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Abstract: The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is
to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrica-
tion of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to
enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite
(HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction
with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This
review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic
perspective. The article begins with a systematic analysis of biological mineralisation (biominerali-
sation) and ossification to optimise the scaffold’s structural, mechanical, degradation, and surface
properties. This scaffold-designing strategy lays the groundwork for developing a research pathway
that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication
techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to
potential clinical applications.

Keywords: bone tissue engineering; alveolar bone; biomineralisation; biomimetic ossification; fused
filament fabrication; 3D-printed PCL-based scaffold; hydroxyapatite; collagen; chitosan

1. Introduction
1.1. Bone Tissue Engineering (BTE)

The alveolar bone, which secures teeth in the jaw, can undergo resorption following
tooth extraction due to the lack of mechanical load [1,2]. The regeneration of alveolar
bone, as opposed to skeletal bone, poses unique clinical challenges. While autologous bone
grafts are considered the “gold standard” for significant alveolar bone defects [3], they
come with drawbacks such as donor site morbidity, deformity, potential infection, and the
risk of graft rejection. Consequently, research in material science and tissue engineering
is focused on finding suitable materials and their fabrication for the replacement and
reconstruction of alveolar bone [4]. BTE focuses on crucial processes involving cell growth
and the complex structure of human bone at both microscopic (biomineralisation) and
macroscopic (ossification) scales [5].

Numerous methods have been explored to halt the resorption of the alveolar pro-
cess [6], and research on various strategies for reconstructing alveolar bone defects is
rapidly expanding. However, the included studies exhibit a high degree of heterogene-
ity [7], necessitating the establishment of a unified standard for bone regeneration in the
alveolar process [8]. The advancement of medical science, particularly in implantology,
relies on the development of a robust research methodology that enables a legitimate
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transition from correlational conclusions to causative ones, thereby minimising potential
errors before clinical trials. As an interdisciplinary field, BTE combines osteoconductive
scaffolds, osteogenic cells, growth factors, and their interrelationships within the natural
microenvironment [9]. An integrated methodological approach is proposed to optimise
scaffold characteristics, grounded in interdisciplinary research encompassing regenerative
medicine, materials, tissue, and dental engineering. Although many phenomena in nature
are exceptionally complicated and challenging to replicate, BTE employs a biomimetic
approach. This approach provides unique and innovative solutions, offering one strategy
to individual fields [10].

1.2. Fused Filament Fabrication (FFF) vs. Other Three-Dimensional (3D) Printing Techniques

Among the promising strategies in this area, the employment of scaffolds fabricated
via 3D printing techniques stands out. One such technique is FFF, also known as fused
deposition modelling (FDM) [11,12]. Other methods include PolyJet, selective laser sin-
tering (SLS), digital light processing (DLP), stereolithography (SLA), and bioprinting [13].
In comparing FFF with these alternatives, it is valuable to consider various aspects such
as cost, materials employed, adaptability of the technique to the structure of the model
produced, and the safety associated with the technique’s use [14–16].

The PolyJet 3D printing technique [13] utilises photopolymerisation, utilising resin
streams for construction. In contrast, SLS [17,18] uses a laser to sinter polymer powders,
which facilitates the production of complex geometries that may be more difficult to realise
with other methods. DLP [19] cures resins using light and can deliver rapid printing times.
SLA [20] is distinguished by its high resolution and ability to fabricate intricate structures
precisely. Bioprinting, a specialised subset of 3D printing technology, is engineered to
construct biological structures encompassing tissues and organs [21].

While each technique mentioned above possesses distinct advantages, FFF is par-
ticularly notable for its cost-effectiveness—it is comparatively economical, enhancing its
accessibility [22]. It also supports a wide selection of biocompatible materials, including
various biodegradable polymers, which are increasingly relevant in BTE. Furthermore, FFF
offers versatility to accommodate specific user needs, allowing for the straightforward cus-
tomisation of designs without significantly impacting production costs [23]. FFF printers are
generally simpler to construct than their counterparts in the 3D printing domain. For instance,
the absence of laser radiation or ultraviolet (UV) light in FFF enhances user safety, positioning
this technology as a viable option for industrial upscaling within BTE contexts. The inherent
simplicity and flexibility of FFF technology make it an exemplary candidate for manufacturing
processes aligned with the principles of lean manufacturing and rapid prototyping.

The FFF technology involves the layer-by-layer deposition of fused material to con-
struct a 3D object. This process initiates with the generation of a 3D computer model, which
is subsequently ‘sliced’ into thin cross-sections utilising specialised slicing software. This
software delineates the pathways for the print head to follow and sets various printing
parameters, including temperatures, speeds, and infill patterns. The print head, or extruder,
is heated to a predetermined temperature, facilitating the melting of the filament. This
filament, a strand of thermoplastic material typically measuring 1.75 ± 0.15 mm in diameter,
is directed into the heated extruder [16]. Within the extruder, the material liquefies and
is extruded through a narrow nozzle, generally 0.4 mm in diameter [24], onto the build
platform. The extruder traverses the preordained paths, laying the material in successive
layers. Upon completion of a layer, the build platform descends (or the extruder ascends,
contingent upon the printer design), and the process iterates for the subsequent layer. The
newly deposited material cools and solidifies, bonding with the layer beneath it. After the
printing concludes, the final object is meticulously detached from the build platform [13].

