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Abstract: In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf
age and the moment of inoculation. While the circadian clock and photoperiod have been linked to
the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent
NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae
in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent
and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis
lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust
NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon
leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues
of OsHOX6, by studying mutants and overexpressors in Arabidopsis–C. higginsianum interaction.
AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration
resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the
involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic
stress responses, in biotic stress responses in Arabidopsis.
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1. Introduction

To initiate a plant disease, several factors must interact including the pathogen, host
plant, and environmental conditions [1]. It has been observed that the susceptibility of the
host plant can vary with the time of day [2]. The circadian clock in plants plays a significant
role in regulating plant physiology by integrating environmental cues [3]. Recent studies
have shown that the circadian clock can also impact plant responses to biotic stresses [4–6].
This biological clock enables plants to anticipate regular environmental changes, such as
light and dark cycles, as well as biotic challenges like pathogens.

The susceptibility of host plants to disease also varies with their developmental
stage/developmental phenophase [7]. Aging in plants is a complex process that involves
various stages such as leaf development, transitions from juvenile to adult plants, and
eventual senescence [8]. These stages are genetically programmed and regulated by in-
tricate pathways. As plants age, changes occur in their organ morphology and chemical
composition, including alterations in hormone levels. These changes collectively influence
how plants perceive and respond to biotic and abiotic stress signals [9]. The stress resilience
of a plant organ, such as a leaf, is determined by the integration of age-related develop-
mental factors and stress response pathways. However, the precise molecular and cellular
mechanisms underlying this integration remain unclear. Aging in plants can be viewed in
two aspects [9,10]. The first is organ aging, which results from the combination of organ
differentiation and growth during the plant’s life cycle. Despite the similarity in develop-
mental processes for all organs, differences emerge over time. For example, in Arabidopsis
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thaliana (Arabidopsis), the rosette serves as a developmental axis where leaves of varying
ages possess distinct morphologies and biochemistries. Such differences result from a
dynamic genetic footprint that changes over time and is influenced by environmental cues.
The second aspect of plant aging pertains to the transition from a juvenile to an adult vege-
tative stage, which then moves into a generative or reproductive phase, activating sexual
reproduction. These transitions have significant impacts on the structure and chemistry of
existing and developing plant organs and are determined by genetic programming and
influenced by environmental factors. One crucial factor in the transition from the juvenile
to the adult phase is the miR156 gene, which is highly expressed in juvenile leaves but
decreases as the plant ages [11]. miR156 inhibits the activity of SQUAMOSA PROMOTER
BINDING-LIKE (SPL) transcription factors to maintain the vegetative phase and prevent
the initiation of flowering [12]. Overexpression of miR156 delays the transition to the adult
phase, while its inactivation results in premature flowering.

Resistance to pathogens of a leaf can vary greatly with its age, position, and the age of
the plant [7,10,13]. The phenomenon of leaf stage-associated resistance has been examined
in various pathosystems, and it has been found to be linked with phytohormones in a
way that varies depending on the particular pathosystem [14]. Age-related resistance
(ARR) refers to the gain of disease resistance during shoot or organ maturation, and
miR156 regulates the timing of ARR associated with the transition from the juvenile to the
adult vegetative phase [15]. Despite these findings, our understanding of the molecular
mechanisms underlying age-related resistance is still quite limited.

Rice blast is a destructive fungal disease that affects rice and is caused by Pyricularia
oryzae (syn. Magnaporthe oryzae). While rice is a host of P. oryzae, most other plants are not.
Nonhost resistance (NHR) is the term used to describe the ability of all genotypes of a plant
species to provide resistance to all genotypes of a pathogen species. NHR is expressed
by every plant towards the majority of potentially pathogenic microbes. Recent studies
have identified several rice blast resistance genes in rice, but the mechanisms underlying
NHR to P. oryzae in nonhost plants are not well understood. To investigate the regulation
of NHR to P. oryzae in Arabidopsis (a nonhost of P. oryzae), we previously identified several
genes, including PENETRATION 2 (PEN2), POWDERY MILDEW RESISTANCE 5 (PMR5),
and MILDEW RESISTANCE LOCUS O 2 (MLO2), that are involved in NHR [16,17]. PEN2
encodes an atypical myrosinase that metabolizes indolic glucosinolate (IG) in defense re-
sponses [18]. Glucosinolates are secondary metabolites with defensive function in members
of the order Brassicales [19]. IGs are derived from tryptophan (Trp), and the first step in
IG biosynthesis is catalyzed by CYP79B2 and CYP79B3 [19]. These two P450 monooxy-
genases convert Trp into indole-3-acetaldoxime (IAOx) [20]. IAOx is a precursor of the
IG, camalexin, and indole-3-carboxylic acid derivatives. These indole-type metabolites act
in defense responses in Arabidopsis. In fact, cyp79B2 cyp79B3 mutant plants are highly
susceptible to many plant fungal pathogens, including P. oryzae [21–24].

We also found that leaf age and time of inoculation influence NHR in Arabidopsis [25].
Specifically, we discovered that NHR is partially controlled by CIRCADIAN CLOCK AS-
SOCIATED1 (CCA1) and is thus linked to Arabidopsis’s circadian clock [26]. Additionally,
we identified PMR5 as a candidate gene of direct targets of CCA1 and found that a CCA1-
PMR5 module in the epidermis contributes to the establishment of time-of-day-specific
NHR to P. oryzae in Arabidopsis [27]. However, the role of developmental age in regulating
NHR is still unclear.

