findings differ, presumably due to the different ethnicities in studies, a higher prevalence
of ocular disease, vasculitis, neurological involvement, and a more severe phenotype are
reported [17,23–29]. Kirino et al. [30] have reported that BD has evolved in recent years
and both complete-type BD and the prevalence of HLA-B*51 positivity have decreased.

The presence of the HLA-B*51 allele is thought to influence the BD peptidome, leading
to the presentation of specific self-antigens or microbial antigens that may trigger an au-
toimmune response [11]. However, the precise mechanisms by which HLA-B*51 contributes
to the pathogenesis of BD are not yet fully understood.



Int. J. Mol. Sci. 2023, 24, 16382 4 of 24

Table 1. Studies investigating the association between HLA-B*51 and Behçet’s disease.

Reference Study Ethnicity Patients Results

Kim et al.,
2018 [31] R Korean OA: 433

BD: 126

In HLA-B*51+ BD patients (n = 40), clinical features of the
diagnostic criteria were dominant

In HLA-B*27+ BD patients (n = 17), genital ulcers and skin
lesions were dominant

Krause et al.,
1999 [29] R Israeli BD: 55

HLA-B5+ patients have enhanced occurrence of
thrombophlebitis, less erythema nodosum, older disease

onset age, and more severe disease

Mizuki et al.,
2020 [28] R Japanese BD: 3044

HLA-B*51+ BD patients have:
Increased risk of ocular lesion (OR 1.59, 95% CI: 1.37–1.84;

p < 0.001)
Decreased risk of genital ulceration (OR 0.72, 95% CI:

0.62–0.84; p < 0.001) and gastrointestinal symptoms (OR 0.65,
95% CI: 0.55–0.77; p < 0.001)

Pamukcu et al.,
2022 [27] R Turkish BD: 204

HLA-B*51+ BD patients have a higher risk of PPL (OR 1.946,
95% CI: 1.044–3.629) and ocular (OR 2.399, 95% CI:

1.165–4.938) and neurological involvement (OR 5.404, 95%
CI: 1.119–26.093)

Rajaei et al.,
2020 [18] R Iranian BD: 63 The percentage of HLA-B5 (25%) and HLA-B*51 (21%)

Ryu et al.,
2018 [26] R Korean BD: 193

HLA-B*51+ patients:
Earlier disease onset (28.3 ± 11.4 years vs. 33.8 ± 11.6 years,

p = 0.02),
More frequent neurologic (17.2% vs. 2.5%, p = 0.02) and
gastrointestinal involvements (20.7% vs. 2.5%, p = 0.01)

Ideguchi et al.,
2011 [17] R Japanese BD: 412

HLA-B*51 was positive in 50% (53% in male patients, 48% in
female patients)

Higher frequency of HLA-B*51 in patients with
ocular involvement

Kirino et al.,
2016 [30] R Japanese BD: 578

Phenotypical evolution in Japanese BD patients during the
last 30 years:

Significant decrease in complete-type BD, HLA-B*51 carriers,
and gastrointestinal symptoms

Soejima et al.,
2021 [32] R Japanese

BD: 657
(1990–2018)

BD: 6754
(2003–2014)

Temporary alteration of clinical cluster proportions over
time caused increasing GI involvement, reduced incidence of
complete type according to Japanese criteria, and reduced

HLA-B*51-positive BD patients

Ortiz-Fernández et al.,
2016 [33] CC Spanish BD: 278

HC: 1517

Highest association with BD: HLA-B*51 (p = 6.82 × 10-32,
OR 3.82)

HLA-B57 (p = 1.02 × 10-5, OR 2.80, 95% CI = 1.77–4.43) and
HLA-A03 (p = 9.68 × 10-3, OR 0.61, 95% CI = 0.41–0.89)
identified as additional HLA genes associated with BD

Al-Okaily et al.,
2016 [34] CC Saudi BD: 60

HC: 60

Enhanced frequency of HLA-A*26, -A*31, and -B*51 alleles in
BD patients

HLA-B*15 allele may have a protective effect on BD
Alpsoy et al.,

1998 [16] CC Turkish BD: 71
HC: 600

HLA-B*51 significantly increased in BD patients
DR7 significantly decreased in BD patients

Demirseren et al.,
2014 [35] CC Turkish BD: 51

HC: 44

HLA-B*51 is significantly higher in BD patients
HLA-B*5101, HLA-B*5102(01), HLA-B*5109, and HLA-B*5122

subtypes increased in BD patients
Negative correlation between PPL involvement and

HLA-B*5109
HLA-B*5103 may be a risk factor for neuro-Behçet

Hamzaoui et al.,
2012 [36] CC Tunisian BD: 178

HC: 125

Higher HLAB-51 frequency in BD patients (47.19% vs. 20.8%,
p < 0.001).

HLA B51+ patients have:
Higher frequency of pathergy test positivity (p = 0.01)

Retinal vasculitis (p = 0.045)
Lower frequency of arterial aneurysms (p = 0.009) and

neurological involvement
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Table 1. Cont.

Reference Study Ethnicity Patients Results

Itoh et al.,
2006 [21] CC Japanese BD: 180

HC: 170

Strong association of HLA-B*5101 with BD (Pc = 1 × 1016, OR = 8.5)
Weak association between A2602 (Pc = 0.130, OR = 4.3) and

HLA-B3901 (Pc = 0.099, OR = 3.5)

Koumantaki et al.,
1998 [20] CC Greek BD: 62

HC: 87

Higher frequency of HLA-B*5101 in BD patients (80% vs. 26%)
(OR 10.48, p < 10−6)

Males carrying B5101 allele have a higher risk for BD compared to
females (OR 16.97 vs. 5.74, respectively)

Mizuki et al.,
2001 [37] CC Jordanian BD: 49

HC: 50 The strongest risk factor: HLA-B*51

Castillo-Palma, et al.,
1996 [38] CC Spanish BD: 67

HC: 223

HLA-B*51+ is higher in males with ocular (p = 0.0001), cutaneous
(p = 0.001), and digestive involvement (p = 0.05)

DQB1*0303 was linked to worse prognosis in uveitis (p = 0.01)
DR11 and DQB1*0301 were more common in HLA B51+ patients

Muñoz et al.,
2020 [39] CC Argentinian BD: 34

HC: 240 BD was associated with HLA-B*51 allele (OR = 3.75; p = 0.0012).

