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Abstract: Kaempferol and its derivatives are flavonoids found in various plants, and a considerable
number of these have been used in various medical applications worldwide. Kaempferol and its
compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among
other health benefits. However, the antiviral properties of kaempferol are notable, and there is a
significant number of experimental studies on this topic. Kaempferol compounds were effective
against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine
fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline
SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71,
poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya
virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be
determined. The antiviral action mechanisms of kaempferol compounds are various, such as the
inhibition of viral polymerases and of viral attachment and entry into host cells. Future research
should be focused on further elucidating the antiviral properties of kaempferol compounds from
different plants and assessing their potential use to complement the action of antiviral drugs.

Keywords: kaempferol; kaempferol derivatives; antiviral actions; physiopathology; traditional
medicine; ethnobotany

1. Introduction

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one) carries the
name of Engelbert Kaempfer, a German doctor, naturalist, and historian [1]. It is a flavonoid
which was initially discovered in Camelia sinensis [2] and is found in a great variety of
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plants [3]. The chemical compound has anticarcinogenic [4–6], anti-inflammatory [7], anti-
adipogenic [8], hepatoprotective [9,10], cytoprotectivre/antioxidant [11], anti-venom [12],
and antimicrobial effects [3]. Other polyphenols and phytochemicals share these types of
effects (e.g., [13–27]), and plant phenolic extracts are under investigation for their medicinal
uses [28–33].

The risk of viral diseases is ever increasing with the frequent emergence of new viral
pathogens; meanwhile, effective antiviral treatments are in many cases non-existent or
suboptimal [34]. The current state of antiviral treatment options reflects the need of novel
solutions for combatting viral infections [35]. During the last few decades, the focus toward
phytochemistry and phytomedicine has increased, as can be seen by the multitude of
relevant scientific literature [36–59].

As mentioned, kaempferol and its derivatives show pronounced antibacterial effects
along with a considerable antifungal and antiparasitic activity [3]. Coupled with the
fact that flavonoids in general have been shown to exert a promising activity against
viruses [60,61], a closer view on the antiviral activity of kaempferol is warranted. In this
review, we will perform a thorough analysis of the available research on the antiviral
properties of kaempferol and its derivatives (Figure 1) either in pure forms or as plant
extract components. This approach aims to underline the contemporary perspective of this
particular field and reveal potential avenues for future research.
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2. Antiviral Activity against DNA Viruses

In general, it is believed that DNA viruses have been evolving for millions of years [62].
There exist 91 species of DNA viruses known, and of these, about 87% exhibit a degree
of adaptation to the human host [63]. Well-known human pathogens, such as the herpes
viruses, adenoviruses, poxviridae and human papillomaviruses, are included in this cat-
egory. Despite vaccines being available, especially after the 1930s [64] against a number
of DNA viruses, they nonetheless represent a significant health hazard. Research on the
antiviral properties of kaempferol and its compounds is centred on African swine fever
virus, hepatitis B virus, the alphaherpsevirinae, and pseudorabies virus (Table 1).
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Table 1. In vitro studies on the potential antiviral actions and effects of kaempferol and its derivatives against DNA viruses.

Family Genus Extract from Compound Tested Toxicity Limit Concentration
(Type of Effect) Mechanism Year of

Research Reference

Hepadnaviridae Hepatitis B
virus (HBV)

Extract of Geranium
carolianum L. kaempferol 160.79 µg/mL 47.54 mg/kg (ED50)

Decrease in HBsAg and
HBeAg and of viral

DNA synthesis
2008 [65]

Leaf ethanol extract of
Hippophae rhamnoides kaempferol

32.58 µg/mL (CC50 for SB-Chl)
150 µg/mL (SB-Eac, SB-But

and SB-Aqu)

10 µg/mL
(stable concentration used in

the experiment)

Inhibition of HBsAg
and HBeAg expression 2022 [66]

Orthoherpesviridae
(Alphaherpesvirinae)

Human
herpesvirus

1virus 1 (HHV-1)

Extract from
Ficus benjamina

kaempferol
3-O-rutinoside 300 ± 2.79 µmol/L 3.00 ± 0.97 µmol/L

(EC50)
Unknown 2012 [67]

kaempferol
3-O-robinobioside 600 ± 10.45 µmol/L 0.90 ± 0.23 µmol/L

(EC50)

Extracts of dried and
powdered Securigera

securidaca seeds

kaempferol 60.0 ± 5.0 µg/mL (CC50) 0.20 ± 0.12 µg/mL
(EC50)

Inhibition of viral
attachment and entry
into cells; inhibition of

viral polymerase

2014 [68]
kaempferol-7-O-

glycoside 250 ± 1.7 µg/mL (CC50) 0.20 ± 0.01 µg/mL
(EC50)

Human
herpesvirus 2

(HHV-2)

Extract from Ficus
benjamina

kaempferol
3-O-rutinoside Unknown

n/a n/a 2012 [67]
kaempferol

3-O-robinobioside Unknown

Varicella-Zoster
Virus (VZV) Pure compound kaempferol No cytotoxicity detected 6.36 ± 0.73 µg/m (IC50)

Blockade of viral DNA
synthesis and

viral replication
2022 [69]

Asfarviridae
African Swine

Fever Virus
(ASFV)

Pure compound kaempferol 93.10 µg/mL (CC50) 2.20 µg/mL (IC50) Unknown 2021 [70]