C. higginsianum is a species of Colletotrichum that belongs to a main phylogenetic
clade within the C. destructivum complex. It causes anthracnose disease on a variety of
cruciferous plants, including Arabidopsis [28]. Like P. oryzae, Colletotrichum species produce
appressoria-containing melanin in their walls, and their infection mechanism is similar. On
Arabidopsis, the hemibiotrophic life cycle of C. higginsianum begins with conidia landing
on the leaf surface and producing germ tubes that form appressoria to penetrate the
leaf surface. Within the breached epidermal cell, the initial narrow hypha from the peg
gives rise to a swollen biotrophic hyphae (BH) that enlarges and forms lateral bulbous
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lobes resembling a haustorium. The fungus establishes itself as a biotroph within 36 h
post-infection by forming a multiseptate, multilobed structure that is variable in shape
and confined within the initially infected epidermal cells. After 72 h post-infection and
subsequent colonization of neighboring cells, there is a switch in both hyphal morphology
and the trophic relationship. At the periphery of the lobed BH, outgrowths develop rapidly
to produce narrow necrotrophic hyphae (NH). These hyphae radiate from each BH and
grow through adjacent cell walls to infect surrounding cells. Narrow NH grow rapidly, and
hyphal spread eventually leads to necrotic lesions with the appearance of water-soaked
lesions on the surface of the infected host as soon as 84 h post-infection. However, the role
of Arabidopsis developmental age in regulating host resistance (HR) to C. higginsianum
remains unknown.

According to PlantTFDB [29], Arabidopsis and rice have 2296 and 2408 transcription
factors (TFs), respectively. These TFs are classified into families based on their DNA binding
domain and then divided into subfamilies based on additional structural and functional
characteristics. The homeodomain–leucine zipper (HD-Zip) family is unique to plants and
is characterized by the presence of a homeodomain linked to a leucine zipper [30]. The
HD-Zip family is divided into four subfamilies (I-IV) based on sequence similarity and
the intron/exon patterns of the corresponding genes. Members of subfamily I (HD-Zip
I) have been found to interact with the pseudo-palindromic sequence CAAT(A/T)ATTG
and have been implicated in the plant’s adaptive response to abiotic stress [31]. Their
expression is regulated by various external conditions and hormones such as drought, salt,
abscisic acid (ABA), ethylene, jasmonic acid, freezing, and aluminum in different tissues
and organs [31,32]. In Arabidopsis, the HD-Zip I subfamily comprises 17 members divided
into six groups. AtHB7 and AtHB12 belong to the HD-Zip I subfamily in Arabidopsis.
Similarly, in rice, OsHOX6, OsHOX22, and OsHOX24, which are the closest homologues
to AtHB7 and AtHB12, are upregulated under water-deficit conditions [33–35]. AtHB12 is
expressed at higher levels during early Arabidopsis development, while AtHB7 is expressed
during later developmental stages [36]. These two TFs affect each other’s expression, and
their regulation is dependent on the plant’s developmental stage, as shown by analyses of
gene expression in single and double mutants, and in transgenic plants expressing these
TFs. Phenotypic analysis of these plants revealed that AtHB12 induces root elongation and
leaf development in young plants under standard growth conditions and seed production
in water-stressed plants. In contrast, AtHB7 promotes leaf development, chlorophyll levels,
and photosynthesis and reduces stomatal conductance in mature plants. Moreover, AtHB7
delays senescence processes in standard growth conditions [36]. Further, AtHB7 and
AtHB12 oppositely regulate aluminum resistance by affecting aluminum accumulation
in root cell wall [32]. However, the mechanism by which AtHB7 and AtHB12 regulate
development and stress responses is not yet fully understood.

Ichikawa et al. developed the Full-length cDNA OvereXpressing (FOX) hunting
system as an alternative to activation tagging in Arabidopsis [37]. In this system, tran-
scriptomes of full-length cDNAs from another plant species are ectopically expressed in
Arabidopsis. A rice-FOX Arabidopsis population of 23,000 lines was previously generated
by introducing 13,000 full-length rice cDNAs under the control of the cauliflower mosaic
virus (CaMV) 35S promoter into Arabidopsis ecotype Columbia [38]. Several screenings
have been performed on these lines to date, and genes related to heat stress tolerance [39],
salt tolerance [40,41], and disease resistance [42] have been identified.

We discovered that the regulation of NHR to P. oryzae involves not only miR156-
dependent but also miR156-independent pathways. Using rice-FOX Arabidopsis lines,
we identified the OsHOX6 gene from rice which provides strong NHR to P. oryzae and
C. nymphaeae in the old leaves of rice-FOX Arabidopsis C2-35 plants. The effect of OsHOX6
expression in Arabidopsis is dependent on the age of the leaves. We also investigated the
role of AtHB7 and AtHB12, the closest homologues of OsHOX6 in Arabidopsis, in resis-
tance responses to C. higginsianum by studying mutants (athb7 and athb12) and transgenic
overexpressors (AT7 and AT12). Our findings reveal that AtHB7 and AtHB12 function in
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both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age-
and time-dependent manner.

2. Results
2.1. Nonhost Resistance to Pyricularia oryzae in Arabidopsis thaliana pen2 35S::miR156a Plants

In our previous study, we found that penetration 2 (pen2) plants allowed increased
penetration into epidermal cells by P. oryzae, which suggests the PEN2-dependent nonhost
resistance (NHR) to P. oryzae in Arabidopsis [16]. We also found that old leaves of pen2
plants following pm-inoculation showed significantly increased penetration rates compared
to wild-type Col-0 plants (Figure 1) [25]. These findings suggest that the regulation of NHR
in Arabidopsis pen2 plants is dependent on both leaf age and the time of day when the
plant is inoculated.
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Figure 1. Nonhost resistance to Pyricularia oryzae is regulated by miR156-dependent and miR156-
independent pathways in Arabidopsis thaliana (Arabidopsis). (A) Penetration rate of P. oryzae into 
Col-0, pen2, and pen2 35S::miR156a (pen2 miR156) plants at 72 h post-inoculation (hpi) expressed as 
the percentage of the total number of infection sites. Arabidopsis plants were inoculated at 10:00 
a.m. (am) and 5:00 p.m. (pm) on young and old leaves. Values are from three independent experi-
ments, each containing six biological replicates. Significantly different statistical groups of geno-
types indicated by the analyses of variance (Tukey’s test; p < 0.05) are shown with lowercase letters 
in each inoculation time. (B) Col-0, pen2, and pen2 35S::miR156a (pen2 miR156) plants were inocu-
lated with P. oryzae at 10:00 a.m. (am) and 5:00 p.m. (pm) on young leaves. (C) Col-0, pen2, and pen2 
35S::miR156a (pen2 miR156) plants were inoculated with P. oryzae at 10:00 a.m. (am) and 5:00 p.m. 
(pm) on old leaves. Cell-death-associated autofluorescence at infection sties of Arabidopsis plants 
at 72 hpi as visualized by fluorescence microscopy. The white arrowhead indicates a penetrated 
epidermal cell. Bars, 0.2 mm. 