Currently, two significant bottlenecks are identifiable within the context of BTE con-
cerning FFF. The first involves the processing of the filament to ensure it satisfies the
requisite material specifications. The second entails the fine-tuning of printing parameters
to achieve a scaffold with properties that are appropriately tailored for BTE.
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1.3. Polycaprolactone (PCL) vs. Other Polyesters

A scaffold, which imitates the bone tissue structure, can minimise the risk of rejection
by the body and foster bone regeneration [25]. Three-dimensional printing enables the
precise and controlled fabrication of personalised spatial structures with complex geome-
tries, adaptable to the anatomical shapes of the alveolar bone [26,27]. One of the most
promising materials is PCL [28], mainly due to a suite of properties that set it apart from
other synthetic polyesters, such as polyglycolic acid (PGA), polylactic acid (PLA), and
poly(lactic-co-glycolic acid) (PLGA) [29].

PGA is a bioresorbable, aliphatic polyester frequently utilised in the medical domain,
especially for surgical sutures, owing to its high tensile strength and degradability [30].
PGA scaffolds have been employed in BTE on account of their mechanical attributes.
Nevertheless, PGA undergoes rapid degradation and generates acidic by-products, which
could affect the local cellular milieu and impede tissue regeneration.

PLA is another aliphatic polyester derived from renewable resources like cornstarch
or sugarcane. Besides its widespread use in biodegradable packaging, PLA is employed in
the medical field for sutures, drug delivery systems, and tissue engineering scaffolds [31].
However, similar to PGA, the degradation of PLA can lead to acidic by-products, potentially
affecting the cellular environment.

PLGA is a copolymer of PLA and PGA that combines the properties of both poly-
mers. Its versatility, evidenced by its tunable degradation rates and mechanical properties,
makes it a preferred choice for drug delivery and tissue engineering. PLGA scaffolds
can offer intermediate degradation rates between PLA and PGA while maintaining suf-
ficient mechanical strength [32]. However, as with its parent polymers, the degradation
by-products can influence the pH of the local environment, which might necessitate careful
consideration during scaffold design and application.

In the realm of BTE, the choice between PGA, PLA, and PLGA often hinges on the
specific requirements of the application, including the desired degradation rate, mechanical
properties, and biological response of the surrounding tissue. PCL offers advantages that
address some of the limitations inherent in the polymers mentioned above.

In BTE, one pivotal consideration is the processing properties of PCL, which include a
low melting point (approx. 60 ◦C) [33]. Additionally, PCL’s flexibility, attributable to its low
glass transition temperature (approx. −60 ◦C) [34], along with its thermoplasticity, renders
it more amenable to being shaped into various forms when compared to the relatively
more brittle PLA. Moreover, the balance between stiffness and flexibility in PCL can be
modulated [10,28], enhancing its versatility. It readily blends with other polymers or
ceramics to form copolymers or composites, thereby facilitating the fabrication of scaffolds
with properties that are optimally tailored for bone tissue regeneration.

The second pivotal consideration is scaffold longevity within the body, referring to
structural and mechanical integrity. While PGA, PLA, and PLGA present distinct advantages,
they typically degrade more rapidly than PCL. The slower degradation rate of PCL [28]
is particularly advantageous in BTE, as it ensures the scaffold remains intact, providing
consistent mechanical support throughout the development and maturation of bone tissue.

Currently, two limitations of PCL scaffolds are noted. One involves carrying out an
appropriate compatibilisation strategy to strengthen the surface to hydrophilic properties.
Hydrophilisation is correlated with facilitating cell anchoring and adhering. The second
involves the adaptation of the degradation rate of material to the remodelling of bone
tissue. However, due to PCL’s degradation rate and surface properties, its sole use might
not adequately stimulate regenerative processes in bone tissue. Therefore, the introduction
of ceramics and natural polymers [35] into the 3D scaffold presents a solution since these
materials have high bioactive potential.

1.4. Hydroxyapatite (HA), Type I Collagen (CGI), and Chitosan (CS)

The incorporation of ceramic materials into the PCL matrix permits the regulation
of both degradation and resorption rates. Their bioactivity is unmatched, enhancing the
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interaction with bone cells. In accordance with the biomimetic approach, HA is identified as
a promising material owing to its structural congruence with bone tissue. Other materials,
such as β-tricalcium phosphate (β-TCP) [36], bioactive glass, and silica-based ceramics,
also promote the formation of bone tissue; however, their bioactivity is somewhat inferior
compared to HA. Furthermore, their biodegradation rates and biocompatibility are less
optimally adaptable to specific requirements than those of HA.

In the biomimetic approach to BTE, CGI and CS are deemed appropriate materials.
CGI, in conjunction with HA—the quintessential organic and inorganic components of
bone tissue—plays a pivotal role in biomimetic mineralisation [37]. Together, they replicate
the natural microstructural matrix, providing an optimal environment for tissue regener-
ation. CS, a natural polysaccharide within the glycosaminoglycans (GAGs) family, also
demonstrates significant bioactive potential [38–40]. Renowned for its biocompatibility,
capacity to promote cell growth, and ability to inhibit bacterial proliferation, CS facilitates
the biomimetic mineralisation process, which involves the synthesis of mineral substances
similar to those in natural bone tissue [41]. Compared to other natural polymers, CS has
distinct advantages:

• It exhibits superior mechanical properties and a more streamlined purification process
than silk fibroin [42].

• Its production is less costly and arises from more diverse sources than hyaluronic acid [43].
• CS surpasses bacterial cellulose in biodegradation within physiological environments

and demonstrates enhanced osseointegration [44].