Orthoherpesviridae Pseudorabies
Virus (PRV) Pure compound kaempferol 254.97 ± 1.86 µmol/L (CC50) 25.57 ± 0.74 µmol/L (IC50)

Regulation of the
MAPK and

NF-κB pathways
2021 [71]
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2.1. Antiviral Activity against Hepatitis B Virus (HBV)

HBV infection is a major healthcare concern worldwide [72–74] and is responsible
for a considerable number of deaths [72–74]. The virus is transmitted through blood
and other bodily fluids [73,74] and causes liver disfunction [75] and potentially chronic
hepatitis [72,73,75]. There are several regimens available for treatment purposes [72,73]
which significantly reduce the risk of occurrence of complications [72–75] though there
is no evidence to suggest that treatment for the acute stage is effective. At any rate,
tenofovir, entecavir, and pegylated interferon alfa-2a are the main agents applied against
this pathogen [75]. As far as prevention is concerned, the vaccine currently in use has been
successful in limiting the prevalence of the virus [73–76], and its effectiveness is particularly
important for the main risk groups, young children and pregnant women [73,76].

Kaempferol has exhibited antiviral action against enveloped viruses, including hep-
atitis B [77]. Moreover, in an in vitro setting, Parvez et al. [66] noticed that anti-hepatitis B
effects were displayed by the extract of the cold-adapted sea buckthorn Hippophae rham-
noides, which contains kaempferol. Kaempferol exerted these effects by inhibiting HBsAg
and HBeAg synthesis (HBe is a marker for cccDNA replication and, by extension, the infec-
tivity of the host). An in vitro and in silico molecular docking analysis proved the ability
of quercetin, kaempferol and lamivudine to form stable complexes with HBV-polymerase
binding-pocket amino acids and thus, the potential therapeutic potential of sea buckthorn
was attributed to its extracts, quercetin, isorhamnetin and kaempferol [66]. The findings
of Li et al. [65], which used the extract of Geranium carolinianum L., further support the
anti-hepatitis B effects of kaempferol by displaying a reduction in intracellular viral DNA
proportional to the administered dose.

2.2. Antiviral Activity against Alphaherpesvirinae

Herpes is among the oldest pathogens recorded, being known since the time of Ancient
Greece [78,79]. The two serotypes HHV-1 and HHV-2 [79], alongside Varicella–Zoster virus,
make up the Alphaherpesvirinae subfamily [79]. The virus is widely distributed [80,81],
and it is responsible for a multitude of pathologies of varying severity [78,80,82–84]. The dis-
eases most commonly associated with herpes simplex are facial and genital lesions [80,81]
as well as a recurring and potentially eyesight-threatening keratitis [85], while the psy-
chological implications of the aforementioned lesions constitute another important aspect
that must be considered during treatment [80,81]. Recent advances like the use of PCR
and the administration of acyclovir have enabled us to detect the infection reliably and
help the host fend it off respectively [84]. Also, new studies have shown progress in the
development of vaccines with the application of nanoparticles [86].

In the case of varicella-zoster, the primary infection causes a condition commonly
known as chickenpox, with the virus establishing latency afterwards in the peripheral
ganglia [87–89], with potential reactivation years later [87,88]. The ensuing condition,
i.e., herpes zoster, is commonly accompanied by potent neuralgia and may lead to CNS
complications [87]. PCR and acyclovir represent solid means of detecting and addressing
the virus [88,90], and available vaccines against varicella-zoster virus provide protection
from both the initial infection and its reactivation [88].

Based on the results of previous research, as summarised by Yang et al. [77], it was
demonstrated that kaempferol has potent action against enveloped viruses, such as herpes.
Two kaempferol derivatives, kaempferol 3-O-rutinoside and kaempferol 3-O-robinobioside,
obtained from the extract of Ficus benjamina, were shown to have inhibiting action against
both HHV-1 and HHV-2 but were not effective against varicella-zoster [67]. This effective-
ness is corroborated by the findings of Behbahani et al. [68], which also display the potency
of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca against
HHV-1 due to the ability of the tested fractions to inhibit HSV-1 multiplication at a high
rate. Interestingly, a flavonoid fraction from leaves of Ocotea notate, with kaempferol being
one of its major compounds, exhibited notably antiherpetic action, particularly against
HHV-2 by inhibiting the viral replication cycle at multiple levels [91].



Int. J. Mol. Sci. 2023, 24, 16299 6 of 26

In the case of varicella-zoster, Park et al. [69] looked into the potency of kaempferol
compared to that of acyclovir; they found out that while the former could not inhibit the
VZV entry into host cell and the activity of the VZV immediate-early promoter, it could
block VZV DNA synthesis and VZV replication at similar time points. Since no blocking
of early, late or immediate-early proteins synthesis was observed, the mechanism behind
this is possibly attributed to inhibition of the viral DNA polymerase and/or cellular factors
needed for the viral DNA replication.

2.3. Antiviral Activity against African Swine Fever Virus

African Swine Fever (ASF), a fatal disease in many cases, is a very contagious haemorrhagic
disease [92] caused by the African Swine Fever Virus (ASFV) which originates in Africa but,
due to the increased demands for swine consumption, it has found its way to other areas of the
world [93]. Even though this virus poses no direct threat to human life, it is a very problematic
factor for the pig industry, which in turn could have repercussions as far as the availability of
pork meat is concerned as well as at an economic level [92]. Seeing as how vaccine development
has yet to yield any noteworthy results [94], methods of treatment could be very useful in
addressing the issue alongside the implementation of strict sanitary protocols.