We also found that old leaves of pen2 35S::miR156a plants showed a significantly in-
creased penetration rate compared to that of pen2 plants after pm-inoculation (Figure 1). 
This result suggests that the miR156-dependent pathway and time of inoculation would 
synergistically regulate NHR in Arabidopsis. 

2.2. Nonhost Resistance to Pyricularia oryzae in Rice-FOX Arabidopsis C2-35 Plants 
In a previous study, we demonstrated that Arabidopsis cyp79b2 cyp79b3 plants have 

reduced NHR to P. oryzae compared to pen2 plants, which suggests that the CYP79B2 

Figure 1. Nonhost resistance to Pyricularia oryzae is regulated by miR156-dependent and miR156-
independent pathways in Arabidopsis thaliana (Arabidopsis). (A) Penetration rate of P. oryzae into
Col-0, pen2, and pen2 35S::miR156a (pen2 miR156) plants at 72 h post-inoculation (hpi) expressed as the
percentage of the total number of infection sites. Arabidopsis plants were inoculated at 10:00 a.m. (am)
and 5:00 p.m. (pm) on young and old leaves. Values are from three independent experiments, each
containing six biological replicates. Significantly different statistical groups of genotypes indicated by
the analyses of variance (Tukey’s test; p < 0.05) are shown with lowercase letters in each inoculation
time. (B) Col-0, pen2, and pen2 35S::miR156a (pen2 miR156) plants were inoculated with P. oryzae
at 10:00 a.m. (am) and 5:00 p.m. (pm) on young leaves. (C) Col-0, pen2, and pen2 35S::miR156a
(pen2 miR156) plants were inoculated with P. oryzae at 10:00 a.m. (am) and 5:00 p.m. (pm) on old
leaves. Cell-death-associated autofluorescence at infection sties of Arabidopsis plants at 72 hpi as
visualized by fluorescence microscopy. The white arrowhead indicates a penetrated epidermal cell.
Bars, 0.2 mm.
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We hypothesized that the NHR changes in leaves could be related to phase transitions
since the decreased expression of NHR corresponds to the onset of the transition from
juvenile to adult leaves in Arabidopsis pen2 plants (Figure 1) [25]. To investigate this idea,
we utilized transgenic Arabidopsis plants overexpressing the miRNA miR156a, which
prolongs the expression of juvenile traits [11]. We created pen2 35S::miR156a plants and
exposed their young and old leaves (leaf numbers 13 and 8, respectively) to P. oryzae at two
different times, 10:00 a.m. (am-inoculation) and 5:00 p.m. (pm-inoculation), and measured
cell penetration (Figure 1). Following am-inoculation, we found that young leaves of pen2
35S::miR156a plants showed significantly increased penetration rates compared to pen2
plants, and the penetration rate in young leaves of pen2 35S::miR156a plants was higher
than that of old leaves of pen2 plants (Figure 1). Following pm-inoculation, we found
that young leaves of pen2 35S::miR156a plants did not show any significant differences
compared to pen2 plants, and the penetration rate in young leaves of pen2 35S::miR156a
plants was less than that of old leaves of pen2 plants (Figure 1). These findings suggest
that miR156-dependent vegetative phase changes mainly influence NHR following am-
inoculation. In contrast, leaf age, rather than vegetative phase change, likely controls NHR
following pm-inoculation. Therefore, both miR156-dependent vegetative phase changes
and miR156-independent leaf age contribute to the establishment of NHR.

We also found that old leaves of pen2 35S::miR156a plants showed a significantly
increased penetration rate compared to that of pen2 plants after pm-inoculation (Figure 1).
This result suggests that the miR156-dependent pathway and time of inoculation would
synergistically regulate NHR in Arabidopsis.

2.2. Nonhost Resistance to Pyricularia oryzae in Rice-FOX Arabidopsis C2-35 Plants

In a previous study, we demonstrated that Arabidopsis cyp79b2 cyp79b3 plants have
reduced NHR to P. oryzae compared to pen2 plants, which suggests that the CYP79B2
CYP79B3-dependent indole-type metabolites act in NHR to P. oryzae in Arabidopsis [24].
In order to discover genes related to NHR regulation against P. oryzae, particularly in
relation to leaf age and time, we developed rice-FOX Arabidopsis lines by introducing rice
full-length cDNAs under the control of the cauliflower mosaic virus (CaMV) 35S promoter
into Arabidopsis cyp79b2 cyp79b3 plants.

In our study, we first inoculated young rosette leaves of Arabidopsis with P. oryzae
in the morning (10:00 a.m., am-inoculation) and assessed cell penetration. We screened
500 rice-FOX Arabidopsis cyp79b2 cyp79b3 lines and identified one line, C2-35, which
exhibited decreased NHR to P. oryzae compared to the control plants (Figure 2).