Pirim et al.,
2004 [22] CC Turkish BD: 75

HC: 54

HLA-B*51 frequency is higher in BD (58.7% vs. 18.5%, OR = 6.245)
Most prevalent class II HLA in BD were HLA-DRB1*04 (45.3%) and

HLA-DRB1*07 (24%)

Rodríguez et al.,
1998 [40] CC Spanish BD: 21

HC: 25

HLA-B*51 frequency is higher in BD (37.5% vs. 15.5%)
BD patients had higher frequencies of B*5101 (32% vs. 13%), and

5108 (5.5% vs. 1.2%)
Sakly et al.,
2009 [41] CC Tunisian AS&BD: 365 HC:

124
No significant difference in HLA-B*51 between BD and HC

(30.0% vs. 16.1%, p > 0.05)

Sanz et al.,
1998 [42] CC Spanish BD: 56

HC: 66

Association of Cw*1602 with BD (OR 20.15, corrected ρ < 0.05) with
higher relative risk compared to association of B51 in this study

(OR 1.85)

Zouboulis et al.,
1993 [25] CC German BD: 39

HC: 1415

Higher frequency of HLA-B5 allele among BD patients (p < 0.05)
Higher frequency of HLA-B5 in male patients with severe

vascular involvement

Ombrello et al.,
2014 [43] CC Turkish BD: 1190

HC: 1257

HLA-B*51, -A*03, -B*15, -B*27, -B*49, -B*57, and -A*26 with
risk of BD

Independent associations between BD and the HLA-B/MICA region
and the area between HLA-F and HLA-A (p < 1.7 × 10−8)

Capittini et al.,
2021 [44] Ma Worldwide NA

The most frequent HLA-B*51 two-digit alleles associated with BD
differed among populations:

Europe, HLA-B*5108 (OR 11.25 C.I. 4.9–26)
Turkey, HLA-B*5101 (OR 5.98 C.I. 3.7–9.8)
Japan, HLA-B*5102 (OR 5.39 C.I. 0.6–47)

HLA class I alleles associated with risk for BD are B*5108, B*51,
B*5101, B*5102, DQB1-03, A*2601, Cw14, Cw15, Cw16, B*15, and A*26

de Menthon et al.,
2009 [19] Ma Worldwide BD:4800

HC: 16289
Enhanced risk of BD 5.78 and 5.9 times over in carriers of

HLA–B*51/B*5 and HLA–B*51, respectively

Maldini et al.,
2012 [24] Ma Worldwide NA

HLA-B*51/B5+ positivity is associated with:
Male gender

Increased frequencies of genital ulcers and ophthalmic and
skin manifestations

Reduced frequency of gastrointestinal involvement

Horie et al.,
2017 [23] Ma Worldwide NA

HLA-B*51 strongly associated with BD ocular manifestations in East
and Middle Eurasian regions (OR = 2.40, p = 0.0030 and 1.87,

p = 0.0045, respectively), but not in West Eurasian regions (p = 0.35)

Kirino et al.,
2013 [45] GWAS Turkish BD: 1209

HC: 1278

ERAP1 variants preferentially conferred risk for BD in
HLA-B*51-positive individuals (p-value = 0.0009)

ERAP1 p.Arg725Gln homozygosity was related with BD with an
odds ratio of 3.78 [95% CI 1.94–7.35] in HLA-B*51-positive people

and 1.48 [95% CI 0.78–2.80] in negative individuals
New susceptibility loci detected at CCR1, STAT4, and KLRC4 for BD

Remmers et al.,
2010 [13] GWAS Turkish BD: 1214

HC: 1278

Association of BD and HLA-B*51 (OR = 3.49, 95% CI = 2.95 to 4.12,
p = 5.47 × 10−50)

Identification of a second, independent association within the MHC
class I region telomeric to HLA-B

Association at IL10 (rs1518111, p = 1.88 × 10−8)

Su et al.,
2022 [46] GWAS Chinese BD: 1015

HC: 4502

Association of HLA–B*51, HLA–A*26, and HLA–C*0704 with
BD-related uveitis

22 new susceptibility variations in 16 non-HLA loci (RHOH,
PRDM1, MTHFD1L, KLF4, ZMIZ1, RPS6KA4-PRDX5,

SIPA1-FIBP-FOSL1, IL10RA, VAMP1, AGBL1, CMIP, CDH15-ZNF778,
TCF4, MRPL39-JAM2, GART, and MIS18A)

Abbreviations: R: Retrospective, CC: Case control studies, Ma: Meta-analysis, GWAS: Genome-wide association
studies, BD: Behçet’s disease, HC: Healthy controls, OA: Oral aphthous lesions, AS: Ankylosing spondylitis, PPL:
Papulopustular lesions.
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3.2. HLA Class I Association in Antigen Presentation, TCR Antigen Recognition
and Inflammation

Today, more than 19,000 HLA class I alleles have been identified, but only 4 of them
were shown to have a substantial link with the risk of certain diseases known as major histo-
compatibility complex (MHC)-class I-opathy or MHC-I-related diseases. Among thousands
of HLA class I alleles identified, only a few are linked to certain diseases, including HLA-
B*51 for BD, HLA-B27 for the spondylarthritis family (ankylosing spondylitis (AS), psoriatic
arthritis, reactive arthritis, arthritis associated with inflammatory bowel disease (IBD)),
HLA-C06:02 for psoriasis, and HLA-A29:02 for birdshot chorioretinopathy. This highlights
the significance of the HLA system in immune response and disease susceptibility [47–50].

This peptide repertoire is determined by several factors, including the HLA molecule
itself, the peptide-binding groove, the peptide-processing pathway, and the antigen-
processing machinery as illustrated in Figure 2 [51]. The peptides presented by HLA
molecules can originate from various sources, including self-, foreign, and viral antigens.
Therefore, HLA molecules play a vital role in immune surveillance, immune activation,
and immune regulation by presenting peptides to T cells for recognition and activation or
tolerance induction [49].
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The anchor residues within HLA class I molecules exhibit a high degree of rigidity
and stability, playing a crucial role in peptide presentation. The peptides that are loaded
onto and displayed by these molecules typically consist of 8 to 10 amino acids (aas) in
length. The precise aa sequence pattern of these peptides is dictated by the distinctive
configuration of HLA anchor residues. Although T cell receptors (TCRs) exhibit a poly-
specific reactivity toward the antigens presented by HLA molecules, they can selectively
recognize cognate HLA–peptide complexes via specific aa sequences. These sequences
are determined jointly by the HLA anchor residues and the contact residues on the TCRs.
Notably, the other positions within the peptide sequence offer flexibility for variation [52].
The genetic polymorphisms of HLA alleles contribute to the diverse array of peptide
repertoires, leading to the generation of distinct peptidomes [44].