ASFV targets monocytes and macrophages [93]. The virus enters the cells mainly via
endocytosis, mediated by receptors, and via micropinocytosis [70]. Kaempferol’s potency
in dealing with this pathogen stems from its ability to inhibit the endocytosis, thereby
preventing the release of virions to the cell [70]. This results in the suppression of viral
infection by an impressive amount of more than 90% [70]. The mechanism behind this has
not been verified, but it may be related to the induction of autophagy in different cell lines
due to the upregulation of p-AMP-activated protein kinase [70].

2.4. Antiviral Activity against Pseudorabies Virus

This virus, also known as Suid alphaherspesvirus 1, is the causative agent of Aujeszky’s
disease, which is associated with significant financial losses in the pig industry [71,95–97].
Even though currently pigs are its only known reservoir, it exhibits notable recombination
abilities [97] and can thus affect several other mammals [96,97] with a few cases of even human
infection, in the form of endophthalmitis [98] and encephalitis [99], having been recorded.
DIVA (differentiating infected from vaccinated animals) vaccines have been used to address
this pathogen with impressive results [100]. However, the wild swine remain a possible
reservoir, and research has been inconclusive as to the risk they pose in this regard [96]. It
should also be noted that on an experimental level, this virus has been used alongside other
neurotropic viruses to study brain organization, as a tracer of neural pathways, and the role
that virally encoded proteins play in viral invasiveness and virulence [95,101].

Kaempferol could be potentially used to treat PRV infection as it has been shown
to inhibit the virus’ replication in a dose-dependent manner when tested in vitro [71].
Specifically, at a concentration of 52.40 µmol/L, it decreased cell death caused by PRV by
90%, having an IC50 of 25.57 µmol/L [71]. Kaempferol also exhibited inhibitory action on
the stage of viral penetration though at a lesser extent, reducing the viral loads by 4-fold
when compared with the 30-fold reduction in the case of replication [71].

3. Antiviral Activity against RNA Viruses

The RNA viruses group comprises some of the most dangerous viral pathogens, such as
dengue fever virus, poliomyelitis virus, and human immunodeficiency virus (HIV). The low
fidelity of their polymerases and reverse transcriptase ensures a high mutagenicity, and thus,
they exhibit much greater diversification compared to DNA viruses; to date, 158 species of RNA
viruses are known to exist [102] of which a handful is pathogenic to humans [63].

While successful vaccines against some of these viruses do exist, it still remains impor-
tant to explore alternative treatment options, given the existence of immunocompromised
individuals and the potential for mutations. There is relevant literature data to support the
antiviral properties of kaempferol and its compounds against RNA viruses (Table 2).
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Table 2. In vitro studies on the potential antiviral actions and effects of kaempferol and its derivatives against RNA viruses.

Family Genus Extract From Compound Tested Toxicity Limit Concentration (Type) Mechanism Year of
Research Reference

Coronaviridae SARS coronavirus
(SARS-COV-2) Pure compounds Numerous kaempferol

glycosides Not calculated 20 µM (minimum
effective concentration)

Inhibition of the 3a
membrane channel 2014 [103]

Pneumoviridae
Respiratory syncytial

virus (RSV)

Extract from
Eucalyptus citriodora

Kaempferol-3-O-β-D-
glucopyranosyl

(12)-α-L-rhamnoside

137.60 µg/mL
(CC50) 57.30 µg/mL (IC50)

Reduction in virus
multiplication 2014 [104]

Kaempferol-3-O-α-L-
rhamnoside

258.1 µg/mL
(CC50) 56.90 µg/mL (IC50)

Extract from
Sophora japonica flowers Kaempferol 143.79 µg/mL

(TC50) 4.84 µg/mL (IC50) Reduction in viral
cytopathic effects 2014 [77]

Orthomyxoviridae Influenza virus

Extract from
Rhodiola rosea roots Kaempferol >300 µM

18.50–30.20 µM
(EC50 depending on

viral strain)

Inhibition of
neuraminidase 2009 [105]

Extract from
Brazilian propolis Kaempferol >100 µg/mL

21.70–38.20 µM
(depending on

viral strain)

Limitation of
infection symptoms 2014 [106]

Extract from
Eupatorium perfoliatum L.

Kaempferol-3-O-β-D-
galactoside

(trifolin) Not calculated for
individual compounds

Various effective
concentrations

Prevention of viral
attachment and entry

into the cells
2016 [107]

Kaempferol-3-O-β-D-
glucoside

(astragalin)

Retroviridae
Human immunodeficiency

virus (HIV)
Extract from

Securigera securidaca
Kaempferol 320 µg/mL 50 µg/mL (IC50) Inhibition of reverse

transcriptase 2014 [108]
Kaempferol-7-O-glycoside 2500 µg/mL 32 µg/mL (IC50)

Flaviviridae

Dengue fever virus (DFV)

Pure compound Kaempferol
228.50 Mµ (HEK293T/

17 cells); 139.70 Mµ
(BHK-21 cells)

None (not effective at
tested concentration) - 2020 [109]

Extract from
Azadirachta indica Kaempferol-3-O-rutinoside Not significant 10 µM (minimum

tested concentration)
Inhibition of

viral protease 2021 [110]

Japanese encephalitis virus

Pure compound Kaempferol 230 µM

12.6–21.5 µM
(depending on
experimental
conditions)

Inhibition of viral
protein expression 2012 [111]

Pure compound Kaempferol
228.50 Mµ (HEK293T/

17 cells); 139.70 Mµ
(BHK-21 cells)

66.33 µM (EC50)
Probably inhibition of

cap-dependent
translation

2020 [109]
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Table 2. Cont.