To investigate how NHR is regulated in C2-35 plants depending on leaf age and
time, we conducted experiments where we inoculated young and old leaves of the plants
with P. oryzae at 10:00 a.m. (am-inoculation) and 5:00 p.m. (pm-inoculation). Our results
show that am-inoculation led to decreased NHR in young leaves but not pm-inoculation
(Figure 2). However, both am- and pm-inoculation led to increased NHR in old leaves,
which is different from what we observed in young leaves (Figure 2). In contrast to cyp79b2
cyp79b3 plants, C2-35 plants exhibited a consistently steady penetration rate to P. oryzae
under various inoculation conditions. These findings suggest that C2-35 plants experience
a compromise in leaf age- and time-dependent NHR to P. oryzae. We also identified the
overexpressed gene in the C2-35 line, which was found to be a full-length rice cDNA
AK103160 (Os09g0528200) that encodes rice OsHOX6. These findings indicate that the rice
OsHOX6 plays a crucial role in enhancing NHR in old leaves of cyp79b2 cyp79b3 plants,
while not having the same effect on young leaves. In conclusion, our results demonstrate
that the regulation of NHR by rice OsHOX6 is dependent on both leaf age and time
in Arabidopsis.
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Figure 2. C2-35 plants show increased NHR to P. oryzae in old leaves. (A) Penetration rate of P. oryzae
into cyp79b2 cyp79b3 (cyp) and C2-35 plants at 72 hpi expressed as the percentage of the total number
of infection sites. Arabidopsis plants were inoculated at 10:00 a.m. (am) and 5:00 p.m. (pm) on
young and old leaves. Values are from three independent experiments, each containing six biological
replicates. The Student’s t-test was used for statistical analysis; NS, not significant; *, p < 0.05;
**, p < 0.01; ***, p < 0.001. (B) Arabidopsis cyp79b2 cyp79b3 (cyp) and C2-35 plants were inoculated
with P. oryzae at 10:00 a.m. (am) and 5:00 p.m. (pm) on young and old leaves. Cell-death-associated
autofluorescence at infection sites of Arabidopsis plants at 72 hpi as visualized by fluorescence
microscopy. The white arrowhead indicates a penetrated epidermal cell. Bars, 0.2 mm.

2.3. Nonhost Resistance to Colletotrichum nymphaeae in Rice-FOX Arabidopsis C2-35 Plants

We inoculated young and old leaves of Arabidopsis plants with C. nymphaeae at
5:00 p.m. and quantified cell penetration. This pathogen, isolated from a Japanese flowering
cherry, is nonadapted to Arabidopsis [43]. We found that young and old leaves of cyp79b2
cyp79b3 plants showed significantly increased penetration rates compared to wild-type
Col-0 plants (Figures 3A and S1A,B). This result suggests that penetration resistance to
C. nymphaeae was severely compromised in cyp79b2 cyp79b3 plants. Further, to assess post-
penetration resistance in penetrated epidermal cells, we examined fungal growth in the cells
with bright-field microscopy at 72 h post-inoculation (hpi). We measured the severe fungal
growth region in the inoculated area of young and old leaves and found that the cyp79b2
cyp79b3 plants exhibited significantly increased severe fungal growth compared to Col-0
plants (Figure S1D). This result indicates that post-penetration resistance to C. nymphaeae
was severely compromised in cyp79b2 cyp79b3 plants compared to Col-0 plants. We also
noticed that the severe fungal growth of C. nymphaeae in cyp79b2 cyp79b3 plants damaged
infected cells and led to the accumulation of autofluorescent material (Figure S1B).
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Figure 3. C2-35 plants show increased NHR to C. nymphaeae in old leaves. (A) Penetration resis-
tance to C. nymphaeae in C2-35 plants. Penetration rate of C. nymphaeae into Col-0, cyp79b2 cyp79b3
(cyp), and C2-35 plants at 72 hpi expressed as the percentage of the total number of infection sites.
Arabidopsis plants were inoculated at 5:00 p.m. on young and old leaves. Values are from three
independent experiments, each containing six biological replicates. Significantly different statistical
groups of genotypes indicated by the analyses of variance (Tukey’s test; p < 0.05) are shown with
lowercase letters. (B) Micrographs showing the development of C. nymphaeae categorized to different
classes (class I–III). Conidial suspensions of C. nymphaeae were inoculated on Arabidopsis plants,
and penetrated conidia were examined at 72 hpi. Class I, well-melanized appressoria; Class II, slight
melanized appressoria or appressoria without detectable pigmentation; Class III, tiny appressoria
without detectable pigmentation or penetrated conidia without swollen structures. Bars, 10 µm.
Black arrowhead, appressorium; white arrowhead, penetration site of class III. (C) Classification
of penetrated C. nymphaeae appressoria (AP) development. Conidial suspensions of C. nymphaeae
were inoculated on Col-0, cyp79b2 cyp79b3 (cyp), and C2-35 plants, and penetrated conidia were
examined at 72 hpi. Class I, well-melanized appressoria; Class II, slight melanized appressoria or
appressoria without detectable pigmentation; Class III, tiny appressoria without detectable pigmen-
tation or penetrated conidia without swollen structures. Values are expressed as mean from three
independent experiments, each containing six biological replicates. Significantly different statistical
groups of genotypes indicated by the analyses of variance (Tukey’s test; p < 0.05) are shown with
lowercase letters.
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Then, we tested the effectiveness of rice OsHOX6 overexpression against nonadapted
fungal pathogen Colletotrichum nymphaeae by examining the C2-35 lines for NHR. The old
leaves of C2-35 lines exhibited increased penetration resistance to C. nymphaeae, but not
the young leaves (Figures 3A and S1C). This finding indicates that rice OsHOX6 can also
provide robust NHR to cyp79b2 cyp79b3 plants and that the effect is age-dependent on
the leaves, similar to NHR to P. oryzae in C2-35 plants (Figure 2). In contrast, the growth
of infection hyphae in C2-35 plants was comparable to that of cyp79b2 cyp79b3 plants,
suggesting the same level of post-penetration resistance between cyp79b2 cyp79b3 and
C2-35 plants (Figure S1D).

During the experiment, we observed a significant reduction in the incidence of
melanized appressoria in the nonadapted C. nymphaeae, while host-adapted C. higgin-
sianum develops typical melanized appressoria on Arabidopsis. To further understand
the infection structure of C. nymphaeae, we classified individual germinated spores into
three groups. Class I sporelings developed darkly melanized appressoria, while class II
sporelings developed an appressorium with slight pigmentation or one without detectable
pigmentation. Lastly, class III sporelings produced a germ tube without a recognizable
appressorium or developed a small swollen structure at the hyphal tip (Figure 3B). We
noticed that the class III hyphal development resembles hyphal tip-based entry (HTE),
previously reported in nonadapted C. gloeosporioides [44].