3.3. Gene Loci Related to Antigen Presentation
3.3.1. HLA-B*51 and ERAP1 Epistasis in Behçet’s Disease

Genome-wide association (GWA) studies have highlighted ERAP1, along with HLA-I,
as a key genetic factor in BD [45,53]. In BD, an epistatic connection between HLA-B*51
and ERAP1 exists, making specific ERAP1 variations a risk factor only in the presence
of the HLA-B*51 allele. These ERAP1 polymorphisms can impact antigen presentation
and enzymatic activity, thus altering the HLA-I peptidome and binding affinity [11,12,24].
The ERAP1 and ERAP2 enzymes, operating in the endoplasmic reticulum, trim protease-
degraded peptides for optimal HLA class I presentation, determining antigenicity [48,54].
ERAP1/2 polymorphisms are strongly associated with HLA-I-related conditions like BD,
psoriasis, AS, and birdshot chorioretinopathy [54]. Notably, 10 primary ERAP1 variations
(Hap1-10) exist, with Hap10 significantly linked to BD risk since its reduced activity leads
to longer peptides [55–57]. A recent study by Cavers et al. [57] demonstrated that the
ERAP1-Hap 10 allotype together with HLA-B*51 shifts the CD8+T cells from a naïve to an
antigenic form, possibly displaying CD8+ T cell migration to inflamed tissues.

The ERAP1-Hap10 variant, linked to higher BD risk, is strongly associated with HLA-
B*51. Hap10 homozygotes with HLA-B*51 have a 10.96-fold BD susceptibility, while those
lacking HLA-B*51 show no risk change [56]. Hap10’s reduced enzymatic activity leads to
longer peptide trimming, especially noticeable with HLA-B*51-bound proteins [57]. Guasp
et al. [58] compared the Hap10 alterations in HLA-B*51’s Ala-2 and Pro-2 subpeptidomes,
resulting in a higher Ala-2/Pro-2 ratio, creating low-affinity HLA-B*51 peptides. This
affects natural killer (NK) and cytotoxic T cell activity [48,58]. Low-affinity peptides with
HLA-I can provoke cytotoxic T cell responses, while reduced activity of ERAP1 makes cells
susceptible to NK cell killing due to a poor recognition of peptide–MHC-I complexes by
KIRs [58,59].

The role of ERAP1 in the immune response of BD was investigated in HSV-induced
BD mice with partial ERAP1 expression (ERAP1 heterozygotes, +/−). Lower ERAP1
expression enhanced the production of IL-17 and IFN-γ by the CD4+ T cells in BD mice [60].
A separate study also reported that ERAP1−/− mice exhibited decreased peripheral
T regulatory cells which prevent autoreactive immune responses to self-antigens [61].
Thus, lower activity of ERAP1 impairs the Th1/Th17 and Treg cell balance in BD. These
findings emphasize the intricate interaction between HLA-B*51 and ERAP1 and their
significant impact on the process of antigen presentation, shedding light on the genetic
factors contributing to the pathogenesis of BD.

3.3.2. The Repertoire of HLA-B*51 and Binding of Peptides

In a study by Gebreselassie et al. [62] the importance of peptidome and its association
with BD was investigated. The study focused on the peptides associated with six different
HLA-I alleles: HLA-03, HLA-A*31, HLA-B*18, HLA-B*51, HLA-C*w01, and HLA-C*w07.
The results indicated that HLA-B*18 binds to peptides with the highest affinity among the
examined alleles, while HLA-B*51 binds to a greater number of peptides with the lowest
affinity [62]. Self-peptides with high affinity to HLA will promote tolerance, while those
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with low affinity will not elicit an immune response. However, peptides with intermediate
affinity to HLA may pose a problem since they are inefficient at developing tolerance
while inducing an immunological response. Therefore, lower-affinity binding of peptides
by HLA-B*5101 may cause predisposition to the development of distinct autoimmune
responses [62].

Research aimed to investigate the low-affinity binding of HLA-B*51 and its potential
involvement in BD showed that only HLA-B*5101, but not HLA-B*5201, is associated with
BD. This suggests that the peptide presentation function may play a crucial role. The
two variants differ in only two residues at positions 63 (Asp63Glu) and 67 (Phe67Ser),
located in the B pocket of the peptide-binding groove, which separates the peptidomes
of these two HLA alleles [63,64]. A comparative study of the molecular structure and
peptide-binding dynamics of two HLA-B alleles, HLA-B*51 and HLA-B*52, using peptides
(YAYDGKDYI, LPRSTVINI, and IPYQDLPHL) revealed that the HLA-B*51-bound peptides
exhibited greater fluctuation and, consequently, looser binding. This resulted in less
selective binding when compared to HLA-B*52 [64].

An analysis of the polymorphic amino acid positions of HLA-B revealed that positions
97, 116, 152, and 67 individually exerted an independent influence on the risk of developing
BD [43]. Of particular interest are residues 97, 116, 152, and 67 within the HLA-B protein,
all of which are situated within the MHC-I antigen-binding groove. These four MHC-I
residues directly interact with six out of nine peptide residues. Residues 67 and 116 are
especially critical as they serve as anchor residues, substantially influencing the peptide
specificity of MHC-I antigen-binding grooves through their interactions with peptide
positions P2 and P9, respectively [65]. Notably, positions 67 and 116 also play a pivotal role
in determining the interactions between HLA-B molecules and KIR3DL1 and KIR3DS1,
which are instrumental in regulating the activation of NK cells and CD8+ cytotoxic T
lymphocytes [66]. Additionally, residue 67, as mentioned above, is one of two residues in
which HLA-B*51 differs from the closely related HLA-B protein HLA-B52, which has no
discernible impact on BD risk.

3.3.3. Other HLA Class I Alleles

Previous research has identified significant associations between BD and specific HLA
class I alleles other than HLA-B*51. Ombrello et al. [43] demonstrated that HLA-B15 and
HLA-B27 independently contribute to BD risk. Conditional analysis also revealed the
protective effect of HLA-B49 on BD. In addition, conditional analysis and stepwise forward
logistic regression on the complete dataset and the HLA-B51-negative subset highlighted
that HLA-A*03 exerts a significantly protective effect against BD, with the identified risk
factors being HLA-B15, HLA-A26, and HLA-B27. Al-Okaily et al. [34] found increased
frequencies of HLA-A26 and HLA-A31 and a reduced frequency of HLA-B15 in BD patients
from Saudi Arabia. A separate study in Japan revealed a weak association of HLA-A2602
and HLA-B3901 with BD within HLA-B51-negative patients [21]. Kang et al. [67] identified
enhanced frequencies of HLA-A02:07, A26:01, and A30:04 and a decreased frequency of
A33:03 in BD patients. A study on German and Turkish BD patients revealed a significant
association of HLA-Bw4-80I and HLA-A*26 among the HLA-B*51-negative cohort [68]. HLA-
A*26, HLA-B*08, and A*25 are implicated as risk alleles, whereas HLA-B*58 and HLA-A*33
are reported to be protective in a UK population [69].