Utilising a 3D scaffold comprising PCL, HA, CGI, and CS can establish a biomimetic
environment that triggers regenerative processes at the alveolar bone defect site [45,46].
The scaffold’s structure allows the adhesion of bone cells, providing mechanical support,
while CGI and CS act as active ingredients stimulating osteoblasts’ anchoring, proliferation,
and differentiation [47,48]. Through the synergy of these components, the PCL-based
3D scaffold can accelerate the regeneration process, leading to bone mineralisation at the
defect site. This approach paves the way for practical BTE by establishing a biomimetic
environment conducive to restoring the structure and function of bone tissue in a manner
harmonious with the body’s biology, thereby leading to improved therapeutic results.

This review outlines the main challenges in designing osteoconductive scaffolds with
osteoinductive potential for alveolar bone engineering. Emphasis is placed on understand-
ing processes such as biomineralisation and ossification. Through a biomimetic approach,
we examine a range of properties that these scaffolds should possess (Figure 1). Given that re-
viewing processing conditions and structural, mechanical, degradation, and surface properties
is complex and subject to debate, we focus on discussing and identifying research gaps.
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2. Alveolar Bone

The alveolar bone is unique due to its embryonic cellular origin, specific ossification
process, and connection to teeth via periodontal tissues. This bone plays a pivotal role in
safely anchoring teeth, enabling them to withstand the forces generated during chewing
and biting (mechanical function) [6,8]. Additionally, the alveolar bone contributes to
maintaining the shape of the mouth by connecting the tooth root with surrounding bone
tissue (stabilisation function) [49]. This linkage secures the tooth’s position and reduces the
risk of tooth loss due to periodontal disease or other oral health issues [50].

Moreover, the alveolar bone plays a significant role in tooth development. As the teeth
evolve, the bone grows and reshapes to accommodate the emerging tooth. The alveolar
bone also aids in maintaining teeth alignment posteruption, regulating the movement and
positioning of periodontal ligaments [51].

Understanding the unique function and structure of the alveolar bone can significantly
contribute to maintaining oral homeostasis, which is a balance between the resorption
and formation of bone [6]. Bone tissue homeostasis is strongly related to the balanced
activities of osteoblasts and osteoclasts, which are responsible for bone formation and
resorption, respectively. Moreover, osteocytes play a pivotal role in regulating both of
these processes [8,52]. These cells interact through mechano-biochemical signals with each
other to regulate the processes of bone formation and resorption, which is crucial for bone
homeostasis (Figure 2) [6,53].

Thus, the amount of bone tissue resorbed by osteoclasts is balanced by the amount
of new bone formed by osteoblasts, ensuring that the net bone mass remains constant
(coupling system). However, this equilibrium is disrupted following tooth extraction or
during the early healing phase of severe periodontitis, resulting in excessive osteoclastic
bone resorption—a primary characteristic of jawbone disease. The ultimate consequence of
the alveolar bone’s physiological remodelling is localised loss [6,53].

Therefore, all processes, including the ossification of the alveolar bone, are integral to
oral health and development. This diverse jaw structure’s morphological and mechanical
features necessitate innovative therapeutic approaches [54].
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-B ligand) and M-CSF (macrophage colony-stimulating factor). RANKL binds
to the RANK receptor on the surface of osteoclast precursors, leading to their differentiation into fully active
osteoclasts. Additionally, osteoblasts produce osteoprotegerin (OPG), which serves as a ‘trap’ for RANKL,
inhibiting osteoclast activation. The balance between RANKL and OPG in the bone microenvironment
determines whether bone will be resorbed or formed. (III) Osteocyte–osteoclast interactions: osteocytes
can also release RANKL, influencing the activation of osteoclasts. Furthermore, osteocytes can secrete
factors that inhibit osteoclast activity in response to mechanical loading [6,55–57].
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2.1. Ossification and Biomimetic Ossification

Ossification is the overarching process of bone formation. It predominantly results in
the growth and repair of hard tissue at the macroscopic scale. Mimicking natural biological
processes by inserting a PCL-based scaffold into an alveolar bone defect poses a significant
challenge. The scaffold’s architecture is designed to provide stability and mechanical
strength commensurate with bone tissue.

Mechanisms of Ossification

Ossification primarily occurs through endochondral and intramembranous mecha-
nisms [21,58]. Figure 3 offers a comparative overview of these processes. Alveolar bone
ossification proceeds via the intramembranous mechanism [6,59]. From an engineering
perspective, these two mechanisms exhibit several key distinctions.
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Firstly, endochondral ossification occurs within a pre-existing cartilaginous scaffold,
which provides inherent mechanical stability during ossification and biodegrades as the
bone tissue gains enough mechanical strength [60]. In contrast, intramembranous ossi-
fication directly occurs within connective tissue, lacking the mechanical robustness pro-
vided by a cartilaginous scaffold. This aspect makes the developing intramembranous
ossification more vulnerable to external forces, potentially leading to deformities in the
bone architecture [61].

Secondly, the origins of osteoblasts, the cells responsible for bone formation, differ
between the two processes. In endochondral ossification, osteoblasts initially form out-
side the cartilaginous scaffold, typically differentiating in the bone marrow [62]. These
cells then migrate into the scaffold, where they proliferate and differentiate. Conversely,
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osteoblasts directly originate within the connective tissue in intramembranous ossification,
differentiating from mesenchymal cells resembling primitive fibroblast precursors.