Family Genus Extract From Compound Tested Toxicity Limit Concentration (Type) Mechanism Year of
Research Reference

Picornaviridae

Enterovirus 71 Pure compound Kaempferol 50 µM< >35 µM (standard
concentration used)

Inhibition of translation
and replication 2011 [112]

Hepatitis A virus (HAV)

Pure compound Kaempferol Not determined None (not effective at
tested concentrations) - 2014 [113]

Extract from Ficus virens

Kaempferol-3-O-α-D-
arabinopyranoside 329.9 ± 5.3 µg/mL None (not effective at

tested concentrations)
- 2016 [114]

Kaempferol-3-O-β-D-
galactopyranoside 313.3 ± 1.19 µg/mL None (not effective at

tested concentrations)

Poliovirus Extract from Psiadia dentata
3-Methylkaempferol 107 µM Various tested

concentration under
different settings

Inhibition of
the replication

2001 [115]
3,4′-Dimethylkaempferol 197 µM

Togaviridae Chikungunya virus
(CHIKV) Pure compound Kaempferol

>1000 µg/mL
(CC50 Vero cells);

537.30 µg/mL
(CC50 BHK-21 cells)

400 µM (concentration
necessary for a degree

of inhibition)

Inhibition of
post-entry replication 2015 [116]

Caliciviridae
Feline calicivirus (FCV)

Pure compound Kaempferol >300 µM

50 µM (minimum
effective concentration) Unknown

2016 [117]
Murine norovirus (MNV) None (not effective at

tested concentrations) -
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3.1. Antiviral Activity against Severe Acute Respiratory Syndrome-Related Coronaviruses

Severe acute respiratory syndrome coronaviruses (SARS-CoV) are extremely conta-
gious [118–121], and SARS-CoV-2 was the cause for the most recent pandemic, which
started on 2019 and escalated into a global crisis [122]. It gains entry to the cells of the
respiratory system through the binding of protein S to the angiotensin-converting en-
zyme [118,119,123], but apart from its main target, it can spread to several other anatomical
sites [124], such as the brain [125]. Consequently, the virus manifests in several different
ways; from acute respiratory distress syndrome [119,123–125] to gastrointestinal symp-
toms and kidney involvement [123,124] as well as hepatic involvement, myocardial injury,
and severe coagulopathy, and it even affects the CNS [123,125,126]. Having the largest
genome among all RNA viruses, SARS-CoV-2 is equipped with the means of thriving in
a wide range of environmental conditions and hosts [122]. Due to its high recombination
potential [125], new ways of addressing the infection must be sought after, especially given
that treatment options are still limited [122]. The vaccines which were used en masse may
have been mostly safe and quite efficient [127]; however, there have been reported cases of
vaccine-associated pathologies [128–131].

A number of studies have assessed the efficacy of kaempferol in combating SARS-
CoV-2 [132,133]. In 2014, Schwarz et al. [103] determined that numerous kaempferol
glycosides were effective in blocking the 3a channels of coronaviruses in concentrations
as low as 20 µM. This mechanism is effective against the original SARS-COV-1 outbreak
of 2002–2004 [43]. Both kaempferol and isokaempferide were evaluated for their antiviral
potential against COVID-19 using a computational approach and were found to be accept-
able as potential antiviral agents [134]; both compounds were extracted from Artemisia
annua. A number of kaempferol compounds extracted from Salvadora persica exhibited
promising molecular docking parameters on the N3 site in the SARS-CoV-2 main protease
(Mpro) [135]. Equally promising molecular docking parameters of kaempferol extracted
from Mollungo Nudicaulis were confirmed by Kanmani [136].

3.2. Antiviral Activity against Respiratory Syncytial Virus (RSV)

This pathogen is the main causative agent of pneumonia and bronchitis [137] as well
as bronchiolitis [138,139], particularly in children and the elderly [139], and it can lead to
long-term pulmonary complications [139,140]. Vaccine development was arduous with the
first unsuccessful attempt being made more than fifty years ago [139], although the current
research results seem promising, especially since reinfection has been well documented
and treatment remains for the most part supportive to this day [138,139,141].

Both kaempferol-3-O-β-D-glucopyranosyl (12)-α-L-rhamnoside and kaempferol-3-
O-α-L-rhamnoside, derived from Eucalyptus citriodora leaves, proved effective against
this virus but with a slightly lower selectivity compared to ribavirin [104]. In addition,
tested kaempferol derived from tea proved effective against RSV, being able to inhibit viral
cytopathic effects by 50% at a concentration of 4.84 µg/mL [77].

3.3. Antiviral Activity against Influenza Virus

The influenza virus is a very contagious pathogen whose main target is the respiratory
system [142]. One of this virus’ most notable traits is its antigenic variability, which is
most prevalent in Type A, resulting in several pandemics [143] caused by the exhibited
antigenic shift [144], while its antigenic drift forces us to update the vaccines against it on
an annual basis [145]. A variety of antiviral drugs are in use in influenza infections [146];
however, not only do these drugs become less effective if they are not administered shortly
after the onset of the infection [143], but the virus has developed resistance to several of
them [143,146]. As such, the need for additional combative substances is ever present.

