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Abstract: This paper reports on the high photocatalytic activity of ZnO tetrapods (ZnO-Ts) using
visible/solar light and hydrodynamic water flow. It was shown that surface oxygen defects are
a key factor in the photocatalytic activity of the ZnO-Ts. The ability to control the surface wetta-
bility of the ZnO-Ts and the associated concentration of surface defects was demonstrated. It was
demonstrated that the photocatalytic activity during the MB decomposition process under direct and
simulated sunlight is essentially identical. This presents excellent prospects for utilizing the material
in solar photocatalysis.
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1. Introduction

A global environmental problem is the presence of organic substances as pollutants in
industrial wastewater, household waste, and landfills. Over many decades, new alternative
methods of wastewater treatment have been developed. One of the most attractive meth-
ods in terms of cost-effectiveness, efficiency, and simplicity of technology is photocatalytic
water purification [1–3]. TiO2 and ZnO are widely used in photocatalysis due to their high
physicochemical stability, low toxicity, cost-effectiveness, and availability [4]. However,
they have some drawbacks, such as a wide bandgap and the fast recombination of photoin-
duced charges. To improve the photoresponse of zinc oxide and prevent the recombination
of e− and h+, it undergoes extensive modifications, including metal and non-metal doping,
the deposition of noble metals, and the construction of heterojunctions [5]. The popularity
of ZnO is explained by its variety of morphological forms with different optical properties
and types of defects such as nanoparticles [6], nanorods [7], nanotubes [8], nanosheets [9],
and tetrapods [10]. These branched nanostructured materials predominantly high surface
areas and good dispersion, which prevents them from forming aggregates and improves
their photocatalytic characteristics [7].

One of the methods of increasing photocatalytic activity is the controlled synthesis
of materials, allowing for the creation of intrinsic defects in the structural matrix without
introducing impurities. Zinc oxide is known for numerous defect states, such as zinc
vacancies (VZn), oxygen vacancies (VO), interstitial zinc (Zni), oxygen incorporation (Oi),
zinc anti-sites (ZnO), and oxygen anti-sites (OZn) [11]. Among them, oxygen vacancies are
of particular interest due to their ability to enhance light absorption in the visible range by
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forming isolated energy sublevels in the bandgap [12,13], suppressing the recombination
of photo-generated charges and increasing O2 adsorption, which, in turn, enhances the
generation of superoxide radicals ·O2

− [14].
Wettability is an important component of photocatalysis, indicating the physical inter-

action between a liquid and the surface of a material. It depends on the chemical composi-
tion, surface free energy, and geometric structure of the surface [15]. In recent years, one of
the simplest and most popular methods for controlling wettability has been UV irradiation,
which allows for reversible transitions between superhydrophilicity and superhydrophobic-
ity [16–18]. In [19], the reversible wettability of ZnO thin films under light irradiation was
investigated. Schematically, wettability switching under these conditions can be described
as follows: upon illumination, formed holes react with lattice oxygen to create oxygen
vacancies, which can react with water molecules or oxygen to form hydroxyl groups,
increasing hydrophilicity [20]. Recent studies indicate that improving control over the
wettability of a catalyst’s surface can lead to an increase in its photocatalytic activity [21–23].
Often, surface modification using compounds such as hexamethyldisilazane, perfluorode-
cyltriethoxysilane, 3-(methacryloxy) propyltrimethoxysilane, and trimethylchlorosilane is
used to achieve controlled changes in the wettability of photocatalyst surfaces. However, it
should be noted that these compounds, by occupying active sites on the surface, may have
a negative impact on surface chemical reactions and the interaction of the catalyst with light.
Therefore, it is important to develop unmodified photocatalysts with the ability to control
surface wettability to achieve optimal catalytic characteristics. In this regard, catalysts with
simultaneous control over surface wettability and defect engineering represent a special
scientific and practical interest.

This paper presents the results of the carbothermal synthesis of high-defect ZnO
microtetrapods which are active in visible light and investigates the influence of surface
wettability switching on their photocatalytic activity.

2. Results and Discussion

During the carbothermal synthesis process, tetrapods (self-organized, pseudo-three-dimensional
nanostructures characterized by four monocrystalline rods emanating from the vertices of
a tetrahedron) of ZnO were formed with “legs” whose lengths (Figure 1A) were up to tens
of micrometers.