While HLA-B*51 has been extensively studied in the context of BD pathogenesis, it is
crucial to acknowledge that a significant proportion of BD patients do not carry this allele.
Thus, the role of antigen presentation remains pertinent for patients with various HLA class
I alleles. Notably, HLA-A*26 has emerged as a risk variant in multiple studies, encompassing
patients of different ethnic backgrounds. A detailed analysis of the polymorphic amino acid
residues in HLA-A revealed significant and independent associations between residues
161 and 97 of HLA-A and BD [43]. These specific residues are located within the MHC-I
antigen-binding groove, mirroring the risk amino acid residues identified in HLA-B*51.
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3.3.4. Association of KIR3D Receptor Polymorphisms

KIR haplotypes have been associated with HLA class-I-associated diseases such as
psoriasis, birdshot chorioretinopathy, and AS. Killer inhibitory receptors (KIR) are highly
diverse molecules situated on chromosome 19q13.4. NK cells interact with HLA class
I molecules which serve as ligands for their KIR. The presence of activating KIR geno-
types has been associated with protection against infectious diseases but susceptibility
to autoimmune diseases. Conversely, inhibitory KIR genotypes are linked to protection
against inflammatory diseases. The interaction between the KIR on the NK and HLA class I
molecules exemplifies genetic epistasis, where the presence of both the receptor and ligand
is necessary for functional activity, while the presence of one without the other has no
influence on effector cell activity [70].

When it comes to the association of KIR3D receptors with BD, the existing data are
somewhat conflicting. In an extensive study involving 1799 BD patients and 1710 healthy
controls from Turkey, with HLA-B*51 data, no significant association was found between
the activating KIR3DS1 or inhibitory KIR3DL1 alleles and the risk of BD [71]. Intriguingly,
among the subset of cases with ocular disease, an increased presence of activating KIR3DS1
alleles was observed, irrespective of HLA-B*51 status.

Conversely, an analysis at the allele level of KIR3DL1/S1 revealed that the combination
of low-expressing KIR3DL1/S1 alleles with KIR3DS1 significantly heightened the risk
of developing BD, while high-expressing KIR3DL1/S1 alleles in combination with null-
expressing KIR3DL1 reduced the risk of the disease [69].

3.4. Gene Loci Related to IL23/T17 Pathways
IL23R-IL12RB2 Locus

The IL23R-IL12RB2 locus is integral to the IL-12/IL-23 receptor, a crucial component
for promoting Th1 differentiation and mediating IL-12 signaling. Previous GWA studies
involving BD patients identified two significant single nucleotide polymorphisms (SNPs)
within this gene: rs924080 [13] and rs1495965 [72]. Furthermore, another study corrobo-
rating the role of IL-23R in BD revealed that missense variants of this gene, which lead to
reduced responsiveness to IL-23, exert a protective effect against BD. Intriguingly, these
variants also offer protection against several other disorders, including psoriasis, AS, IBD,
and Crohn’s disease (CD) [9,13,72].

3.5. Gene Loci Related to Innate Immunity
3.5.1. Association of MEFV Gene

Mutations within the MEFV gene are accountable for causing the recessive autoinflam-
matory disease known as familial Mediterranean fever (FMF). FMF is prevalent among
Mediterranean populations, indicating a potential selective advantage. Previous studies
have suggested that FMF-associated genetic variants might be a susceptibility factor for
BD [73,74].

Kirino et al. [75] examined the MEFV gene variants using deep sequencing from
GWAS data for their involvement in innate immunity in BD. A detailed examination
of these genetic variants in the MEFV gene revealed a single FMF mutation, known as
p.Met694Val (M694V), that had a significant association with BD in Turkish patients even in
a heterozygous state (odds ratio: 2.65–2.73) but not among Japanese patients. M694V is
recognized as a highly penetrant FMF variant and is linked to more severe inflammatory
symptoms in FMF. Moreover, this same genetic variant has been identified as a risk factor
for AS, IBD, and severe hidradenitis suppurativa in the Turkish population, indicating that
MEFV mutations including M694V may cause predisposition to inflammatory diseases [76].
The disease-modifying effect of MEFV gene variants is further supported by a study
revealing the presence of MEFV mutations in 70.6% of neuro-Behçet’s disease with more
prominent white matter involvement [77].

Existing evidence suggests that the MEFV variants associated with FMF are gain-of-
function mutations, resulting in an increased responsiveness to bacterial products. In mice
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carrying the M694V mutation, there is enhanced activation of caspase-1, leading to an
overproduction of interleukin-1β upon lipopolysaccharide stimulation [78].

I. Association of MICA gene
The MHC class I polypeptide-related sequence A (MICA) gene, located on chromosome

6 between the tumor necrosis factor (TNF) and the MHC-B genes, has also been implicated
in BD. SNPs have been discovered in many BD patients within the MICA gene. MICA
interacts with CD314, also known as natural killer group 2 member D (NKG2D), thereby
activating the NK receptor. This receptor is expressed on various immune cells, including
NK cells, natural killer T (NKT) cells, CD8+ T cells, and innate lymphoid cells (ILCs). This
interaction serves to activate the immune system, potentially leading to tissue damage. A
comprehensive meta-analysis conducted by Zhang et al. [79] demonstrated an association
between the MICA-A6 allele and BD. This allele can be considered a risk factor for the
disease. Interestingly, the results also suggested that MICA-A9, A5, A5.1, and A4 alleles
exert protective effects against the development of BD [50,79].

3.5.2. Association of FUT2 Gene

The fucosyltransferase 2 (FUT2) gene, which is involved in intestinal mucosal im-
munity has been associated with BD [80,81]. The association of the FUT2 gene with BD
was unveiled in the GWA studies conducted by Xavier et al. [80]. Their findings gained
additional support from a meta-analysis that consolidated their data with a Turkish GWAS
dataset focusing on Iranian patients. Furthermore, Xavier et al. [80] demonstrated that the
FUT2 gene serves as an independent genetic risk factor for BD, distinct from the HLA-B
gene, and they found no evidence of epistasis.