Consequently, the two ossification processes significantly differ in their mechanisms,
particularly regarding their mechanical implications and osteoblast formation [63]. It
would be intriguing to hypothesise whether introducing a scaffold could alter the biological
behaviour of the healing and ossification process.

Understanding the ossification mechanism of the alveolar bone aligns with the biomimetic
approach and aids in designing bone replacement material. The scaffold at the defect
site should provide sufficient space for osteoblast development without creating a spa-
tial barrier. One method to minimise this spatial barrier, thereby promoting the differ-
entiation of osteoblasts (bone ossification) and fibroblasts (bone healing), is to enable
the scaffold to transmit mechanical forces and convert them into a biochemical signal
(mechanotransduction) [64].

2.2. Biomineralisation and Biomimetic Mineralisation

Bone mineralisation, a specific stage of ossification at the microscopic scale, involves
the precipitation of calcium (Ca2+) and primarily monohydrogen phosphate (HPO4

2−,
Pi) ions [65]. The typical biogenic mineral is hydroxyapatite (Ca10(PO4)6(OH)2, HA), an
inorganic component integral to bones and teeth [66]. Biomimetic mineralisation is a
strategy that seeks to emulate natural mineralisation processes to create hydroxyapatite
with a crystallographic structure that resembles bone apatite [67]. For instance, Cai et al.
utilised X-ray spectroscopy to analyse the resulting materials. They found that the calcium-
to-phosphorus (Ca/P) ratio of the synthesised hydroxyapatite (1.65) was similar to that of
natural bone tissue (1.67) [68]. While the precise mechanism of biomineralisation remains
controversial and not entirely understood due to limitations and gaps in comprehending
this process in vivo [69], the control of hydroxyapatite (HA) crystallisation by an organic
matrix, such as type I collagen (CGI), is common to all apatite-containing hard tissues [5,70].

2.2.1. Stages of Biomineralisation

From a crystallisation standpoint, biomineralisation can be divided into two stages:
the nucleation of calcium phosphate (Ca3(PO4)2, CaPi) (i) and the growth of its crystals in
the form of apatite (ii) (Figure 4).
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HA nucleation occurs in matrix vesicles produced by osteoblasts and released into
the extracellular matrix (ECM) [71]. Ca2+ is transported inside the vesicle by the Ca2+

pump, and Pi is converted from organic to inorganic by alkaline phosphatase. The matrix
vesicle contains CGI, the matrix for CaPi precipitation. Thus, this process occurs at the
interface of the inorganic–organic phase [72,73]. From a biochemical perspective, the
precipitation behaviour of CaPi can be influenced by critical parameters, such as pH and
the concentration of individual Ca2+ and Pi. Three variants are identified within the
matrix vesicles, where a unique microenvironment prevails (Figure 5). In the first variant
(pH equal to or lower than 6.2), biomineralisation does not occur, even if an appropriate
concentration of Ca2+ and Pi ions is present in the matrix vesicles. Equilibrium is then
established between the concentrations of monohydrogen phosphate (HPO4

2−, Pi) and
dihydrogen phosphate (H2PO4

−) ions, where their concentration remains constant. In
addition, HPO4

2− is condensed into pyrophosphate (HP2O7
4−, PPi) ions. The second

variant occurs in a neutral or slightly alkaline environment (pH in the range of 7.0 to 7.2).
Here, the precipitation process of Ca2+ and HPO4

2− occurs.
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Furthermore, the bicarbonate (HCO3
−) ions are enzymatically degraded to carbon

dioxide (CO2) and the hydroxyl anion (OH−). It can be hypothesised that CO2 contributes
to the rupture of the matrix vesicle, and the OH− is incorporated into the apatite structure,
forming HA. The third variant (pH in the range of 6.2 to 7), which is most character-
istic of bone, involves HCO3

− not being fully decomposed and incorporated into the
apatite structure [74]. Consequently, hydroxyapatite in bones, typically doped with bicar-
bonate (so-called bone apatite), is characterised by easier solubility, facilitating dynamic
bone remodelling [75,76].

Crystal growth primarily occurs after the matrix vesicle opens. The standard size of
the basal unit of bone apatite is 30–50 nm (length), 15–30 nm (width), and 2–10 nm (thick-
ness) [77], exhibiting a rodlike or platelike microstructure, and is embedded in collagen
fibres [78]. Bone apatite constitutes approximately 50 vol.% of the mature bone. The specific
microstructural organisation of bone is age-dependent and varies among different bones
and within different locations of the same bone [79]. HA crystals are deposited on collagen
fibrils in intrafibrillar and extrafibrillar spaces [37,74]. HA crystal growth is regulated by
noncollagenous proteins such as osteocalcin and SIBLING [80].

In addition, glycosaminoglycans (GAGs) also appear to be indirectly involved in HA
crystal growth [81,82]. Many studies on bone mineralisation focus on the role of CGI and
cells such as osteoblasts and osteoclasts, which may draw attention away from the functions
of GAGs. Properties of GAGs, such as their ability to bind and hold water protection against
mechanical stresses or interactions with proteins and minerals [83,84], may play pivotal
roles in HA crystal growth. Therefore, further research is necessary to understand these
processes better.
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GAGs, soft and hard tissue ECM components, are highly anionic straight-chain
polysaccharides composed of repeating disaccharide units. Each unit consists of amino
sugar and uronic acid. GAGs in bones play a vital role in transmitting mechanical forces.
Their structure enables them to absorb impact energy, reduce the risk of injury, and con-
tribute to bone toughness by retaining bound water in a bone mineral matrix [85]. The
GAGs align specifically with the CGI, increasing the ordering of the CGI fibrils in the direc-
tion of mechanical force transmission [83,84]. On the other hand, too high accumulation
of GAGs in cartilage and bone tissues leads to progressive cartilage damage, reducing
bone growth [86,87].