Kaempferol and a host of other flavonoids are effective viral neuraminidase in-
hibitors [147]. The subsequent research of Jeong et al. [105] on the extract from Rhodiola
rosea roots determined that kaempferol was an effective antiviral agent with an EC50 of
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18.50–32.50 µM depending on the viral strain. This neuraminidase inhibition was also noted
by Yang et al. [77]. Interference with the hemagglutinin domains has also been noted [77].

Two kaempferol compounds from the extract of Eupatorium perfoliatum L. were found
to be effective against influenza A, although their precise contribution to the total antiviral
potential of the extract was unspecified [107]. The action mechanism of the extract consisted
in obstructing viral attachment and entry into the cells. The earlier research of Park
et al. [148] had indicated the antiviral potential of the extract of Aronia melanocarpa against
influenza; while the extract contains kaempferol, its exact contribution to the antiviral
properties of the extract is not known. Finally, the extensive research of Kai et al. [106] on
kaempferol from Brazilian propolis indicated its effectiveness in supressing viral growth
in the respiratory tract with an EC50 of 21.70–38.20 µM depending on the viral strain
by exhibiting its potency in preventing mean body weight reduction and increasing the
survival rate of infected mice overall; this effectiveness was not affected by whether the
strain had developed drug resistance or not.

3.4. Antiviral Activity against Human Immunodeficiency Virus (HIV)

It is estimated that around 39 million people were living with HIV at the end of 2022
around the world [149]. The most detrimental effect of HIV is the eventual enfeeblement of
the patient’s immune system, due to the mass depletion of CD4+ helper cells, which is a state
commonly known as AIDS (Auto Immune Deficiency Syndrome) [150,151]. A problematic
aspect of this pathogen is that being a “retrovirus”, HIV uses reverse transcriptase to
copy its RNA genome into DNA, showing great variability allowing for viral strains to
elude the immune response of the host and making it seemingly impossible to vaccinate
against [150,152]. Lifelong treatment schemes called ART (Antiretroviral Therapy) [153,154]
and prophylactic schemes are now available [154,155]; therefore, our ability to mitigate the
consequences of infection with this pathogen have vastly improved [154], especially if the
treatment begins during the early stages [153]. On the other hand, reduced adherence to
therapy, for a variety of factors [156–158], reduces its effectiveness [159]. For this and the
other reasons outlined above, it has proven impossible to completely cure HIV carriers
with a few exceptions [160].

There is some evidence to suggest that kaempferol could be used effectively as an
anti-HIV agent. Behbahani et al. [108] extracted kaempferol and kaempferol-7-O-glucoside
from Securigera securidaca and determined that it potently inhibited the activity of the viral
reverse transcriptase with the kaempferol glycoside being more potent in that regard. A
more miscellaneous action of kaempferol against HIV is mentioned by Badshah et al. [43]
and consists of its ability to inhibit the Vpu (Viral protein u)-mediated current of HIV-1 (an
ion channel that is involved in virus release when activated) by a small amount of 10% at a
concentration of 20 µM in a manner similar to that of genistein [113].

3.5. Antiviral Activity against Dengue Fever Virus (DFV)

This pathogen has a zoonotic transmission [161], and infections caused by it vary
in severity; they can be subclinical and self-limiting or cause notable fever, which can
be of haemorrhagic nature in the more severe cases, potentially leading to dengue shock
syndrome [161,162]. There is no dedicated antiviral treatment; however, several vaccines
have been developed for children and adolescents living in endemic areas as well as subjects
previously confirmed with dengue fever [163–166]. Therefore, it is of great importance
to conduct research with the purpose of identifying new substances which can be used
against the virus.

Kaempferol 3-O-β-rutinoside seems to be effective in inhibiting dengue virus which
was attributed to its ability to interfere with molecular docking [103]. Indicatively, even at
a concentration of 10 µM, it achieved an inhibition of 55.60% and an inhibition of 77.7%
at a concentration of 100 µM [110]. Conversely, the earlier research of Care at al. [109]
had determined that not only kaempferol was ineffective against this particular virus, but
it even increased infectivity in a particular cell line. This highlights a significant aspect,
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namely that of different interactions between kaempferol and presumably other flavonoids
with the different molecular replication strategies of different viruses.

3.6. Antiviral Activity against Japanese Encephalitis Virus (JEV)

Japanese encephalitis is a zoonotic disease that is endemic in regions of the Eastern
hemisphere [167] but is nevertheless of global concern due to its potential to spread in
new regions; indicatively, its genetic material was recently found in mosquitos in northern
Italy [168]. The causative agent is a neurotrophic virus of the flavivirus genus by the same
name [169] which has five circulating genotypes [167] and leads to death of the infected
individual in approximately one-third of cases, with half of the surviving patients suffering
from neuronal complications long after the infection is over [170]. Initially, a mouse
brain-derived inactivated vaccine was available, but it has been replaced by three cell
culture-derived vaccines [171].

In general, flavonoids seem to be promising antiviral agents against JEV [70,111,172].
Kaempferol in particular was found to be able to bind with the frame-shift site RNA (fsRNA)
in the JEV serogroup and thereby interfere with protein expression and consequently viral
replication [111]. The antiviral action of kaempferol against this virus was also corroborated
by Care et al. [109], even though higher concentrations of kaempferol were required, and
this was above the toxicity limit for one of the two cell lines used.