We analyzed the proportion of appressoria (AP) classes during C. nymphaeae penetra-
tion in Arabidopsis. We found that cyp79b2 cyp79b3 and C2-35 plants exhibited a significant
decrease in the incidence of class II sporelings (class II, Figure 3C) and a significant increase
in class III sporelings (class III, Figure 3C) compared to wild-type Col-0 plants in young
and old leaves (Figure 3C). We could not detect any significant differences between cyp79b2
cyp79b3 and C2-35 plants (Figure 3C). This result suggests that overexpression of the rice
OsHOX6 gene did not affect the proportion of AP classes during C. nymphaeae penetration
in Arabidopsis.

2.4. Host Resistance to Colletotrichum higginsianum in Rice-FOX Arabidopsis C2-35 Plants

To test if overexpression of the rice OsHOX6 gene could confer resistance to other
pathogens, we investigated its effect against the host-adapted C. higginsianum in C2-35
plants. We inoculated conidial suspensions of C. higginsianum on young and old leaves
of Arabidopsis plants at 5:00 p.m. We found that both young and old leaves of cyp79b2
cyp79b3 plants exhibited a significant decrease in penetration resistance to C. higginsianum
compared to wild-type Col-0 plants (Figures 4A and S2). Further, we found that both young
and old leaves of C2-35 plants exhibited a significant decrease in penetration resistance to
C. higginsianum compared to cyp79b2 cyp79b3 plants (Figures 4A and S2). These findings
suggest that the overexpression of the rice OsHOX6 gene can reduce the penetration
resistance of young and old leaves of cyp79b2 cyp79b3 plants against C. higginsianum.

We observed that the host-adapted C. higginsianum forms specialized infection structures,
such as melanized appressoria, penetrating hyphae, biotrophic hyphae, and necrotrophic
hyphae, during its infection process on Arabidopsis. Based on this, we divided the process
into four stages: the penetration phase (PP), biotrophic phase (BP), necrotrophic phase with
NH confined within the initially penetrated epidermal cells (NP1), and necrotrophic phase
with NH spreading into the surrounding cells (NP2). Next, we analyzed the proportion of
infection stages of penetrated sporelings in Arabidopsis. We could not find any significant
differences between Col-0 and cyp79b2 cyp79b3 plants, except decreased IH in the PP
stage in old leaves of cyp79b2 cyp79b3 plants compared to Col-0 plants (Figures 4B and S2).
However, C2-35 plants had significantly higher IH of the NP2 stage in young and old
leaves, while significantly lower IH in the BP stage compared to cyp79b2 cyp79b3 plants
(Figures 4B and S2). These results indicate that the overexpression of the rice OsHOX6
gene significantly reduced post-penetration resistance to C. higginsianum in young and old
leaves of cyp79b2 cyp79b3 plants.
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to C. higginsianum in C2-35 plants. Penetration rate of C. higginsianum into Col-0, cyp79b2 cyp79b3
(cyp), and C2-35 plants at 72 hpi expressed as the percentage of the total number of infection sites.
Arabidopsis plants were inoculated at 5:00 p.m. on young and old leaves. Values are from three
independent experiments, each containing six biological replicates. Significantly different statistical
groups of genotypes indicated by the analyses of variance (Tukey’s test; p < 0.05) are shown with
lowercase letters. (B) Classification of infection hyphae (IH) of C. higginsianum. Conidial suspensions
of C. higginsianum were inoculated on Col-0, cyp79b2 cyp79b3 (cyp), and C2-35 plants, and IH were
examined at 72 hpi. The infection process was classified into four stages: penetration phase (PP),
biotrophic phase (BP), necrotrophic phase with NH, which are confined within the initially penetrated
epidermal cells (NP1), and necrotrophic phase with NH, which spread into the surrounding cells
(NP2). Values are expressed as mean from three independent experiments, each containing six
biological replicates. Significantly different statistical groups of genotypes indicated by the analyses
of variance (Tukey’s test; p < 0.05) are shown with lowercase letters.

2.5. Host Resistance to C. higginsianum in Col-0 Plants

The rice OsHOX6 gene is a member of the HD-Zip I family, with its closest homo-
logues being AtHB7 (At2g46680) and AtHB12 (At3g61890) in Arabidopsis. The HD-Zip I
family has several members across plant species that regulate development in response
to environmental changes. For instance, AtHB5, AtHB6, AtHB7, and AtHB12 in Arabidop-
sis are mainly induced by water deficit, salt, and abscisic acid (ABA) [31]. In this study,
we found that the rice OsHOX6 gene plays a role in host resistance (HR) and NHR in
rice-FOX Arabidopsis C2-35 plants. This result suggests that AtHB7 and AtHB12 may
also regulate resistance responses in Arabidopsis. Furthermore, AtHB7 and AtHB12 are
induced by various pathogens according to BAR (Bio Analytic Resource for Plant Biology:
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http://bar.utoronto.ca/, accessed on 11 November 2023), which also implies their involve-
ment in biotic stress responses. However, the precise functions of AtHB7 and AtHB12 in
pathogen attack remain poorly understood.

We first investigated the interaction between the host-adapted pathogen, C. higgin-
sianum, and Arabidopsis Col-0 plants. To do so, we inoculated the plants with conidial
suspensions of C. higginsianum on young and old leaves of rosettes at two different times,
10:00 a.m. (am-inoculation) and 5:00 p.m. (pm-inoculation). Our findings revealed that
Col-0 plants showed a significantly increased penetration rate in young and old leaves
after am-inoculation compared to pm-inoculation (Figure 5A). These results suggest that
the penetration resistance to C. higginsianum in Col-0 plants is mainly regulated in a time-
dependent manner.
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of IH of C. higginsianum. Conidial suspensions of C. higginsianum were inoculated on Arabidopsis,
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Following this, we analyzed the proportion of IH stages of penetrated sporelings. Our
observations showed that young and old leaves of Col-0 plants had significantly increased
IH in the NP2 stage following am-inoculation compared to pm-inoculation (Figure 5B).
This indicates that post-penetration resistance to C. higginsianum in Col-0 plants is also
mainly regulated in a time-dependent manner.