The protein encoded by the FUT2 gene, known as FUT2, plays a crucial role in the
synthesis and secretion of the H antigen—a precursor of major ABO blood antigens—within
the intestinal mucosa and bodily fluids. Owing to the genetic variability among humans,
approximately 80% of individuals exhibit a secretor phenotype, denoting the presence
of at least one functional FUT2 allele. Conversely, the remaining 20% showcase a non-
secretor phenotype [82]. The non-secretor phenotype, which has been linked to BD in the
aforementioned study, is also associated with type 1 diabetes, CD, and rheumatic fever.
Notably, this phenotype is correlated with a decreased susceptibility to infections caused by
microorganisms like Helicobacter pylori, Campylobacter jejuni, and the Norwalk virus [80]. The
Human Microbiome Project elucidated that the FUT2 phenotype influences the abundance
and diversity of Bifidobacterium in the microbiome. Individuals with a non-secretor
phenotype exhibit a decrease in Bifidobacterium longum within their microbiome [83].
While further investigation is warranted to fully understand the impact of the FUT2 gene
on the gastrointestinal microbial flora, certain studies suggest that FUT2 stands as one of
the genes bridging environmental and genetic factors [80,81].

3.5.3. Toll-Like Receptor Genes

The group of TLR genes offers further insights into the role of immune responses
against bacteria in BD [81]. Among these genes, TLR4 stands out as the most associated
with BD within this family. SNPs within the TLR4 gene have been linked to an elevated
risk of various inflammatory disorders, including rheumatoid arthritis (RA), ulcerative
colitis, and CD [84]. The connection between the TLR4 gene and BD has been established
in Japanese patients [85]. Additionally, a study involving Korean patients revealed that
the TAGCGGTAA haplotype exhibited a notably higher prevalence among HLA-B*51+
BD patients in comparison to healthy controls [84]. Kirino et al. [75] reported that two
TLR4 variations, namely p.Asp299Gly (D299G) and p.Thr399Ile (T399I), conferred a protec-
tive effect against BD. Interestingly, these hyporesponsive variants had previously been
associated with an increased risk of CD.

Furthermore, investigations involving the Han Chinese population revealed a link-
age between the TLR2 gene and BD. Specifically, two TLR2 genotypes—rs2289318 and
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rs3804099—were found to be more prevalent in ocular BD patients compared to healthy
individuals [86].

3.5.4. TNFAIP3

The tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) gene has recently
been debated as a BD-associated gene or related to a familial BD-like autoinflammatory
syndrome of haploinsufficiency of A20 (HA20) [87–89]. The TNFAIP3 gene encodes the
A20 enzyme, which modulates inflammatory reactions via TNF, TLR, or NOD2-induced
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling [90,91].
Polymorphisms in TNFAIP3 are associated with autoimmune diseases (systemic lupus
erythematosus (SLE) [92], RA [93], multiple sclerosis (MS) [94], and psoriasis [95]). Han
Chinese BD patients with SNPs (e.g., rs9494885, rs10499194, rs7753873) exhibit elevated
BD risk [88]. Monogenic variants like nonfunctional TNFAIP3 forms lead to early-onset
BD-like syndrome (HA20) due to A20 haploinsufficiency [87]. HA20 results from loss-of-
function mutations prompting increased NF-κB signaling, intensifying immune cell-driven
inflammation [96]. HA20 has oral, genital ulcers, GI involvement and arthritis similar to
BD. However, HA20, is more frequent in women (1:2 male-female ratio), emerges earlier
in childhood (median age 5.5). Typically attacks are accompanied by recurrent high fever.
Although the prevalence is low, HA is globally evenly distributed in contrast to BD. and
the presence of HLA-B*51 antigen is low [97].

3.5.5. STAT4

Signal transducer and activator of transcription-4 (STAT4) is associated with an ele-
vated risk of various autoimmune diseases, including primary Sjögren’s syndrome, RA,
and SLE [12,98]. STAT4 was shown to be associated with BD in a GWA investigation
of Turkish individuals [45]. One of the related SNPs revealed in GWA research on Han
Chinese patients, rs897200 risk allele A, was linked to more severe BD symptoms, including
increased STAT4 expression, greater interleukin 17 (IL-17) production, and more severe
clinical signs [99].

3.5.6. Other Associated Genes

Some more gene loci associated with susceptibility to this disease were discovered
in GWA studies of BD patients. These genes include, but are not limited to, the IL-10
gene, which is a cytokine that is reduced in the blood of BD patients. In studies from
Turkey and Iran, one SNP in the IL-10 gene, rs1518111, was linked to BD, and the risk
allele A (found in Turkish GWA studies) was found to result in a 35% lower expression of
IL-10 in monocytes [15,33,34,51]. Additionally, the CD40 gene featured two linked SNPs,
rs4810485 and rs1883832. These SNPs had a predisposing effect in TT genotypes and a
protective effect in GT genotypes for rs4810485 [34,52]. BD susceptibility involves various
genomic regions, influenced by both genetic and environmental factors. Understanding
their interplay is crucial for future therapies and accurate diagnostics [34].

3.6. Antigens in Behçet’s Disease

The HLA class I associated disease hypothesis suggests that increased antigenicity
of an HLA-B*51-presented peptide can trigger CD8+ T cell recognition of a self-protein,
potentially initiating the disease. This concept aligns with findings of increased CD8+ T
cells in the aqueous humor and the presence of oligoclonal and clonal expansions of CD8+ T
cells in the peripheral blood of BD patients, providing supportive evidence [100,101]. In one
study, 67% of clinically active BD patients displayed oligoclonal expansions in both CD4+
and CD8+ T cells, with five out of nine patients exhibiting a CD8+ T cell clone featuring the
Vb5.1 chain [101]. Another analysis of the peripheral blood mononuclear cells (PBMCs)
found one or more CD4+ or CD8+ T cell clones in 57% of patients. Longitudinal research
revealed that all patients with active disease harbored a specific T cell clone associated with
the disease [100].
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Self-peptides produced from an intracytoplasmic protein that have molecular simi-
larity to a peptide previously identified as a structure of a harmful bacterium may elicit
an immune response in CD8+ T cells, although the specific self-peptides responsible
for BD development remain unidentified. Research has predominantly focused on the
environmental antigens implicated in BD autoimmunity, including bacterial peptides
(e.g., Streptococcus sanguinis, Mycobacterium tuberculosis, Helicobacter pylori) and viral anti-
gens (e.g., HSV1, cytomegalovirus, hepatitis, Epstein-Barr virus) [102,103]. Notably, the
50% similarity between heat shock protein-65 (HSP-65) in Streptococcus sanguinis and My-
cobacterium tuberculosis and the human 60-kDa heat shock protein (HSP-60) suggests a
potential BD trigger [102,104,105]. The cross-reactivity between human and bacterial HSP
may induce autoreactive T cell proliferation or autoimmunity [105,106]. BD patients exhibit
antibodies against HSP-65, which cross-react with oral epithelium antigens. Mycobacterium
HSP-65 epitopes (amino acids 111-25, 154-172, 219-233, and 311-326) trigger B and T cell
reactions [104,107–110]. When BD patient T cells were activated using a peptide pool
derived from the 65-kDa HSP, four significant immunotopes (111-125, 154-172, 311-325,
and 219-233) were identified [111]. These M. tuberculosis HSP immunotopes stimulated δT
cell activation and proliferation in 76% of the patients, while αβ CD8+ T cells were not
elevated [112].