3.7. Antiviral Activity against Enterovirus 71 (EV71)

Enterovirus 71 is the main causative agent of the so-called “hand, foot, and mouth
disease” [173–175] alongside coxsackieviruses [174], which is a condition that affects mostly
children [173,175,176], having neurological manifestations [173,175,176], and can lead to
complications both neurologic [175] and systemic [173,175], like meningoencephalitis and
pulmonary pathologies, respectively. Currently, there are formalin-inactivated (FI) EV71
vaccines which have undergone evaluation in human clinical trials in China, Taiwan, and
Singapore and have been deemed safe and effective in eliciting neutralizing antibody
responses against the virus [174].

Kaempferol can be potentially useful against enterovirus 71 infections because it
hinders both its replication and its translation through its interaction with EV71 internal
ribosome entry site (IRES) [112]. Indicatively, PCBP 1/2 and the viral polymerase precursor
3CD with poliovirus IRES stem-loop I RNA contribute significantly to the antiviral activity
by forming a ternary complex required for the synthesis of negative-strand RNA while
PCBP2 interacts with enterovirus IRES stem-loop IV RNA thus inhibiting IRES-mediated
translation [112]. Kaempferol’s action against enterovirus 71 is made possible due to the
contribution of cellular factors associated with the 50-untranslated region (50-UTR) of the
EV71 genome [112].

3.8. Antiviral Activity against Hepatitis A Virus (HAV)

Hepatitis A is the most frequent type of viral hepatitis and is showing an increasing
incidence especially in low and middle demographic index regions [177]. The faecal–oral
transmission shows it is oftentimes linked to poor sanitary conditions [178]. The infection
can have many clinical forms, from being short-lived and self-limiting, without displaying
any symptoms [179] or displaying abdominal pain, hepatitis, hyperbilirubinemia, and
jaundice [178] or only jaundice, to being seldom fatal [179]. Intramuscular anti-A gamma
globulin is used for passive immune prophylactic purposes [179], but the most efficient
preventive method is the available vaccine [178–180].

As mentioned in the research of Ohemu et al. [181], a variety of plant flavonoids,
presumably including kaempferol, showed an antiviral effect against HAV. However, Orabi
and Orabi [114] tested kaempferol-3-O-α-D-arabinopyranoside and kaempferol-3-O-β-D-
galactopyranoside isolated from the extract of Ficus virens; their antiviral activity against
HAV was found to be practically non-existent. Both compounds were tested up to their
maximum non-toxic concentration on the tested cell line.



Int. J. Mol. Sci. 2023, 24, 16299 12 of 26

3.9. Antiviral Activity against Poliovirus

Poliovirus is a virus with three subtypes (1, 2 and 3), which is responsible for the
condition known as poliomyelitis [182]. This enterovirus is highly contagious and can
have either a paralytic form (most often spinal) or a bulbar form [182]. In addition to the
dangerous nature of the acute phase, this virus remains a problem for the host’s health for
a long time after the initial infection due to post-polio syndrome, which is a neurological
disorder that significantly impairs his daily life [182–184], requiring long-term medical
assistance to handle [183]. The vaccines of Salk and Sabin were a major step toward limiting
the impact of this pathogen [182,184]. Apart from being effective, they were also relatively
safe [185,186] even though some cases of vaccine-derived polio have been recorded [185].

Based on the research of Robin et al. [115], 3-methylkaempferol (also known as
isokaempferide) and 3,4-dimethylkaempferol, two compounds derived from the leaves
of Psiadia dentata, have been found to be very effective in preventing viral replication of
the second subtype by inhibiting RNA synthesis of the plus-strand if administered shortly
after the infection.

3.10. Antiviral Activity against Chikungunya Virus (CHIKV)

This pathogen has a zoonotic transmission and causes fever, often accompanied by a
maculopapular rash, culminating into polyarthralgia of potentially chronic nature [187–189],
which can even cause bone erosion [189], while it has also been associated with Guillain–
Barré syndrome [190]. Although the disease is usually not life-threatening, some patients
develop chronic joint pain possibly due to the migration of infected monocytes to the synovial
tissues, perpetuating the inflammatory process [188,189]. Given that all attempts at creating
a vaccine have not been successful thus far [189] and that there is no specific treatment
available [187,188,190], with broad-spectrum antivirals like ribavirin currently comprising the
most effective therapeutic scheme available [189,191], research has focused on finding natural
compounds with action against this virus [190].

Kaempferol with the oxidation and cyclization of 1,3,5-trimethoxybenzene was found
to inhibit replication after the entry of the virus at a concentration > 400 µM [191]. As such,
kaempferol could be considered a possible CHIKV inhibitor for human use. On the other
hand, based on the research of Lani et al. [116], kaempferol is not a good candidate as an
antiviral agent against CHIKV, because even though it exhibits a degree of inhibition of
post-viral replication [191], it does so at a very high concentration of 400 µM [116].

3.11. Antiviral Activity against Feline Calicivirus (FCV)

This pathogen is among the most common ones found in cats [192,193] causing spo-
radic outbreaks in that population [194]. It has a highly mutagenic nature with its great
genomic plasticity making the diagnosis, treatment, and prevention quite challenging. In-
fecting the upper respiratory tract [193,194], it is commonly accompanied by oral ulcers and
high fever [195], and it can even be fatal [192]. Treatment has only a supportive role [195]
and, despite the effectiveness of the vaccine [193,195], the virus’ variability means that
there are strains against which the protection granted is not as potent [192]. Although
this particular virus is not pathogenic to humans, it belongs to the Caliciviridae family,
which comprises notable human pathogens [196]. Therefore, the development of antiviral
strategies against this virus may offer new insights against human pathogens.