The EDS spectra (Figure 1B) show the atomic ratios of a ZnO-T in three positions from
the center to the tip. From the obtained results, the ratio of the atomic masses of O and
Zn changes. In the center, there is a significant predominance of oxygen, approximately
68.8%, while the content of zinc is about 31.2%. In the central region of the tetrapod, this
ratio is inversely proportional: 29.3% O and 70.7% Zn. At the tip, zinc dominates, with its
content increasing to 88.4%, and the oxygen content is approximately 11.6%. This indicates
that there is a high accumulation of oxygen vacancies (VO) at the tips, while at the base
of the tetrapod, there is a deficiency of zinc, suggesting the presence of interstitial zinc
vacancies (Zni).

According to transmission electron microscopy data (Figure 1C) of a perpendicular
cross-section of one of the ZnO-T rods, a monocrystalline structure is formed. An analy-
sis of diffraction patterns and calculations of interplanar distances confirm the wurtzite
structure of ZnO-T [JCPDS № 79–0205]. The absence of extended defects demonstrates the
high crystalline quality of the ZnO-T. However, an analysis using Fourier transformation
and subsequent image filtering (Figure 1D) show the presence of broken planes that are
packaging defects and possible dislocation cores. The band structure is distorted around the
dislocation core, and an additional level is introduced closer to the center of the forbidden
zone. In n-type crystals such as ZnO, dislocations can capture electrons and hinder their
recombination, which is also a factor that increases photosensitivity.
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Figure 1. (A) SEM image. (B) EDX analysis. (C) HR-TEM image of a cross-section of the “legs” of a 
ZnO-T. Inset: magnified image of the highlighted area and its Fourier transform. (D) FFT image of 
the “legs” of a ZnO-T. (E) XRD spectra of ZnO-Ts. (F) Cathodoluminescence spectra. (G) ESR spec-
tra. 
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Figure 1. (A) SEM image. (B) EDX analysis. (C) HR-TEM image of a cross-section of the “legs” of a
ZnO-T. Inset: magnified image of the highlighted area and its Fourier transform. (D) FFT image of
the “legs” of a ZnO-T. (E) XRD spectra of ZnO-Ts. (F) Cathodoluminescence spectra. (G) ESR spectra.

Diffraction reflections on the X-ray diffraction spectrum of the tetrapods (Figure 1E)
corresponded to the hexagonal wurzite phase of ZnO, with a slight shift toward higher
angles compared to the reference sample [JCPDS No. 79-0205], indicating a reduction in
the size of the ZnO unit cell. The reduction in ZnO parameters is likely associated with
point defects such as oxygen and zinc vacancies. The cathodoluminescence spectra in
Figure 1F for hydrophilic and hydrophobic zinc oxide show a narrow band in the near UV
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region, corresponding to excitonic emission, and a broader and more intense band in the
visible region associated with intrinsic or impurity point defects such as oxygen vacancies
(VO), oxygen interstitials (Os), zinc vacancies (VZns), and zinc interstitials (Zns) and their
complexes. The cathodoluminescence spectra were fitted with Gaussian functions to
determine the components. The results are shown in Figure 2. Additionally, from Figure 1F,
it can be concluded that the intensity of the defect band increases when transitioning from
hydrophobic to hydrophilic states.
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Figure 1G shows that the ESR spectrum represents a symmetrical singlet with param-
eters g = 1.957 and ∆B = 6.11 G, and these parameter values are nearly identical for both
samples. The identity of the g-factor values and line width indicates that the same param-
agnetic center is formed in all samples in terms of both its chemical nature and the structure
of its immediate environment. These paramagnetic centers are attributed to point defects.
The fact that the g-factor values are lower than the g-factor value for a free electron (2.0023)
suggests that these defects have a hole-like character and carry a positive charge (V-centers).
In [11], the signal with g~1.95–1.97 is associated with oxygen vacancies VO specifically in
ZnO powders. It is evident that the concentration of defects in the hydrophobic sample
is significantly lower compared to the hydrophilic sample, and we can conclude that the
concentration of oxygen vacancies has increased. For oxygen vacancies in the neutral VO
and 2+ charge states VO

2+, a localized occupied state is recognized in the bandgaps at
2.5–2.6 eV and 0.9–1 eV below the conduction-band minimum [24], respectively, and this
suggests the activity of the ZnO tetrapods in the visible region of the spectrum.