Recent Turkish research found autoantibodies against neurofilament-M, an intracellu-
lar protein, in BD patient sera. The peptide structure of this protein exhibited homology
with three immunotopes (amino acids 111-126, 213-232, and 304-363) of M. tuberculosis
HSP and (161-176, 304-363, and 340-359) of S. sanguinis HSP. Additionally, BD patient
blood shows immunological reactivity to the self-antigen neurofilament medium, sharing
amino acid similarity (111-126, 213-232, 304-363) with Mycobacterium HSP-65 [104,107–110].
Sera containing neurofilament-M autoantibodies responded to bacterial HSP [109]. Other
studies have demonstrated autoreactive CD8+ T cells in BD upon stimulation with MICA
peptide and S. sanguinis HSP [105,110,113].

Studies indicate that BD patients often exhibit disrupted oral flora and poor oral health,
with the plaque index being correlated with disease severity. Antibiotics can sometimes
help control disease recurrence [3,107,114]. Among the investigated bacteria, S. sanguinis
yielded the following findings: (1) BD patients have a higher proportion of these bacteria
in their oral flora compared to healthy individuals. (2) BD patients exhibit hypersensitivity
to antigens from this bacterium. (3) Gnotobiotic animal models inoculated with these
bacteria displayed BD-like symptoms. (4) Gamma-delta (γδ) T cells from BD patients react
to antigens from S. sanguinis.

In the context of BD, one virus that has been extensively researched is HSV1. It is
noteworthy that HSV1 DNA has been identified not only in BD lesions located in the
oral and vaginal regions but also in blood samples obtained from BD patients. Moreover,
BD patients exhibit elevated levels of antibodies against HSV1 in comparison to healthy
individuals. Interestingly, when animal models were inoculated with this virus, it resulted
in the manifestation of BD-like symptoms [60,107,115].

3.7. Exploring the Involvement of Diverse Immune Cells in Behçet’s Disease

The innate and adaptive immune systems both have a role in the pathogenesis of BD.
The activation of adaptive immunity in BD may be coupled with the activation of innate
immunity by pathogen-associated molecular patterns (PAMPs) from tissues exposed to the
external environment, or damage-associated molecular patterns (DAMPs) generated by
tissues under stress (Figure 3). The ratios of Th1/Th2 and Th17/Th1 and cytotoxic CD8+ T
cells are raised in the adaptive immune response, while the number of regulatory T cells
(Tregs) is decreased [11,116]. Other cell types implicated in the pathophysiology of BD
include neutrophils, γδ T cells, and NK cells [117] This section will discuss the various
immune cells involved in the pathogenesis of BD.
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role in activating neutrophils, generating reactive oxygen species, and triggering the formation of 
neutrophilic extracellular traps. Subsequently, this immune response can lead to tissue damage. 
(Created using BioRender.com accessed on 14 May 2023). 
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illustration of the genetic determinants and potential triggering antigens that activate an immune
cascade when self-peptides, mimicking environmental antigens, are presented to CD8 T cells. This
activation is further triggered by the release of IL-23. Immune dysregulation leads to the release of
cytokines by various immune cells such as Tc17, Th17, NKT, and NK cells. The dominant cytokines
involved in this process, including IL-23, IL-17, TNF-alpha, IFN-gamma, and IL-8, play a pivotal
role in activating neutrophils, generating reactive oxygen species, and triggering the formation of
neutrophilic extracellular traps. Subsequently, this immune response can lead to tissue damage.
(Created using BioRender.com, accessed on 14 May 2023).

3.7.1. Cytotoxic T Cells (CD8+ T Cells)

HLA-B*51 is the key genetic factor in BD and plays a crucial role in presenting peptides
to CD8+ T cells. Consequently, CD8+ T cells are implicated in BD’s pathogenesis. This is
supported by increased CD8+ T cells in the aqueous humor and the presence of oligoclonal
and clonal expansions of CD8+ T cells in the peripheral blood of BD patients [56,57]. CD8+ T
cells release various cytokines, including IL-17, IL-8, and granulocyte–macrophage colony-
stimulating factor (GM-CSF), which have diverse effects, such as enhancing neutrophil
activation and facilitating the interaction between innate and adaptive immunity in BD’s
immunopathogenesis [50]. In active HLA-B*51+ BD patients, blood samples exhibit a higher
proportion of CD8+ T cells compared to healthy individuals and inactive BD patients [118].
The number of these cells is increased in the aqueous humor of BD patients with ocular
involvement [119]. Studies also indicate that in BD skin lesions, IL-17-secreting T cells
predominantly originate from CD8+ T cells rather than CD4+ cells [116].

3.7.2. T Helper 1 Cells

T helper 1 (Th1) cells play a significant role in BD. Comparing active BD patients
to both inactive BD patients and healthy individuals reveals an increase in Th1 cells and
their associated cytokines, such as interferon gamma (IFN-γ). In ocular non-infectious
inflammations like BD, Vogt–Koyanagi–Harada (VKH), and sarcoidosis, there is a notable
elevation in Th1 cell infiltration [120]. Moreover, research by Ye et al. [121] highlighted the
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impact of reduced B and T lymphocyte attenuator (BTLA) in the disease’s pathogenesis.
This reduction amplifies the activity of Th1 and Th17 cells, worsening ocular inflammation
in BD. Exploring this pathway could offer promising avenues for new BD uveitis treatments.
Notably, VKH syndrome, the second major cause of uveitis, is unaffected by the decrease
in BTLA. Additionally, the mRNA expression of Th1-related cytokines is notably higher in
BD patients’ mucocutaneous lesions [1,120–122].