The research of Seo et al. [117] shows that kaempferol was the most potent antiviral
agent amongst a series of tested flavonoids; compared to the standard antiviral agent
ribavirin, it proved by far less effective at a concentration of 50 µM and somewhat less
effective at 100 µM. The inhibition by kaempferol was remarkably high at concentrations of
200 µM and 300 µM [117]. An important component of kaempferol’s effectiveness seems to
be its antioxidant activity, which surpasses even that of ribavirin [110].
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3.12. Antiviral Activity against Murine Norovirus (MNV)

This recently discovered pathogen affects mice, causing gastroenteritis [197]. There
also is a strain which can affect humans, called human norovirus, which is the main
causative agent of viral gastroenteritis worldwide [198,199]. Since the mechanisms of the
human norovirus have yet to be fully elucidated, despite recent advances [198,199], the
study of the murine norovirus could yield results that may culminate into a breakthrough,
especially since the latter is unique among all the strains in its ability to replicate in a cell
culture [197].

While belonging in the same family as FCV, murine norovirus was not inhibited by
kaempferol at either 50 µM or 100 µM despite other flavonoids such as daidzein and
quercetin being effective against it [117].

4. Effectiveness of Kaempferol Antiviral Activity

Another aspect we should consider is the relative effectiveness of kaempferol and its
derivatives compared to existing antiviral drugs (Table 3). In a large number of cases, the
compounds tested are of comparable effectiveness to the drugs used, which is important
when considering the potential adverse effects of the antiviral drugs. Thus, it might be
possible to partially supplant or supplement these drugs, with kaempferol either alone or
in conjunction with other natural antiviral compounds, so as to reduce the dose and/or the
length of administration of some antiviral drugs, especially in the case where serious side
effects are manifested.

Table 3. Effectives of kaempferol and its derivatives relative to common antiviral drugs.

Virus Compound Tested
Compound

Effectiveness
(Concentration)

Reference Drug Drug Effectiveness
(Concentration) Reference

Hepatitis B virus Kaempferol
10 µg/mL (62.3%
viral inhibition of
HBsAg synthesis)

Lamivudine
2 µM

(87.4% viral inhibiton
of HBsAg synthesis)

[66]

Human herpesvirus 1
Kaempferol 0.20 ± 0.01 µg/mL

(EC50)
Acyclovir 0.10 ± 0.01 µg/mL

(EC50) [68]
Kaempferol-7-O glycoside 0.10 ± 0.01 µg/mL

(EC50)

Varicella-zoster Kaempferol 6.36 ± 0.73 µg/mL
(IC50) Acyclovir 0.54 ± 0.12 µM (IC50) [69]

Pseudorabies virus Kaempferol 25.57 µg/mL (IC50) Acyclovir 54.97 µg/mL (IC50) [71]

Feline calicivirus Kaempferol 50–100 µM (tested
concentrations) Ribavirin

Higher effectiveness
at the same

concentrations
[117]

Influenza virus Kaempferol 21.70–38.20 µg/mL
(EC50) Ribavirin 19.20 ± 7.5 µg/mL

(EC50) [106]

Respiratory
syncytial virus

Kaempferol-3-O-β-D-
glucopyranosyl

(12)-α-L-rhamnoside
57.30 µg/mL (IC50) Ribavirin 2.60 µg/mL (IC50)

[104]
Kaempferol-3-O-α-L-

rhamnoside 56.90 µg/mL (IC50) Ribavirin 2.60 µg/mL (IC50)

HIV
Kaempferol 50 µg/mL (IC50)

Zidovudine 1 µg/mL (IC50) [108]
Kaempferol-7-O-glycoside 32 µg/mL (IC50)

5. General Antiviral Activity and Natural Kaempferol Sources with Antiviral Effects

From all the aforementioned research results on the antiviral effects of kaempferol, it
must become apparent that kaempferol and its derivatives are potent as antiviral agents
against most of the viruses presented (Figure 2). In each experiment against DNA viruses,
every compound tested was effective at reasonably low concentrations, which were below
the toxicity limit for the cell lines tested by the same researchers. Regarding kaempferol
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toxicity, there is currently no consensus as to its safety profile in vivo [7]; in vitro stud-
ies [200–202] have found it to be genotoxic, but this effect was not replicated in vivo [203].
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Figure 2. Summary of kaempferol antiviral effects on DNA and RNA viral infections.

In the case of RNA viruses, the results are again encouraging, with kaempferol and its
derivatives being able to either inhibit viral replication altogether or mitigate the cytopathic
effects and inhibit the entry of viruses into the cells. Notable exceptions include the
experiment of Care et al. [109] against dengue, the experiments against HAV [114] and
the experiments of Sauter et al. [113] against HIV; in all cases, the compounds used were
ineffective. In the case of dengue virus, it is important to explore the potential of other
kaempferol compounds, given that it represents a notable public health hazard in certain
countries, and vaccination was not yet successful [204]. It is worth noting that kaempferol
seems to exhibit some sort of cell specificity [109]. In this study, kaempferol was even
found to have a pro-viral effect, which was most probably associated with the presence of a
functional IRES sequence in Dengue virus [205]. In the case of HIV, kaempferol elicited only
a minor inhibition of the Vpu channel [113]. Finally, in the case of kaempferol compounds
against HAV, the cause for the lack of any noticeable antiviral activity appears to be related
to structural and molecular dynamics reasons [114]. The ability of kaempferol and its
derivatives to inhibit viral replication was identified and described for both DNA and RNA
viruses; an illustration of the reported effects is shown in Figure 3.