The XPS spectra (Figure 3) were calibrated using the C1s peak (284.6 eV). From the
survey spectra (Figure 3A,B), it can be concluded that the surface is chemically pure and free
from impurities. There are no visible differences between the hydrophilic and hydrophobic
samples. In the high-resolution Zn2p spectra (Figure 3E,F), two distinct doublet peaks
can be observed at 1021.6 eV and 1044.7 eV, corresponding to Zn2p3/2 and Zn2p1/2,
respectively. The energy difference of 23.1 eV falls within the standard reference resolution
of ZnO, and the visible doublets are attributed to Zn2+ ions. The asymmetric O1s peak is
presented in Figure 3C,D. For the hydrophobic state, the spectrum is approximated by two
components with maxima at 530.11 eV and 531.28 eV, corresponding to different forms of
oxygen. The first peak at 530.11 eV can be attributed to oxygen ions (O2−) in the wurtzite
structure of the ZnO. The higher energy peak at 531.28 eV is associated with regions of
oxygen deficiency or oxygen vacancies in the matrix [25,26]. In the hydrophilic state, as
shown in Figure 3D, an additional peak appears at a binding energy of 528 eV. The presence
of peaks in this region is usually attributed to adsorbed oxygen [27]. The adsorption of
oxygen on the hydrophilic surface can be explained by the surface’s tendency for charge
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compensation. Additionally, it is interesting to compare the ratio of the integrated peak
areas of lattice oxygen and oxygen vacancies. It can be observed that the ratio changes from
3 to 1.8 when transitioning from the hydrophobic to the hydrophilic state.
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The results of the photocatalytic decomposition of methylene blue (MB) using tetrapods
in hydrophobic and hydrophilic states and metal halide lamp are presented in Figure 4.
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Figure 4. Changes in the concentration of MB and kinetic curves during irradiation with a metal
halide lamp without cutoff filters for hydrophobic (A,B) and hydrophilic (C,D) ZnO-Ts.

As can be seen, even in a non-dispersed state without stirring, the ZnO-T shows
photocatalytic activity, leading to a 26% degradation of MB in 15 min compared to 11%
degradation under similar conditions during photolysis. The slight improvement in pho-
tolysis activity with stirring (15%) indicates the contribution of mass transfer processes.
The photocatalysis with stirring showed that 97% of the dye decomposed in 15 min. The
reaction was shown to accelerate by 10 times compared to photocatalysis without stirring
(Figure 4B). The results of similar experiments on pre-hydrophilized ZnO-Ts are presented
in Figure 4C. The highest activity was observed in the photocatalysis with stirring experi-
ment, in which 95% of the MB was decomposed in 6 min. Without stirring, the catalysis
efficiency dropped by almost half to 49.5%, while the degradation efficiency during photol-
ysis was about 4–6%. The rate constants (k), calculated from the kinetic curves in Figure 4D
using the pseudo-first-order equation, were 0.0065, 0.0095, 0.1155, and 0.4965 for photoly-
sis, photolysis with stirring, photocatalysis, and photocatalysis with stirring, respectively.
In photocatalysis (stirring), the reaction rate increased by 4.3 and 52 times compared to
photocatalysis and photolysis, respectively. The significant acceleration of MB degradation
on the hydrophilic ZnO-Ts (6.2 times for photocatalysis and 2.6 times for photocatalysis
with stirring) compared to hydrophobic ones is due to both an increase in surface defects
on the tetrapods and improved wettability, as all photochemical processes occur at the
solid/liquid interface.
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Considering the negligible amount of UV radiation present in the spectrum of the metal
halide lamp, we conducted independent research utilizing cutoff filters to differentiate the
impacts of both visible and UV light.

Figure 5 highlights the outcomes of our study, which reveal that exposure to UV
light alone results in 96% degradation of MB within a 15 min timeframe. Conversely,
cutting off UV light from the source leads to a decline in PC activity, with decomposition
levels reduced to 65%. As a result, our findings suggest that ZnO-Ts in both visible and
UV light possess PC activity. Photocatalytic activity in visible light can be influenced by
surface oxygen vacancies and the photosensitization effect. Hydrophilization confirms
the enhancing effect of oxygen vacancies on PC activity, while further experimentation is
needed to verify the photosensitization effect.
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Figure 5. Changes in the concentration of MB via PC with UV- and Vis-cutoff filters for hydrophilic
ZnO-Ts.