3.7.3. T Helper 17 Cells

Th17 cells have garnered significant attention for their involvement in various autoim-
mune and inflammatory disorders like psoriasis, MS, RA, and IBD [80]. In a mouse model,
the differentiation of Th17 cells from naive T cells is stimulated by IL-6 and transforming
growth factor-β (TGF-β). Additionally, TNF-α and IL-1 enhance Th17 differentiation when
these cytokines are present. What is particularly intriguing is that while TGF-β typically
inhibits most T cell responses and promotes the generation of Tregs, it paradoxically in-
creases the population of Th17 cells [81]. In a study conducted by Xu et al. [123], it was
revealed that Treg cells can transform into proinflammatory Th17 cells when exposed to
IL-6 [82]. Consequently, Tregs lose their ability to suppress Th17-induced inflammation
and may even exacerbate it. This complex interplay underscores the significance of Th17
cells in immune-related diseases.

Diverse studies have presented varying perspectives concerning the role of TGF-β
in the differentiation of Th17 cells. Some research contends that TGF-β is imperative for
the differentiation of Th17 cells, particularly when employing naïve T cells derived from
cord blood. Furthermore, the concentration of TGF-β emerges as a critical determinant
in its functionality, where diminished levels facilitate Th17 differentiation, and elevated
concentrations promote differentiation of Tregs. Conversely, conflicting research proposes
that TGF-β, despite being a requisite for Th17 differentiation in murine models, exerts
an inhibitory effect on the genesis of Th17 cells in human subjects. This disparity poses
a challenge in the translational applicability of findings from murine disease models to
human cases. In conclusion, it is imperative to conduct further rigorous investigations to
comprehensively elucidate the nuanced influence of TGF-β on Th17 cell differentiation and
its ramifications across a spectrum of pathological conditions [123–128].

Initially, Th1 cells were presumed to be the central players in BD. However, a substan-
tial body of research has demonstrated an elevated presence of Th17 cells in BD patients,
signifying their role in BD pathogenesis [129,130]. BD patients exhibit increased counts
of both Th1 and Th17 cells. Moreover, in BD patients, there is a notable upregulation of
Th17-associated cytokines, including IL-22 and TNF-α. Furthermore, the transcription
factor essential for Th17 cell differentiation, retinoic acid-related orphan receptor γ (RORγt),
is found at increased levels in BD patients [122,129,131]. In summation, Th17 cells consti-
tute a crucial component in the immunopathological framework of BD, offering valuable
insights into the disease’s etiology and holding potential for the identification of innovative
therapeutic strategies.

3.7.4. Natural Killer T Cells

Upon activation, NKT cells exhibit the secretion of cytokines, including TNF, IFN-γ,
IL-4, IL-10, and IL-17. The specific cytokine profile produced is contingent upon factors
such as the NKT cell subtype, signal intensity, and the antigen-presenting cells (APCs)
involved. NKT cells and their deficiencies serve as valuable diagnostic markers for various
diseases and represent an area of active exploration for potential therapeutic and preventive
strategies [132–135].

In BD patients with ocular involvement, there is an increase in the number of NKT
cells, notably the CD8+CD56+NKT subset in the aqueus humor [119]. However, the data
regarding changes in the number of NKT cells in the peripheral blood of BD patients
present conflicting results, with some studies indicating an increase while others report a
decrease in their numbers [136]. Furthermore, NKT cells exhibiting high IFN-γ expression
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are elevated in the cerebrospinal fluid (CSF) of BD patients experiencing neurological
symptoms during the active phase of the disease, with a subsequent reduction in these cells
when patients transition into remission. Notably, NKT cell activity in the blood displays a
concurrent decrease [137].

3.7.5. Gamma-Delta (γδ) T Cells

Gamma-delta (γδ) T cells, distinct from conventional αβ T cells, are integral to the
immune response. Typically, γδ T cells lack both CD4 and CD8 markers and do not rely
on MHC class I or II molecules for antigen recognition [138]. During infections, these cells
significantly increase in the bloodstream. In mouse models, γδ T cells have emerged as the
primary source of IL-17, a potent pro-inflammatory cytokine critical in conditions such as
BD, particularly during the onset of inflammation.

Two distinct subsets of γδ T cells secrete IL-17. Firstly, natural γδ 17 T cells, known as
natural Tγδ17 cells, circulate in the bloodstream, becoming effector cells upon encountering
infections. They secrete various cytokines, including IL-17, as part of their immune response.
Secondly, induced γδ T17 cells rapidly propagate in response to infection, operating without
the need for clonal expansion, yet they significantly contribute to the immune response
against pathogens. This dual secretion mechanism of IL-17 underscores the versatility of
γδ T cells in immune regulation.

Moreover, γδ T cells exhibit a unique ability to function as professional APCs. Multi-
ple investigations have demonstrated their proficiency in activating other immune cells,
including both CD4+ and CD8+ T cells, within lymph nodes [139–142].

γδ T cell fractions exhibit noteworthy differences in active BD patients when compared
to both healthy individuals and those with inactive BD [75]. These unique T cells are char-
acterized by their release of substantial quantities of cytokines, which result in neutrophil
hyperactivity and the induction of Th1 and Th17 cells [118]. These cells release significant
quantities of cytokines, causing neutrophil hyperactivity and the induction of Th1 and
Th17 cells [143]. In the context of BD, it is of particular interest that the Vγ9Vδ2 T cell phe-
notype experiences a significant elevation in patients. These cells not only produce various
inflammatory cytokines, including IL-17, but also cytotoxic molecules such as granzyme A,
which are known to play a pivotal role in the pathogenesis of the disease [144,145].

The association between γδ T cells and BD was initially established in the early 1990s,
when researchers observed higher levels of γδ T cells within the PBMCs of a group of BD
patients [146,147]. When stimulated, these cells are known to release IFN-γ and TNFα [148].
Interestingly, γδ T cells are believed to have a significant impact on the adaptive immune
response by secreting cytokines like interleukin-4 (IL-4) or IFN γ, potentially influencing the
immune response toward the Th2, Th17, and Th1 CD4+ T cell phenotypes. Additionally, γδ
T cells have been shown to establish efficient interactions with neutrophils and monocytes
during acute microbial infections in response to bacterial antigens. Their natural functional
diversity and adaptability render them significant contributors to disorders like BD, which
affect various compartments of the body.

However, despite the potential significance of γδ T cells in BD, the evidence regarding
their role in the disease remains somewhat contradictory. While some studies have reported
an increase in the population of γδ T cells in BD patients [146–149], others have not found
a substantial elevation of this specific cell category in PBMCs [140,150,151].