The primary component of the GAGs fraction in alveolar bone is chondroitin sulphate
(ChS) [88,89]. ChS was first extracted from cartilage tissue. However, it is essential to note
that interactions between ChS and type II collagen (CGII)—primarily found in cartilaginous
tissue—may differ from interactions between ChS and CGI, which predominate in alveolar
bone tissue. Although present in lesser amounts in bone than in cartilaginous tissue, ChS
indirectly contributes to biomineralisation. Due to its chemical structure, ChS attracts
Ca2+ and Pi ions deposited on collagen fibres to form the bone mineral unit [90,91]. ChS
also provides chemical protection; its presence can prevent CGI from acidic denaturation
even at low pH levels during inflammation [92]. Furthermore, ChS plays a pivotal role
in controlling the shape, size, and number of apatite crystals, promoting the intrafibrillar
growth of HA crystals [90,91]. It also enhances bone elasticity, although it may be presumed
that this occurs in a manner distinct from that in cartilaginous tissue areas.

2.2.2. Theories of Biomineralisation Mechanism

Given the complexity of the nucleation and growth phenomena of HA crystals, the
biomineralisation mechanism still needs to be fully understood. Therefore, two theories
are proposed: classical and nonclassical [74].

The classical theory of bone mineralisation suggests that the critical determinant is the
occurrence of the substrate, specifically the collagen matrix [74]. Type I collagen (CGI), the
most abundant protein in mammals, constitutes 25% (by dry weight) of all proteins. It is
one of ten types of collagen, making up about 90 wt.% of all collagens [93]. This protein is
expressed in the cells of the skin, ligaments, tendons (fibroblasts), cartilage (odontoblasts),
and bone (osteoblasts), serving as the primary structural element in these tissues [94,95].

The nonclassical theory of bone mineralisation posits that this process heavily relies
on the activity of osteoblasts and osteoclasts. According to this, the collagen matrix is
not the only determining factor for biomineralisation; noncollagen proteins such as bone
sialoprotein (BSP), osteocalcin, and SIBLING proteins [53,70,96,97], as well as polysaccha-
ride compounds like glycosaminoglycans (GAGs) [83], are also significant contributors.
This theory argues that noncollagen proteins are pivotal in controlling the shape and size
of apatite crystals, leading to proper bone mineralisation. Furthermore, the nonclassical
theory suggests that mechanical stresses can influence biomineralisation. These stresses
potentially modulate the biochemical signal, adding another layer of complexity to our
understanding of biomineralisation [98].

Both theoretical viewpoints and the impact of mechanical stress should be considered
in hard tissue engineering research designs to provide a comprehensive view of bone
mineralisation.

2.3. Requirements for Bone Tissue Engineering (BTE)

Currently, aliphatic polyester-based scaffolds are gaining popularity over human-
origin living bone tissue surgically transplanted (autograft) [99]. Research in this field
focuses on composite scaffolds based on PCL, with HA and natural polymers (such as
CGI or CS) [100–103]. In contrast to autografts (see Figure 6), PCL-based scaffolds, sup-
plemented with HA, CGI, and CS, provide more control over the structure, mechanical
properties, and composition. For a scaffold to effectively foster the growth of new bone
tissue in a defect, it must exhibit properties conducive to bone regeneration. These re-
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generative properties can be categorised into the following processes: osteoconduction,
osteoinduction, osseointegration, and osteogenesis [104–107].

Osteoconduction is the 3D process of ingrowth of capillaries, perivascular tissue, and
osteoprogenitor cells from the bone bed into a structure of the porous implant. The main
factor ensuring osteoconductivity is a complex interplay between the microarchitecture
and surface of the scaffold and its material type. The microarchitecture (porosity, pore size,
and shape) is said to ultimately determine the efficiency of new bone formation and its
vascularisation [108]. Osteoconduction is the main driving force of bone regeneration in
the case of a scaffold [109].

Osseointegration is defined as a surface (2D) process in which the implant comes
into direct contact with the bone and maintains it during functional loading. Its biological
measure can be expressed as the percentage of bone in direct contact with the implant or
the force needed to remove the implant from the bone. The main factor ensuring successful
osseointegration is the determination of the appropriate macroarchitecture of an implant
(i.e., its shape and hydrophilicity) [109–112].

Osteoinduction is a characteristic process inside the scaffold that, via the presence of
appropriate biologically active substances (vital proteins and growth factors), encourages
the differentiation of mesenchymal stem cells (MSCs) and other osteoprogenitor cells into
osteoblasts [83,84]. Moreover, according to Weber, osteoinductive factors are independent
of osteoconduction that has occurred [109].

Osteogenesis is the process by which osteoblasts in the scaffold produce minerals that
calcify the collagen matrix (biomineralisation), creating a substrate for new bone formation
(ossification) [113–115].
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Figure 6. Division of bone grafts according to their origin. An autograft is a tissue transferred
from the same individual. It has been considered to be the standard of bone graft replacements.
An allograft is a tissue transplanted within the same species, e.g., from one person to another. A
xenograft is a tissue or organ that is derived from a species that is different from the recipient of the
specimen. An alloplastic graft consists of synthetic biopolymers. It is synthetically derived or made
from natural materials [116].