Tetrapods, due to their unique morphology, are superhydrophobic and did not wet
even during intense stirring of the solution in the experiment. For clarity, please refer to
Figure 6, which shows a photograph of a water droplet on tetrapod powder on glass.
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To understand the difference in the mechanisms of the photocatalytic reaction for
hydrophilic and hydrophobic ZnO-Ts, tests were conducted to capture some active redox
forms.

From Figure 7, we can observe that hydroxyl radicals, which are produced in the
hole–water reaction, significantly contribute to the decomposition mechanism. The holes
themselves have a minor role since hydroxyl radicals are also generated through the
reactions of superoxide anion radicals with water. The presence of AgNO3, an electron
scavenger, enhances catalytic activity. This is because Ag accepts an electron and reduces
silver, which can act as a co-catalyst in dye degradation. It is well established that Ag-
ZnO composites catalyze the degradation of MB. The application of benzoquinone as a
superoxide anion radical scavenger also results in a decrease in activity, indicating their
generation and involvement in reactions.
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hydrophobic (A) and hydrophilic (B) ZnO-Ts without cutoff filters, using a metal halide lamp.

A hydrophilic ZnO-T was tested for its photocatalytic activity with the stirring de-
composition of MB under direct sunlight irradiation. Figure 8 presents the results, which
show that in just 8 min, 93% of MB decomposed compared to only 25% during photolysis.
Furthermore, the activity of the catalyst under sunlight is almost identical to that seen
under lamp irradiation, with only a slight slowdown reaction of 1.3 times. Long-term
stability tests were carried out under sunlight conditions. Figure 8C demonstrates that the
photocatalyst’s activity minimally decreases, indicating exceptional stability.

Additionally, the PC degradation efficiency of these systems is evidently higher com-
pared to previous studies, as shown in Table 1. Considering the studies exploring additional
piezo stimulation in PC due to the piezo properties of ZnO, we present a comparative table
comparing our PC results with piezophotocatalysis. Table 2 summarizes the findings.

The tables present a comparative analysis indicating the high photocatalytic activity
of microtetrapods. Table 1 shows that comparable rate constants in photocatalytic reactions
are achieved solely via UV radiation and ZnO modification. It is worth noting, though,
that most materials presented in the studies were at a nanoscale, unlike the particles
employed in our research, which have dimensions in the micron range. Compared with
piezophotocatalysis that utilizes both UV radiation and ultrasonic treatment, as shown in
Table 2, our materials exhibit high efficiency in terms of the rate constant.

It is well known that zinc oxide is a wide-bandgap semiconductor that cannot be
excited by visible light. Optical investigations presented in Figure 9B,C reveal that the
bandgap’s width is 3.16 eV. Furthermore, the material exhibits strong light scattering which
surpasses the absorption coefficient throughout the entire wavelength range by an order of
magnitude.
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on hydrophilic ZnO-Ts and a cyclic experiment (C).

To determine the structure of energy zones, VB XPS spectra were obtained, and the
data are presented in Figure 9A. The presence of energy state density localized near the
Fermi energy is immediately noticeable, confirming the presence of oxygen defect levels in
the bandgap. The VBmax energy was estimated to be 2.80 and 2.58 eV for the hydropho-
bic and hydrophilic states, respectively. Based on this, the CBmin was estimated to be
−0.36 and −0.58 eV. The energy required to form surface layer defects is less than that of
bulk defects, leading to a diffuse energy band linked to defects within the bandgap.

When light is applied, electron–hole charge states are generated due to localized levels
of impurity in the bandgap, mainly caused by oxygen vacancies (VO). Electrons generated
by the light and moving from the conduction band to the surface of the material will
interact with dissolved oxygen in water, creating superoxide anion radicals which can
efficiently oxidize organic pollutants or produce hydroxyl radicals. Upon exposure to light,
photogenerated holes on the surface can either react directly with MB in water or produce
hydroxyl radicals.
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Table 1. Previously reported work and its comparison with our present work in the field photocat-
alytic properties of ZnO-based and other materials.