2.6. C. higginsianum Growth in Arabidopsis Mutant Plants

To investigate the role of AtHB7 and AtHB12 in Arabidopsis resistance to C. higgin-
sianum, mutants (athb7 and athb12) and overexpressors of each gene (AT7 and AT12) were
analyzed. Arabidopsis plants were inoculated with C. higginsianum conidial suspensions
at 10:00 a.m. (am-inoculation) and 5:00 p.m. (pm-inoculation) on young and old leaves
of rosettes.

To assess fungal growth in penetrated epidermal cells, we examined each cell with
bright-field microscopy at 72 h post-inoculation (hpi). However, in severe fungal growth
regions, it was difficult to distinguish individual epidermal cells due to damage caused
by C. higginsianum necrotic growth in later phases. Therefore, we first measured the
severe fungal growth region in the inoculated area, where penetrated cells were in the
NP2 stage, with bright-field microscopy at 72 hpi. After am-inoculation, young leaves
of athb12, AT7, and AT12 plants exhibited significantly increased severe fungal growth
regions compared to Col-0 plants, and old leaves of athb7 and athb12 plants also showed
significantly increased regions compared to Col-0 plants (Figures 6 and S3). However, no
severe fungal growth regions were observed in either young and old leaves following pm-
inoculation (Figures 6 and S3). These results suggest that AtHB7 and AtHB12 are involved
in time-dependent HR to C. higginsianum.
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2.7. Host Resistance to C. higginsianum in Arabidopsis Mutant Plants

To measure the degree of cell penetration, we conducted an experiment in which we
inoculated Arabidopsis plants with conidial suspensions of C. higginsianum at 10:00 a.m.
(am-inoculation) and 5:00 p.m. (pm-inoculation) on both young and old leaves of the
rosettes of Arabidopsis plants. We examined germinated fungal sporelings that had devel-
oped appressoria, and we found that the young leaves of athb12 and AT7 plants showed



Int. J. Mol. Sci. 2023, 24, 16356 12 of 18

a significantly increased penetration rate following am-inoculation compared to control
Col-0 plants. However, we did not observe any significant differences in the old leaves
(Figures 7A and S3). In addition, we found that the young leaves of athb12 plants and
the old leaves of AT7 and AT12 plants showed a significantly increased penetration rate
following pm-inoculation compared to control Col-0 plants (Figures 7A and S3). These
findings suggest that the AtHB7 and AtHB12 genes function in penetration resistance to
C. higginsianum in a leaf age- and time-dependent manner.
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To quantify post-penetration resistance to C. higginsianum, we investigated the propor-
tion of different IH stages of penetrated sporelings. We found that following am-inoculation,
young leaves of mutants (athb7 and athb12) and overexpressors (AT7 and AT12) showed
significantly decreased proportions of the PP stage, while old leaves of mutants (athb7 and
athb12) and the overexpressor (AT7) showed significantly increased proportions of the NP2
stage compared to control plants (Figures 7B and S3). These results confirmed the severe
fungal growth observed in the previous experiment (Figure 6). Furthermore, following
pm-inoculation, significant differences in the proportion of the BP stage of penetrated
sporelings were observed in young leaves between mutant plants (athb12 and AT12) and
control plants, and in old leaves between mutant plants (athb12, AT7, and AT12) and control
plants (Figures 7B and S3). These findings suggest that AtHB7 and AtHB12 play a role in
post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner.

3. Discussion

In this research, we discovered that leaf age-dependent nonhost resistance (NHR)
to P. oryzae is not only regulated by miR156-dependent but also miR156-independent
pathways. Using rice-FOX Arabidopsis thaliana (Arabidopsis) lines, we identified the rice
OsHOX6 gene, which imparts strong NHR to P. oryzae and C. nymphaeae in the old leaves
of Arabidopsis C2-35 plants. The impact of rice OsHOX6 expression in Arabidopsis is de-
pendent on leaf age. AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6,
were then examined in the context of Arabidopsis–C. higginsianum interaction by studying
mutants (athb7 and athb12) and transgenic overexpressors (AT7 and AT12). Our findings
revealed that AtHB7 and AtHB12 play a role in both penetration and post-penetration
resistance to C. higginsianum, in a manner dependent on leaf age and time.

Age-related changes in immunity are observed in both animals and plants. In plants,
age-related resistance (ARR) refers to an increase in disease resistance during the maturation
of shoots or organs [10]. This trait is particularly significant during the vegetative phase
change, which marks the transition from the juvenile to adult stage. ARR contributes
to resistance against multiple pathogens, and recent research by Hu et al. has shown
that miR156 plays a crucial role in regulating the timing of ARR [15]. The coordinated
development of maturation and the acquisition of disease resistance is achieved through the
action of miR156-controlled SPL transcription factors with distinct functions. Specifically,
a subset of these factors (SPL2, SPL10, and SPL11) promotes resistance by activating key
genes involved in defense signaling [15]. On the other hand, Barens et al. has shown that
leaf age controls abscisic acid–salicylic acid cross talk independently of vegetative phase
change [45]. Our previous research has revealed that penetration resistance to P. oryzae in
pen2 plants is significantly decreased in older leaves following pm-inoculation, as compared
to young leaves following am-inoculation [25]. This finding suggests that the circadian
clock and developmental age play important roles in NHR to P. oryzae in Arabidopsis. In
the present study, we have discovered that leaf age-dependent NHR is regulated not only
by miR156-dependent pathways but also by miR156-independent pathways (Figure 1).