3.7.6. Regulatory T (Treg) Cells

Regulatory T cells constitute a specialized subset of T cells characterized by the ex-
pression of the forkhead box protein P3 (FoxP3), and they play a critical role in maintaining
immunological balance while preventing autoimmune responses [152–155]. It is evident
that any malfunction or reduced quantity of these Tregs can lead to the development of
autoimmune disorders, as exemplified by conditions like MS, RA, SLE, and myasthenia
gravis [152].
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The role of Tregs in BD has been the subject of investigation, yielding somewhat
conflicting results. Some studies suggest a decrease in the number of Treg cells in BD
patients, and this reduction is correlated with disease activity, potentially attributed to
increased levels of the cytokine IL-21 [156]. Conversely, another study focusing on the
CSF of BD patients with neurologic involvement reported an increase in Treg cell numbers
compared to individuals with noninflammatory neurological conditions. However, this
increase was associated with a deficiency in suppressing T helper responses, possibly
indicating a decline in Treg cell functionality. Furthermore, under inflammatory conditions
marked by the presence of IL-1β and IL-2, these Treg cells were proposed to undergo
transformation into Th17 cells [157]. The dual nature of Treg cells in BD, where their
numbers may increase in specific contexts, but their functional effectiveness may diminish,
highlights the intricate immunological dynamics at play in this disorder.

3.7.7. Natural Killer Cells

Natural killer cells (NK cells) constitute a vital component of the innate immune
system. NK cells can interact with HLA class I molecules, which are < z < z < Zz < ligands
for their KIR receptors. In several autoimmune disorders such as SLE, Sjögren’s syndrome,
MS, and RA, there is a consistent pattern of both diminished numbers and impaired
functionality of NK cells.

NK cells are categorized into two types within the body:

1. CD56brightCD16 NK cells, primarily found in the lymph nodes, specialize in
cytokine release.

2. CD56dimCD16+ NK cells, predominantly present in the blood and inflamed sites,
primarily exert cytotoxic effects using proteins like perforin and granzyme, with a
diminished capacity for cytokine release compared to the former category [158,159].

Similarly, in BD, a reduction in the quantity of NK cells in the bloodstream is observed,
possibly attributed to their migration to inflamed sites. Notably, among the NK cell
population, there is an increase in CD56bright NK cells, which are known for cytokine
production, particularly IFN-γ [160,161].

NK cells can also be categorized based on the cytokines they produce, falling into
five distinct groups: NK-1, NK-2, NK-17, NK-reg, and NK-22, each associated with the
release of specific cytokine types such as Th1, Th2, IL-17, IL-10, and IL-22, respectively.
Research findings in BD patients reveal an elevated proportion of NK-1 cells, while the
numbers of NK-2, NK-17, and NK-reg cells are diminished. Furthermore, investigations
have illuminated a notable shift in the NK-1/NK-2 ratio between the active and remission
phases of BD. During the active phase, NK-1 predominates, promoting a Th1 immune
response, whereas in the remission phase, NK-2 becomes dominant, tilting the immune
response toward Th2 activation [117,162,163].

3.7.8. Neutrophils

BD patients frequently exhibit heightened neutrophil activity and an increased neu-
trophil count, a phenomenon supported by various investigations. Additionally, granu-
locyte colony-stimulating factor (G-CSF) levels are elevated in active BD patients, con-
tributing to increased neutrophil apoptosis [164]. Moreover, several studies have re-
ported an elevated neutrophil-to-lymphocyte ratio in BD patients, with Djaballah Ider’s
research highlighting its potential as an indicator of BD and disease severity [165,166].
Le Joncour et al. [167] have demonstrated elevated levels of neutrophil extracellular traps
(NETs) and associated markers like myeloperoxidase (MPO) and cell-free DNA (CfDNA)
in BD patients, implicating their role in the disease’s pathophysiology. Notably, NETs have
been observed in BD papulopustular lesions [116]. Neutrophils accumulate significantly
in all types of BD lesions, including those affecting the skin, mucocutaneous regions, and
eyes. In BD patients, these hyperactive neutrophils induce tissue damage via the oxidative
stress mediated by reactive oxygen species (ROS) [168].
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4. Conclusions

In conclusion, BD exhibits an intricate pathogenesis, driven by the interplay of au-
toinflammatory and autoimmune components. Our review highlights the pivotal role of
genetics, particularly the HLA class I allele HLA-B*51. However, the genetic landscape of
BD is diverse, as a spectrum of non-HLA genes, including ERAP1, IL-10, IL23R/IL-12RB2,
and various innate immunity genes, have also been implicated in disease susceptibility.

GWA studies have revealed the prominence of ERAP1 alongside HLA-I. The epistatic
link between HLA-B*51 and ERAP1 highlights how specific ERAP1 polymorphisms be-
come risk factors only in the presence of the HLA-B*51 allele. These genetic variations can
modulate antigen presentation and enzymatic activity, thereby influencing the HLA-I pep-
tidome and binding affinity. This interaction may shape the immune response, potentially
triggering distinct autoimmune responses when peptides of intermediate affinity to HLA
are involved.

It is noteworthy that the presence of HLA-B*51 and its combination with the ERAP1-
Hap10 variant is notably absent in the majority of BD patients. Further research is impera-
tive to elucidate the underlying mechanisms at play in the remaining subset of BD patients.

BD pathogenesis also involves a dynamic interplay between innate and adaptive im-
munity. The activation of adaptive immunity, characterized by imbalances in the Th1/Th2
and Th17/Th1 ratios, coupled with increased cytotoxic CD8+ T cells and decreased Treg
cells, underscores the complexity of the immune responses. Cytotoxic T cells, particularly
CD8+ T cells, have garnered attention as they release an array of cytokines, including IL-17,
IL-8, and GM-CSF, leading to neutrophil activation and facilitating the collaboration of
innate and adaptive immunity. Other cells such as neutrophils, γδ T cells, and NK cells,
also play a role.

This comprehensive analysis provides valuable insights into the role of genetics and
immunity underlying BD pathogenesis. However, it is essential to recognize that the
precise roles of specific immune cell types, such as cytotoxic CD8+ T cells, neutrophils, γδ
T cells, and NK cells, and their interactions in BD pathogenesis warrant more in-depth
investigation. Given these limitations, our review highlights the need for continued research
into BD’s pathogenesis. Further studies incorporating advanced genomic techniques and
comprehensive immune profiling will be crucial to unravel the complexities of this disease.
Such investigations not only have the potential to refine our understanding of BD but
also pave the way for more targeted and effective diagnostic and therapeutic strategies,
ultimately improving the management and treatment of this disorder.

Author Contributions: S.K. and D.B. wrote the first draft. D.B. prepared the figures with S.V.’s
supervision. A.V. and S.V. supervised and edited the final draft. All authors have read and agreed to
the published version of the manuscript.

Funding: This study is funded by EADV Research Grant PPRC-2021-31 and TÜBİTAK 1001 project
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