Materials Pollutants Time (min) Light Source Degradation,
%

Rate Constant
(min−1) References

ZnO tetrapod1
ZnO tetrapod2

methyl orange
methylene blue
methyl orange
methylene blue

130
UV lamp

100 W
λ = 254 nm

50.8
85.7
61.6
96.4

1.6 × 10−4

2.9 × 10−4

1.7 × 10−4

3.6 × 10−4

[28]

GNs-ZnO
20 mg MB (1 mg/L) 40 UV (125 W)

Vis (125 W)
70.87
17.26

4.5 × 10−2

5 × 10−3 [29]

ZnO tetrapods
1 mg MB (10 ppm) 70

UV light (Philips,
350–400 nm

wavelength, 60 W)
94.5 1.02 × 10−1 [30]

ZTPG Methylene blue
(20 ppm) 90 UV light (60 W,

365 nm) 98.05 0.03 [31]

ZnO sample 25 mg
V = 100 mL

Rhodamine B
(20 ppm)

110 UV irradiation
(8 W) 98.86 0.036 [32]

T-ZnOw/PLLA V = 50 mL
MB (3× 10−4 M) 60 Visible light 30 0.0065 [33]

T-ZnO
50 mg

V = 50 mL
MB (5 mg/L) 8

UV illumination
(365 nm,

66.2 mW/cm2,
Blak-Ray B-100 AP

lamp)

100 - [34]

Rod-like ZnO
nanoparticles

10 mg

V = 50 mL
MB (50 mg/L) 120

100 W halogen
lamp (with

λ > 420 nm and a
light intensity of

2.87 W m–2)

30.67 2.9 × 10−3 [35]

T-ZnO
T-ZnO-CNO

100 mg

V = 50 mL
DNP (0.1 mM) 140 60 W tungsten bulb 30

92
0.00274
0.01834 [36]

ZnO tetrapods
60 mg

V = 60 mL
MB

(1 µmol·L–1)
10

UV diode array
consisting of four

diodes (central
wavelength =

370 nm,
170 mW/diode)

96 - [37]

NWs
TNFs coated Si

substrates of area
0.5 cm2

V = 10 mL
RhB

(5 × 10–6 M)
180

100 W bulb (with a
luminous

irradiance of
10 mW/cm2 at the

sample)
λ ≥ 400 nm

95 - [38]

T-ZnO
Ag2O/T-ZnO

200 mg

V = 100 mL
MB (5 mg L−1) 2 UV lamp, 50 W 63

85
-
- [39]

ZnO1−x
50 mg

V = 100 mL
MB

(1 × 10−5 M)
360

Halogen–tungsten
lamp

(power = 175 W;
λmain = 550 nm

95 0.522 h−1 [40]

MoS2/Ag-
ZnFe2O4

40 mg

V = 50 mL
TC = 10 mg/L 60

300 W Xenon lamp
with optical filter

(λ ≥ 420 nm)
95 0.04868 [41]



Int. J. Mol. Sci. 2023, 24, 16338 11 of 18

Table 1. Cont.

Materials Pollutants Time (min) Light Source Degradation,
%

Rate Constant
(min−1) References

2D g-C3N4
nanosheets

20 mg

V = 100mL
TEOA = 10% 240

300 W Xenon lamp
with optical filter

(λ ≥ 420 nm)
- 7.414 mmol g−1

h−1 [42]

SrTiO3
50 mg

120 mL of 25%
aqueous
methanol
solution

300 UV–visible light
300 W Xenon lamp - 2.2

mmol h–1 g–1 [43]

BiPO4–x
25 mg

V = 50 mL
MB = 1× 10–5 M 30

UV-light 300 W
high-pressure
mercury lamp

89 0.300 [44]

Bi2MoO6
20 mg

V = 50 mL
CIP = 20 ppm 40

300 W Xenon lamp
with optical filter

(λ ≥ 400 nm)
97 1.7990

mg m−2 min−1 [45]

TiO2-x/Ag3PO4
100 mg

V = 100 mL
BPA = 10 mg/L 16

500 W Xenon lamp
with optical filter

(λ ≥ 420 nm)
95 - [46]

70W metal–halogen
lamp:

ZnO-T
20 mg

20 mL of MB
(2.5 mg/L)

6
15
15
8

Without cut-off
λ > 400 nm
λ < 400 nm

Direct sunlight

95
65
96
93

0.496
0.101
0.229
0.372

This work

Table 2. Previously reported work and its comparison with our present work in field of the piezopho-
tocatalytic properties of ZnO-based and other materials.