We have identified the rice OsHOX6 gene as a key regulator of NHR to P. oryzae
(Figure 2) and C. nymphaeae (Figure 3) in old leaves of rice-FOX Arabidopsis C2-35 plants.
Interestingly, we observed that the expression of OsHOX6 leads to a significant decrease
in the HR to C. higginsianum in both young and old leaves of C2-35 plants (Figure 4).
Our findings suggest that OsHOX6 can function as a regulator of both HR and NHR in
Arabidopsis, and its effect on these processes may vary depending on the type of resistance
involved. We also investigated the involvement of the closest homologues of OsHOX6
in Arabidopsis, namely, AtHB7 and AtHB12, in leaf age-dependent resistance responses.
Previous studies have detected the expression of AtHB7 and AtHB12 in meristems, root tips,
and flowers and have shown that their expression is strongly upregulated under osmotic
or drought stress and when young 14-day-old plants are treated with ABA or NaCl [46,47].
It has been suggested that AtHB7 and AtHB12 act as negative developmental regulators
in response to drought [47], and AtHB12 has been assigned a role as a regulator of shoot
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growth in standard growth conditions [48]. However, the ectopic expression of AtHB7
in tomato has been shown to confer drought tolerance to this species [49]. Furthermore,
loss-of-function athb7 and athb12 mutants have been found to activate clade A protein
phosphatases 2C (PP2C) genes and repress ABA signaling [50]. In our study, we have
demonstrated that AtHB7 and AtHB12 play a role in the plant defense response against
C. higginsianum in Arabidopsis. Interestingly, the involvement of these TFs is dependent
on leaf age and time, as shown in Figures 6 and 7. These findings support the idea that
HD-Zip I OsHOX6, AtHB7, and AtHB12 are important in mediating resistance responses
in plants. Furthermore, our study highlights the usefulness of rice-FOX Arabidopsis lines
in identifying defense-related genes, indicating a shared defense mechanism between
monocots and dicots.

The FOX hunting system typically involves the overexpression of full-length cDNA
to produce a dominant gain-of-function mutant phenotype. However, in the case of
rice-FOX Arabidopsis lines, the resulting plant phenotypes may not accurately reflect
the true functions of the overexpressed genes. This is because proteins can be regulated
differently in their respective genomic backgrounds due to the difference between amino
acid sequences. As a result, overexpressing a foreign gene may lead to different phenotypes
than overexpressing the corresponding endogenous gene. Therefore, caution must be
exercised when interpreting the phenotypes observed in rice-FOX Arabidopsis lines. To
investigate the function of OsHOX6 homologues in Arabidopsis, we examined the role of
AtHB7 and AtHB12 in the Arabidopsis–C. higginsianum interaction using knockout mutants
(athb7 and athb12) and transgenic plants overexpressing these TFs (AT7 and AT12). In this
study, we defined knockout mutants as loss-of-function and overexpressors as gain-of-
function. Typically, opposite phenotypes are observed between knockout mutants and
overexpressors. However, when we examined the function of AtHB7 and AtHB12, we did
not observe such opposite phenotypes. Contrary to expectation, both the knockout mutants
and overexpressors displayed similar defects in penetration resistance and post-penetration
resistance in the Arabidopsis–C. higginsianum interaction (Figures 6 and 7). Based on our
findings, it appears that the regulation of resistance responses by AtHB7 and AtHB12 is
a complex process. The unexpected phenotypes we observed suggest that the expression
of these genes involves intricate mechanisms. Recent research by Re et al. has shown that
AtHB12 is highly expressed during the early development of Arabidopsis, while AtHB7 is
expressed more strongly in later developmental stages [36]. This study also demonstrated
that these genes have overlapping yet specific roles in various developmental processes. By
examining the expression of AtHB7 and AtHB12 in single and double mutants, as well as in
transgenic plants expressing these genes, the researchers discovered a complex mechanism
that depends on the developmental stage of the plant and in which the expression of
AtHB7 and AtHB12 affects each other [36]. Therefore, to ensure precise function of these
transcription factors, it is necessary to fine-tune their expression levels with respect to
each other. In knockout mutants and overexpressors, disrupting the expression level of
one AtHB would also disrupt the expression of the other AtHB. This leads to unexpected
regulation of AtHB7 and AtHB12 and makes it difficult to draw precise conclusions from
the analysis of these plants. Nonetheless, our results indicate that AtHB7 and AtHB12
play a role in regulating plant immunity in Arabidopsis. To understand the mechanisms
involved, it is important to identify the target genes of AtHB7 and AtHB12 in the context of
age- and time-dependent regulation in leaves.

In a previous study, we discovered that Arabidopsis plants exhibited a strong NHR
to P. oryzae in young leaves after being am-inoculated, while showing a weak NHR in
old leaves after being pm-inoculated [25]. However, in our current study, we found that
Arabidopsis plants displayed a strong HR to C. higginsianum after being pm-inoculated
but a weak HR after being am-inoculated. This time-dependent response is different from
that seen in the Arabidopsis–P. oryzae interaction, despite the similar infection mechanisms
used by both pathogens. Our study further revealed that AtHB7 and AtHB12 play a role
in resistance against C. higginsianum in a time-dependent as well as leaf age-dependent
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manner, by functioning in both penetration and post-penetration resistance. Additionally,
we found that the expression of AtHB7 and AtHB12 exhibits a circadian rhythm (CAST-
R: https://nagellab.shinyapps.io/CASTR-v1/, accessed on 11 November 2023). These
results suggest that the circadian expression of AtHB7 and AtHB12 could be responsible for
regulating time-dependent HR and NHR in Arabidopsis.