Bone regeneration is a highly complex process. Oryan et al. assessed the bone repair
effect of the (polylactide, PLA)/PCL/HA scaffold without loading it with differentiated
bone cells. An in vivo analysis of this scaffold in rats confirmed that the bone tissue’s
self-healing potential was not sustained even 80 days postinjury. However, adhesion of
native HA particles was observed in several scaffold areas. This result suggests that HA
generates a conducive environment for cells to attach and proliferate within the fabricated
scaffold [117]. Therefore, a cell-free scaffold can support mild repair effects.

Bone regeneration generally depends on the concurrent occurrence of the healing and
ossification processes. Yu et al. studied in vivo the impact of a PCL/HA/CS scaffold loaded
with osteogenic markers (e.g., BMP-2) and angiogenic markers (e.g., VEGF, PDGF) on bone
regeneration in a rabbit model to achieve a pronounced therapeutic effect. These markers
stimulate the differentiation of bone and epithelial tissue, respectively. It appears that both
BMP-2 and VEGF mutually enhance the fracture regeneration process [45], which results
in a notable improvement in new bone formation. However, regenerating the alveolar
bone after tooth extraction remains a significant challenge [118]. Generally, healing and
ossification are more cooperative and sequential stages.
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In the case of alveolar bone, the inflammatory reaction that starts healing induces
significant bone resorption. Although this phenomenon is temporary, it substantially
reduces bone volume. Naik et al. conducted clinical trials utilising PCL-based scaffolds
inspired by results previously documented in animal studies and performed augmentation
of intraoral defects in a selected group of patients [119]. From the drawn conclusions, it
can be inferred that the anatomical features of the sinus cavity play a crucial role in the
success of local alveolar bone augmentation. New bone growth is observed when the graft
material contacts the Schneiderian membranes, the floor, and the walls of the sinus without
penetrating the delicate oral mucosa. Moreover, developing a method where the scaffold
permits the migration of osteoblasts into the scaffold’s inside has a significant value.

In bone tissue regeneration, numerous biological studies are conducted; for instance,
the adhesion, proliferation, and differentiation of osteoblasts in the scaffold are examined.
Ultimately, the repair effect of the alveolar bone is determined based on its volumetric
growth [120]. Achieving an osteoconductive scaffold with osteoinductive potential in-
volves developing scaffolds with desirable structural, mechanical, degradation, and surface
properties to at least induce a mild repair effect on bone tissue. A mild repair effect on
bone tissue suggests the potential for the inoculation of cells, markers, and growth factors
into the scaffold’s internal environment. Only such a scaffold, combined with cell therapy,
results in satisfactory regeneration of bone tissue [27].

Furthermore, combining an osteoinductive strategy with a custom osteoconductive
scaffold, identifying the limiting steps of biomineralisation and ossification mechanisms,
and comparing the repair effect of the scaffold with a control group (autograft) will provide
more reliable results. Despite many constraints, PCL-based composite scaffolds extruded
from filament exhibit significant potential for BTE applications [121]. As the electrospun
PCL/HA scaffold has been demonstrated to be a robust material for repairing bone de-
fects [122,123] and, when loaded with various drugs and metal particles [124], significantly
promoting osteogenic activity, there is a reasonable expectation that the 3D printing method
could yield equivalent or even more substantial results [125].

3. Material Candidates for Scaffolds
3.1. Polycaprolactone (PCL)

PCL is a linear polyester (Figure 7) characterised by a slow degradation rate, which
makes it suitable for potential load-bearing applications [126–128]. It has gained approval
from the Food and Drug Administration (FDA), enabling new solutions for surgical implant
material and drug delivery devices for tissue engineering and regenerative medicine appli-
cations [129,130]. Consequently, its usage in fabricating 3D scaffolds for bone engineering
has increased. The advantages of PCL include high flexibility and elongation [131], satisfac-
tory biocompatibility, lower acidity of breakdown products compared to other polyesters,
and significant load-carrying potential [132].
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However, the limitations of pure PCL are worth noting. Due to its poor hydrophilicity,
it lacks the osteogenic potential to induce bone regeneration [133]. Therefore, researchers have
been combining PCL with various polymers [134–136] and inorganic substances [137–139]
to enhance the biomechanical properties of the scaffolds. The incorporation of bioactive
inorganic particles, such as HA [100,103,140–142] and CS [143–145], into the PCL matrix
offers a promising solution to overcome these drawbacks.

3.2. Hydroxyapatite (HA)

The crystalline phases of CaPi exhibit good biocompatibility, which makes them
promising materials for repairing hard tissue defects [146]. The most common biomineral
CaPi crystal phase is hydroxyapatite ((HA); Ca10(PO4)6(OH)2) (Figure 8), which is thermo-
dynamically stable in body fluids [147]. HA has drawn researchers’ interest in recent years
due to its porous structure, modification potential, biocompatibility, and bioactivity, the
latter referring to its high osteogenic potential [139]. This characteristic greatly accelerates
bone and tooth regeneration. Moreover, studies indicate that HA nanoparticles can effec-
tively suppress the growth of various cancer cells [148–150]. Over the past decade, HA has
gained widespread recognition as a biomedical material used in bone repair, metal implant
coating, dental restoration, and drug delivery systems [151].
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The source of HA affects its chemical composition, structure, and properties [152]. Nu-
merous methods have been developed to prepare HA. These techniques can be categorised
into two groups: (i) biobased extraction methods, and (ii) synthetic methods, which include
the hydrothermal method, chemical precipitation method, hydrolysis method, solid-state
synthesis method, and sol-gel method [153].
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Synthetic HA is the most commonly used material. It is easily obtained from an
aqueous solution via a simple coprecipitation method [154]. HA can be produced in various
crystallographic forms by reaction between calcium and phosphate salts. A significant
feature of HA is its ability to accommodate suitable ionic substitutions, thereby influencing
its composition, structure, and solubility. Consequently, ions of similar or smaller size than
Ca2+ (such as Fe2+, Cu2+, and Mg2+) can be incorporated into the HA crystal lattice with
minimal impact on lattice parameters [155].