Materials Pollutants Time
(min) Light/Mechanical Source Degradation,

%

Rate
Constant,
(min−1)

References

ZnO NS/
2.5 mg

V = 10 mL
TST (testosterone)

(5 × 10−5 M)
45 LOT-Oriel Solar S (140 W),

35 kHz 50 1.8× 10−2 [47]

ZnO
nanowires/CFs

200 mg

V = 100 mL
MB

(C0 = 5 mg/L)
120 High-pressure mercury lamp

(50 W)/stirring 96 - [48]

ZnO nanorods
20 mg

V = 50 mL
RhB (10 ppm) 20

300 W Xe lamp equipped with
a 350 nm bandpass

filter/ultrasonic frequency
27 kHz

75 0.0744 [49]

calcined
ZnOTW-0.20

1g/L

V = 100 mL
MB (5 ppm) 120

UVA light with peak
wavelength of 365 nm and

intensity of
940 µW cm−2/ultrasonic bath

(120 W, 40 kHz)

90 - [50]

T-ZnO
nanostructures

200 mg

V = 100 mL
MB (5 mg L−1) 2 UV lamp/ultrasonic probe

50 W UV, 200 W ultrasonic 74 - [51]

Bi2VO5.5
0.25 g

V = 10 mL
MB = (5 mg/L) 240

15W (Havells company) 2
lamp visible light;

ultrasonicator (40 kHz, 150 W).
82 0.00528 [52]



Int. J. Mol. Sci. 2023, 24, 16338 12 of 18

Table 2. Cont.

Materials Pollutants Time
(min) Light/Mechanical Source Degradation,

%

Rate
Constant,
(min−1)

References

FTO/BaTiO3
/AgNPs

2 cm × 2 cm

V = 75 mL
MB = (5 mg/L) 180

70 W UV lamp;
24 kHz ultrasonic vibration 30

W
90 0.02329 [53]

BaTiO3 –NiO
0.2 g

V = 200 mL
MB = (10 mg/L) 80 UV lamp, 125 W;

ultrasonic cleaner, ~40 kHz 90 0.028 [54]

ZnO/ZnS/MoS2
10 mg

V = 50 mL
MB = 10 mg/L 50

300 W Xenon lamp to simulate
the solar source;

stirring at 1000 rpm
87 0.0411 [55]

BiVO4
0.2 g

V = 10 mL
MB = (5 mg/L) 240

15W (Havells company) 2
lamp visible light;

ultrasonicator (40 kHz, 70 W).
81 0.00802 [56]

CuS/ZnO
nanowires on
stainless steel

mesh
6.0 × 6.0 cm,

100 mg

V = 50 mL
MB = 5 mg/L 20

Xenon lamp, 500 W, to
simulate the solar source;
ultrasonic probe, 200 W

98 0.18236 [57]

BaTi2O5
40 mg

V = 60 mL
RhB = 10 mg/L
MB = 10 mg/L
MO = 10 mg/L

50
Xenon lamp, 300 W,

λ > 400 nm; ultrasonic cleaner,
53 kHz, 100 W

82.5
-
-

0.0353
0.1775
0.0314

[58]

ZnO/ZnS V = 50 mL
MB = 5 mg/L 50

300 W
UV irradiation;

180 W sonication, 40 kHz
60 0.0154 [59]

70 W metal–halogen lamp:

ZnO-T
20 mg

V = 20 mL
MB (2.5 mg/L)

6
15
15
8

Without cut-off
λ > 400 nm
λ < 400 nm

Direct sunlight

95
65
96
93

0.496
0.101
0.229
0.372

This work

Consequently, the reaction mechanism can be expressed as follows, based on experi-
mental data, and free charge carriers (e−/h+) are created:

ZnO + hv+→ e− + h+ (1)

The existence of defect levels in the bandgap facilitates the primary capture of carriers
and restricts recombination processes. Zinc defects within ZnO serve as electron traps
for photoexcited electrons. These electrons can relax through interactions with oxygen
molecules on the surface (reaction 3) or recombination. When electrons move toward the
ZnO surface and interact with molecular compounds, superoxide radicals ·O2

– are formed
(reaction 4). In the instance of hydrophilic ZnO-Ts, the involvement of adsorbed molecular
oxygen also plays a part in this mechanism.

e− + O2 → ·O−2 (2)

Similarly, holes (h+) are captured by oxygen vacancies and either interact with OH–/H2O
on the surface to form ·OH (reactions 5, 6) or recombine.

h+ + OH− → ·OH (3)
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h+ + H2O→ H+ + ·OH (4)

These radicals further oxidize organic pollutants. Thus, the presence of photocatalytic
activity under visible light indicates the role of defects, primarily oxygen vacancies, and a
significant increase in photocatalytic activity with the addition of mechanical stress indicates
the role of surface wettability, which is also influenced by increased surface defects.
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3. Materials and Methods
3.1. Synthesis of ZnO Tetrapods