Kaempferol is abundant in nature, being found in many plants (e.g., [206–217]; for
a comprehensive review, see the paper of Periferakis et al. [3]). It is synthesised via the
shikimic acid pathway [218] as all flavonoids; this biosynthetic pathway may be metaboli-
cally engineered so that it can yield the desired flavonol amounts in the near future [219].
Indeed, the microbial synthesis of kaempferol, as an alternative to its purification from
plants, has already been proposed by Duan et al. [220]. Regarding its absorption in the
human body, kaempferol is usually absorbed as a glycoside, although the attached sugars
impact its bioavailability [221]. The specific pharmacokinetics of kaempferol have been
explored by a number of researchers [222–230].

A prominent detail readily apparent based on the data presented in this review is the
importance of plants used in traditional and folk medicine systems since ancient times.
The mentioned plants belong to one or several such medical traditions (Table 4), and most
importantly, the majority already demonstrated antimicrobial/antiviral properties with
the exception of Securigera securidaca. This highlights the fact that a persistent and detailed
study of traditional remedies can yield very useful insights into bioactive compounds for a
number of different pathologies.
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Table 4. Traditional medical uses of plants mentioned in this review.

Plant Medical Tradition Traditional/Ethnobotanical Uses References

Atermisia annua Traditional Chinese medicine

Anti-hyperlipidaemic, anti-plasmodial,
anti-convulsant, anti-inflammatory,

antimicrobial, anti-cholesterolaemic and
antiviral properties

[231,232]

Azadirachta indica Traditional Chinese medicine,
Ayurvedic medicine, Unani medicine Antimicrobial and anti-inflammatory uses [233–235]

Eucalyptus citriodora African folk medicine
(various geographical areas) Anti-asthmatic, antifungal, general antimicrobial [236–239]

Eupatorium perfoliatum Native American folk medicine,
European medical traditions

Antipyretic, antirheumatic agent and treatment
of colds, anti-malarial agent and use as an

antiviral agent
[240–242]

Ficus benjamina
Numerous local remedies in Asia,

Africa, the Pacific islands and
the Americas

Antimicrobial, antinociceptive, antipyretic and
hypotensive uses; anti-dysentery remedy [243–246]

Ficus virens Traditional Indian medicine
and Ayurveda

Prevention and treatment of diseases and
various other reported medicinal effects [247]

Geranium carolinianum L. Traditional Chinese medicine Antimicrobial, anti-inflammatory, and
antipyretic uses [248]

Hippophae rhamnoides Local medical traditions in Russia and
Asia, Austrian folk medicine

Treatment of hypertension, oedema,
inflammation; tissue regeneration; treatment of

burns, wounds, and ulcers
[249–252]

Ocotea notata Folk medicine of South America Treatment of chest pain, rheumatism wounds
and viral infections [253]

Psiadia dentata Local African medical traditions, folk
medicine of the Mascarene islands

Treatment of abdominal pains, colds, fevers,
bronchitis, asthma, rheumatoid arthritis, skin

infections and liver disorders
[254,255]
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Table 4. Cont.

Plant Medical Tradition Traditional/Ethnobotanical Uses References

Rhodiola rosea

Traditional Chinese medicine, Viking
folk medicine, various local medical

traditions of Asian and
European countries

Nervous system stimulation, stress and fatigue
alleviation, treatment for gastrointestinal

complaints, anaemia, infections, and impotence
[256–258]

Salvadora persica
Traditional Indian medicine, African
folk medicine, medical tradition of

Saudi Arabia

Antidote to poison, prevention of scurvy,
treatment of rheumatism, anti-inflammatory use,

treatment of skin conditions, purgative,
treatment of gastrointestinal disorders,

antimicrobial properties

[259,260]

Securigera securidaca
Traditional Iranian medicine,

traditional Egyptian medicine,
traditional Indian medicine

Anti-epileptic, anticonvulsant, and blood
lipid-lowering actions [261,262]

Sophora japonica
Traditional Chinese medicine,
traditional Japanese medicine,
traditional Korean medicine

Treatment of haemorrhoids, haematochezia,
haematuria, hematemesis, haemorrhinia, uterine

or intestinal haemorrhage, arteriosclerosis,
headache, hypertension, dysentery, dizziness,

and pyoderma

[263,264]

The possibility of virus–host genetic recombination coupled with the viral adaptability
may make it plausible that a number of viruses may yet circulate with the human popula-
tion unnoticed until specific and characteristic symptoms are manifested [102]. Alongside
the existing viruses against which no effective vaccines are available, the need for an intensi-
fication of research on the antiviral properties of natural compounds is evident. Kaempferol
appears to be a strong candidate due to its effectiveness, variety of action mechanisms, and
general availability. Moreover, in an effort to enhance tissue availability, selectivity and ef-
fectiveness, kaempferol and associated compounds could be combined with nanoparticles,
which have promising medical applications [265–267]. Another interesting future research
avenue would be to combine kaempferol with other phytochemicals with known antiviral
properties such as catechins [268–270], quercetin [271–273], plant alkaloids [55,274–276],
and other natural compounds [277–279].

A variety of zoonotic viruses have the potential to emerge and infect human pop-
ulations; therefore, the surveillance of infections and nonhuman reservoirs is recom-
mended [280]. Further research on the antiviral properties of kaempferol on viruses
from these reservoirs could be beneficial in establishing its effectiveness and potential use
alongside other antiviral drugs.
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