It was also demonstrated that lanthanides such as Yb and Ho, which have ionic
radii much larger than Ca2+, can enter the HA crystal lattice without significantly affect-
ing its internal crystal structure [156]. Additionally, the incorporation of Si ions from
metasilicate—which is generally absorbed and abundantly distributed in connective
tissue—is significantly involved in bone regeneration [157,158]. Biologically synthesised
HA created in a physiological environment typically contains various trace elements,
including F, Si, Cu, Mg, Sr, Ag, Zn, and Fe, which aid bone regeneration [159,160].

The introduction of necessary elements into the HA structure to enhance its biological
activity is appealing due to its compact process and simple composition. However, the con-
clusions derived from research on HA biomineralisation require further clarification [161].
From an engineering standpoint, the main challenge is to obtain HA with an admixture of
a specific element that facilitates a long-term and slow release of trace elements required by
the body [162].

Despite its many advantages, introduced HA remains a foreign substance to bone
tissue. This is crucial because there are differences in the crystal structure, size, and stability
between synthetic HA and in vivo mineralised HA [163]. On the other hand, synthetic
HA with the same Ca/P ratio as bone minerals readily converts to bone apatite in vivo.
The most limiting feature of HA from an engineering perspective is its high brittleness. To
increase the mechanical strength and structure of the final scaffold, many researchers have
introduced HA particles into the PCL matrix [117,164]. Ongoing research aims to achieve
an evenly distributed high HA content, enabling the body to accept the bone graft material.

3.3. Natural Polymers
3.3.1. Type I Collagen (CGI)

One of the challenges in hard tissue engineering is the development of alternative
sources of CGI as an initial-stage matrix of biomimetic mineralisation. Currently, CGI
is obtained from the skin tissue of cows [165], rat tails [166], and fish [167]. Research is
being conducted on using plant collagen in BTE. However, it still requires research and
development of technology, in addition to plant collagen and the so-called recombinant
collagen. Research is also being carried out to obtain synthetic collagen. This collagen
is more accessible to manufacture and can be tailor-made for tissue engineering, but
unfortunately, it is not as biocompatible as natural collagen. All of the above sources of
CGI have their advantages and limitations. They require further research to provide a safe
and effective replacement for natural collagen in bones [168].

CGI, the primary organic component of bone ECM, has a complex structure comprising
three hierarchical levels. The base level consists of a triplet of amino acids, primarily proline
(Pro), hydroxyproline (Hyp), and glycine (Gly) [169]. These triplets of amino acids are
arranged repeatedly to form a secondary structure [170]. The tertiary level is a triple
helix formed from three interconnected chains (Figure 9). At the supramolecular level,
collagen fibrils form fibres [171], which undergo self-assembly into a hydrogel network
under appropriate physicochemical conditions [172].
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A systematic analysis of CGI’s primary amino acid sequence reveals a biomacro-
molecule enriched with charge. Recently, efforts to clarify the role of CGI molecules in
mineral nucleation including performing molecular dynamics (MD) simulations [173,174].
Although most MD simulations or simplified in vitro studies neglect complex in vivo
biological environments, the significant benefits and relevance of these discoveries and
proposed theories are evident. This approach offers the advantage of preventing errors
early in research.

Understanding CGI-HA interactions is crucial for comprehending biomineralisation
and the formation of bone and tooth tissues [174]. The behaviour of Ca2+ and Pi ions is
influenced not only by the pH and concentration in the environment but also by the type of
protein involved, especially its conformation, which dictates the distribution of positive
and negative charges on its surface [175].

Wang et al. utilised MD simulation to investigate the initial stage of biomineralisation,
characterised by the aggregation and nucleation of Ca2+ and Pi to form CaPi. The results
demonstrated that Pi ions play a more critical role in biomineralisation than Ca ions.
Moreover, the helical conformation of proteins enhances the likelihood of precipitation of
the crystalline phase of HA. It is suggested that the intermittent distribution of acidic and
basic residues on protein surfaces promotes the formation of large concentrations of Ca2+

and Pi, potentially leading to homogeneous nucleation [175]. The cumulative charge on the
protein surface largely dictates the binding affinity of Ca and Pi ions [176].

Xue et al. proposed a mechanism for forming CaPi minerals on the surface of CGI,
which varies depending on the composition of phosphate and carbonate ions. The presence
of HPO4

2− in the solution is critical for regulating apatite nucleation, while the presence of
H2PO4

− inhibits the crystal nucleation process. The inclusion of CO3
2− in the solution can

promote the formation of CaPi clusters. The regulation of apatite clusters can be achieved
by altering the ratio of anion concentrations, such as PO4

3−/HPO4
2− and PO4

3−/CO3
2−.

It is hypothesised that mineralisation and demineralisation are strongly tied to the thermal
stability of bonds and the kinetics of ion association [177].