Crystalline powders of zinc oxide were prepared via a modified method of high-
temperature pyrolytic synthesis. In the first stage, a filter impregnated with a ZnO precursor
was rolled into tubes with a diameter of 5 mm and placed on mesh frames made of
corundum rods in a porcelain container. Next, the containers were heated to 1150 ◦C in a
muffle furnace with an air supply at a speed of 9 L/min. Heating was carried out with a
temperature gradient of 3.7 ◦C/min. When the set temperature was reached, the heating
was stopped and the system was kept in thermostatic mode for 30 min and then cooled to
room temperature. An aqueous solution of zinc acetate Zn(CH3COO)2·2H2O (Alpha Aesar,
Bio Aqua Group, Targu Mures, Romania) with a zinc concentration of 70 g/L was used as a
ZnO precursor. An ash-free white tape filter with an ash mass of 0.15 wt.% (Himreactive,
N. Novgorod, Russia) was used as a paper filter. The filter served as a source of carbon
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formation; carbon played the role of a reducing agent in the process of producing zinc
vapor as an intermediate reaction product for subsequent oxidation and the formation of
zinc oxide tetrapods. The resulting reaction products were removed from the frame.

3.2. Characterization of Samples

The surface morphology and chemical composition of the samples were investigated
via scanning electron microscopy (SEM), using an FEI Quanta 200 3D microscope with
an attached energy-dispersive X-ray spectrometer (EDS) and EDAX Genesis (accelerating
voltage 20 kV). To prevent sample charging, the samples were fixed on the microscope
stage using a conductive adhesive tape based on graphite.

Sample preparation for transmission electron microscopy (TEM) was performed on
a “Scios” scanning electron ion microscope (SEM) (FEI, Lincoln, NE, USA). According to
the standard methodology, cross-sections perpendicular to the central growth axis of the
ZnO tetrapod rod-like protrusions were prepared. To protect the sample surface during
preparation, a technological layer of Pt was applied on all sides of the sample at a thickness
of 1–3 µm. The cross-sections were examined using an “Osiris” TEM (FEI, Lincoln, NE, USA)
at an accelerating voltage of 200 kV in TEM mode, high-resolution electron microscopy
(HRTEM) mode, and scanning transmission electron microscopy (STEM) mode, as well as
an energy-dispersive X-ray spectrometer (EDS).

To determine the chemical composition of the zinc oxide and zinc oxide–titanium
oxide composite via X-ray photoelectron spectroscopy (XPS), a SPECS XPS spectrometer
(Specs, Berlin, Germany) equipped with an Al anode was used. The choice of anode
material was made to avoid interference from Auger lines in the useful signal. Spectra were
recorded in the binding energy range from 0 to 1200 eV. The calibration of binding energies
was performed using the C-C line of the C1s spectrum (E binding = 284.6 eV).

X-ray diffraction patterns were obtained using a Rigaku Miniflex 600 diffractometer
(Japan) with Cu-Kα radiation and a β-filter. The diffraction patterns were analyzed using
the TOPAS software (Bruker, 2015).

The bandgap parameters were determined using UV/Vis spectroscopy, with a spec-
trometric complex based on the monochromator. The material powder was placed on a
special holder and compacted. Diffuse reflection spectra were recorded in the wavelength
range λ from 250 to 800 nm.

Cathodoluminescence (CL) excitation measurements were performed using an electron
beam from an EG-75 electronograph, with an electron energy of 40 keV (spot diameter:
1 mm) and an electron beam current of 80 µA. The spectra were analyzed using the AvaSpec-
ULS2048x64-USB2 spectrophotometric complex (Avantes, Apeldoorn, The Netherlands).
A vacuum optical fiber coupler, an FC-VFT-UV400, was used to extract radiation from
the electron column. The angle of incidence of the electron beam on the substrate plane
was 45◦, and the angle between the axis of the optical fiber coupler and the direction of
propagation of the incident electron beam was 90◦.

The EPR/ESR spectra of the studied samples were obtained using a Bruker EMX Plus
radio spectrometer in the “X” ultra-high-frequency radio wave range (frequency, ~9.8 GHz;
wavelength, ~3 cm) at room temperature. For all samples, spectra were recorded over a
wide range of magnetic fields (0–6000 G) to examine the presence of all possible signals.