To conclude, the resistance of plants to certain pathogens is affected by the age of
leaves and the time of inoculation. In our research, we discovered that the expression of
OsHOX6, a type of HD-Zip I gene found in rice, can affect NHR against P. oryzae and C.
nymphaeae and HR against C. higginsianum, depending on leaf age and time in rice-FOX
Arabidopsis C2-35 plants. This implies that the Arabidopsis HD-Zip I genes, AtHB7 and
AtHB12, are likely involved in regulating the age- and time-dependent resistance responses
in Arabidopsis. Actually, our findings suggest that AtHB7 and AtHB12 are involved in
the age- and time-dependent regulation of HR against C. higginsianum. Prior studies have
indicated that AtHB7 and AtHB12 are associated with the development and responses to
abiotic stress in Arabidopsis [36]. Consequently, it would be fascinating to explore how
these genes balance the trade-offs between development, abiotic stress, and biotic stress
responses in Arabidopsis. To fully comprehend the genetic and mechanistic requirements
of AtHB7 and AtHB12 in Arabidopsis, further investigations will be needed. Our study’s
insights into the role of AtHB7 and AtHB12 in plant immunity may be used to boost defense
responses in plants.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The plants used in this study were Col-0 (wild-type), pen2 [18], pen2 35S::miR156a,
cyp79b2 cyp79b3 [20], athb7, athb12, AT7 (35S::AtHB7), and AT12 (35S::AtHB12) [36], which
are all on the Col-0 background. We used pen2 and 35S::miR156a [11] plants to generate pen2
35S::miR156a plants. Arabidopsis thaliana (Arabidopsis) plants were grown on Murashige
and Skoog plates in a growth room for three weeks in short-day conditions (9:15 L:D) at
22 ◦C (in 100 µmol m−2s−1 fluorescent illumination). Then, the plants were transferred
to soil and grown in a growth chamber for 4 weeks, where they continued to grow in
short-day conditions (9:15 L:D) at 22 ◦C (in 100 µmol m−2s−1 fluorescent illumination).

4.2. Fungal Strains and Media

We obtained Pyricularia oryzae isolate Hoku 1 (race 007) from H. Koga (Ishikawa
Prefectural University). Colletotrichum higginsianum (MAFF305635) and Colletotrichum
nymphaeae (MAFF240037) were obtained from the Ministry of Agriculture, Forestry and
Fisheries GenBank, Japan. P. oryzae culture was maintained on oatmeal medium at 25 ◦C in
the dark. Cultures of fungal isolates of Colletotrichum were maintained on PDA medium at
25 ◦C in the dark. For inoculation, P. oryzae and C. nymphaeae were cultured under a 9 h
light/15 h dark cycle.

4.3. Fungal Inoculation

To measure the penetration rates of fungal pathogens, a conidial suspension of each
fungus (P. oryzae, 5 × 104 conidia/mL; Colletrichum, 1 × 105 conidia/mL) was inoculated
onto leaves (young leaf, leaf number 13; old leaf, leaf number 8) of rosettes on Arabidopsis
(i.e., leaves numbered from oldest to youngest) in the morning (10:00 a.m., am-inoculation)
and the evening (5:00 p.m., pm-inoculation). Inoculated plants were maintained in a growth
chamber with saturating humidity in short-day conditions (9 h:15 h light:dark) at 22 ◦C
(in 100 µmol m−2s−1 fluorescent illumination). Inoculated leaves were harvested at 72 h
post-inoculation (hpi).

To quantify cell penetration for P. oryze and C. higginsianum, we examined germinated
fungal sporelings that had developed appressoria (six leaves from six independent plants
per experiment and genotype). We evaluated a minimum of 100 appressoria/leaves. We
detected successful penetration of fungal pathogens by observing autofluorescence or
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hyphal elongation at infection sites with fluorescence and bright-field microscopy. Each
plant genotype was quantified in three independent experiments.

To quantify cell penetration for C. nymphaeae, we examined germinated fungal sporel-
ings. We also examined the appressoria classes that had penetrated into Arabidopsis leaves.
We detected successful penetration of C. nymphaeae by observing autofluorescence or hy-
phal elongation at infection sites with fluorescence and bright-field microscopy. Each plant
genotype was quantified in three independent experiments.

To quantify severe fungal growth region for C. nymphaeae and C. higginsianum in Ara-
bidopsis leaves, we examined the inoculated area and measured the severe fungal growth
region with bright-field microscopy (six leaves from six independent plants per experiment
and genotype). Each plant genotype was quantified in three independent experiments.

4.4. Rice-FOX Arabidopsis cyp79b2 cyp79b3 Lines and P. oryzae Screening

The Agrobacterium library of rice full-length cDNAs was obtained from RIKEN [38].
Arabidopsis cyp79b2 cyp79b3 plants were transformed using the Agrobacterium library, and
the transformed cyp79b2 cyp79b3 plants expressing rice full-length cDNAs (rice-FOX Ara-
bidopsis cyp79b2 cyp79b3 lines) were generated. We inoculated the rice-FOX Arabidopsis
cyp79b2 cyp79b3 lines with P. oryzae by applying 5 µL droplets (5 × 104 spores/mL) of
P. oryzae onto young leaves (leaf number 13) of rosettes on Arabidopsis (i.e., leaves num-
bered from oldest to youngest) in the morning (10:00 a.m.). Then, inoculated plants were
maintained in a growth chamber with saturating humidity in short-day conditions (9 h:15 h
light:dark) at 22 ◦C (in 100 µmol m−2s−1 fluorescent illumination). Inoculated leaves were
harvested at 72 hpi. To quantify cell penetration, we examined germinated fungal sporel-
ings that had developed appressoria. We evaluated a minimum of 100 appressoria/leaves.
We detected successful penetration of P. oryzae by observing autofluorescence or hyphal
elongation at infection sites with fluorescence and bright-field microscopy.

We identified the candidate NHR-related lines with a penetration rate different from
the rate of control cyp79b2 cyp79b3 plants from a screen of approximately 500 rice-FOX
Arabidopsis cyp79b2 cyp79b3 lines. Screening of the candidate NHR-related lines was
repeated thrice for verification. For further examination, the selected candidate lines were
inoculated with P. oryzae at 10:00 a.m. (am-inoculation) and 5:00 p.m. (pm-inoculation) on
young and old leaves (young leaf, leaf number 13; old leaf, leaf number 8) of rosettes on
Arabidopsis. Each plant was quantified in three independent experiments.
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