The spectra of the total transmittance Tt and diffuse reflectance Rd for the studied ob-
jects were measured in the wavelength range of (300 to 1000) nm using an
Avasphere-50 integrating sphere (Avantes, Apeldoorn, the Netherlands). A combined
deuterium/halogen lamp AvaLight-DH-S-BAL (Avantes, Apeldoorn, The Netherlands)
was used as an illumination source; its radiation was supplied via 600 µm fiber-optic light
guides. Photographic signals were registered using an automated spectrometer, an MS3504i
(SOL-Instruments, Minsk, Belarus), coupled with a CCD matrix camera, an HS-101H-HR
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(Hamamatsu, Hamamatsu City, Japan). The final spectrophotometric coefficient data Tt
and Rd were determined as follows:

Rexp
d =

Rs
d(λ)− R0(λ)

Rgl(λ)− R0(λ)
(5)

Texp
t =

Ts
t (λ)− T0(λ)

Tgl(λ)− T0(λ)
, (6)

where Ts
t (λ) and Rs

d(λ)—are the transmission and reflection spectra of the samples; Tgl(λ)
and Rgl(λ)—are the spectra of the reference signal measured with quartz plates; T0(λ)—is
the signal of the integrating sphere with closed input and open output ports; and R0(λ)—is
the signal for the sphere with open optical ports. The spectral dependence of the optical
absorption coefficient µa and light scattering coefficient—µ′s was calculated using an inverse
Monte Carlo numerical modeling method, using the two-flow Kubelka–Munk model.

3.3. Photocatalytic Degradation Analysis

The photocatalytic characteristics of the samples were evaluated based on the pho-
todegradation of methylene blue (MB) in an aqueous solution (2.5 mg L−1). Photocatalytic
experiments were conducted in a 50 mL glass beaker. Visible and solar light was used in
this case. A 70-watt metal halide lamp (Osram, Munich, Germany) was used as the light
source. Activity with and without light filters that cut off wavelengths above and below
400 nm (λ > 400 nm and λ < 400 nm) was examined separately. A constant temperature
in the reaction vessel of 26 ◦C was maintained using ventilation and monitored using
a thermometer. For the photocatalytic reaction on hydrophobic particles, 20 mg of the
original photocatalyst was added to 20 mL of an aqueous MB solution. Before turning on
the light, the cuvette was kept in darkness for 60 min to achieve adsorption–desorption
equilibrium. The photocatalysis process was carried out both without stirring and with
stirring on a magnetic stirrer (400 rpm). The light source was positioned above the reactor
at a distance of 10 cm. Samples (3 mL) were collected at fixed time intervals for each
experiment. The particles were separated from the solution by centrifugation at 14,000 rpm
for 2 min, using a laboratory centrifuge. The concentration of MB was measured using
a spectrophotometer based on the characteristic absorption peak of MB at a wavelength
of 663.7 nm. After the measurement, the solution was poured back into the reactor and
the process was continued. For comparison, an MB solution was tested under similar
conditions without a photocatalyst (photolysis). The concentration of MB was determined
using the Beer–Lambert law.

For the photocatalytic reaction on hydrophilic particles, 20 mg of the original pho-
tocatalyst was initially poured into a beaker with distilled water (3 mL) and irradiated
with a 250-watt high-pressure mercury UV lamp (Philips, Amsterdam, The Netherlands)
without any cutoff filters until the complete evaporation of the water and the drying of
the powder. The remaining experiment was conducted similarly to the hydrophobic one.
Similar experiments were conducted under direct sunlight.

4. Conclusions

ZnO-Ts with surface oxygen defects were found to display exceptional photocatalytic
activity in UV light, visible light, and direct sunlight. Controlling surface wettability was
shown to regulate this activity, with an increase in surface defects occurring during the
transition from hydrophobic to hydrophilic states. Although the optical width of the
bandgap was 3.16 eV, the presence of a high density of localized defects in the bandgap
led to sufficiently high PC activity in visible light. The experiment exhibited that using
hydrophilic powder increases the reaction rate by 2.6 times compared to hydrophobic
powder when irradiated with simulated sunlight. Implementing the procedure under
direct sunlight results in a negligible reduction in the reaction rate by a factor of 1.3.
Activity contributions from UV and visible light were distinguished by using cut-off light
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filters. In the presence of visible light, 65% of MB decomposes, while under UV light, 96%
decomposes in 15 min. ·OH and ·O2

– radicals are the main active forms responsible for the
degradation process.
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