As a substitute for CGI, Zhou et al. designed and synthesised a bioactive peptide as
a promising agent for preventing tooth decay. It can inhibit demineralisation in an acidic
environment and induce self-healing remineralisation in situ [178]. In the outermost layer
of the bioactive peptide, positively charged amino acid residues bind to Pi, while negative
charges attract Ca2+. Through this strong interaction, HA nucleation sites are formed [179].
Compared to CGI, this protein shows a statistically higher affinity to the tooth surface,
stronger counteracting demineralisation, and the promotion of remineralisation of the
tooth [180]. The bioactive peptide also has an antibacterial effect. It inhibits the adhesion of
Streptococcus mutans (cariogenic bacteria) [179].

An integrated experimental and computational approach can provide high-resolution
insight into the biomineralisation mechanism. MD simulations combined with empirical
studies (e.g., NMR spectroscopy) allow for determining how the peptide interacts with the
HA surface [181].
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Another way to improve the regulation of HA nucleation processes is through enriched
proteins in glutamate and aspartate residues and citrate ions. However, this mechanism
still needs to be sufficiently elucidated. Zeng et al. used MD simulations to investigate how
citrate ions regulate the adsorption behaviour of polyaspartic acid on the surface of HA in a
CaPi solution. Polyaspartic acid can be used as an ion chelate for Ca2+ complexation, and it
can serve as a template for HA biomineralisation by organizing the distribution of Ca2+ on
its surface. In mineralisation, citrate ions act as a bridge between the acidic peptide moiety
and the HA surface. Thus, the synergistic role of citrate ion and acidic peptide may provide
new insight into interfacial phenomena during biomineralisation [182]. In addition to the
peptide structure, apatite doping also affects the adhesion of HA to the protein surface. The
peptide binds through electrostatic interactions between the cationic peptide molecules
and negatively charged groups on the crystal surface [174]. For example, HA modified by
Sr2+ doping was better at promoting protein adhesion than pure HA [183].

3.3.2. Chitosan (CS)

CS is used in BTE because its chemical structure mimics the biological behaviour
of glycosaminoglycans (GAGs) [184–186]. CS is a natural linear polymer composed of
glucosamine and N-acetylglucosamine units linked by β-1,4-glycosidic bonds with free
amino groups. It is the second most naturally occurring polysaccharide. CS is derived
from chitin (CN) (see Figure 10), which is isolated from the exoskeletons of shrimps [187],
crustaceans, insects, algae, and fungi. To extract CN from, for instance, a crustacean shell,
the shell must undergo four steps: pretreatment (washing and drying), demineralisation
(acid treatment), deproteinisation (base treatment), and discolouration. CN is then con-
verted to CS through deacetylation (alkaline treatment), which involves the hydrolysis
of the acetamide groups and transarrangement of the C-2/C-3 substituent systems in
the sugar ring [187,188] (see Figure 10). In general, CS is insoluble in neutral or alkaline
solutions due to its specific molecular structure. However, it can dissolve in acidic aqueous
solutions (pH < 6.5) by protonating the -NH2 moieties [189]. Both CN and CS can form
hydrogels due to the large number of functional groups (hydroxyl and amino) available
for chemical reactions [190,191]. However, CS has a stronger reactivity and higher hy-
drophilicity than CN because of the more significant number of amino groups from the
deacetylation process [192].

Due to its biological properties (biocompatibility, biodegradability, bioactivity) [193]
and polyelectrolyte activity, CS is a suitable organic material for the development of
organic–inorganic composite materials, functioning as a carrier or stabiliser of hydrox-
yapatite (HA) [194–196]. Like GAGs, it supports cell adhesion and growth [197,198]. CS
also garners attention for its antibacterial properties [199]. Its degradation products are
nontoxic, nonimmunogenic, and noncarcinogenic, attributes gaining importance in tissue
engineering, wound healing, and drug delivery [200–203].

The properties of CS are primarily influenced by the degree of deacetylation (DD) and
molecular weight (MW). Various DDs and MWs of pure CS can be obtained by secondary
treatment of CN [204]. Studies have demonstrated that DD affects the hydrophilicity and
biocompatibility of CS, while MW largely determines the degradation rate and mechanical
properties. Higher DD correlates with more efficient cell attachment, proliferation, and
bioactivity of growth factors. When comparing two types of CS with identical DD but
different MW, the one with a higher MW exhibits superior mechanical properties and a
slower degradation rate. On the other hand, if two types of CS have the same MW but
different DD, the CS with a higher DD degrades more quickly, contrary to the behaviour
observed in low-molecular-weight CS [205,206]. Theoretically, CS with higher DD and MW
is more suitable for biomedical applications.
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CS, acting as a nucleation substrate, impacts the growth mechanism of HA crystals,
which can occur in various ways. Depending on the type and content of ECM components,
HA can assume different morphologies, such as spheres, rods, whiskers, needles, and
plates [207]. MD simulations reveal possible chemical bond formations between the N
atoms of CS and the Ca atoms of HA. Furthermore, they indicate the presence of hydrogen
bonds between phosphate’s oxygen atoms and CS’s hydroxyl groups. This insight supports
understanding the interfacial interaction mechanism, which depends not only on the
primary structure of CS but also on the crystal lattice of HA particles. MD simulations
predict the behaviour of CS macromolecules on different HA crystallographic planes,
indicating that CS macromolecules adsorb more strongly to the HA (1 0 0) surface than
to the HA (0 0 1) and HA (1 1 0) surfaces. The interactions between CS and HA were
analysed using concentration profiles and pair correlation functions of nitrogen and oxygen
atoms in CS [208].

MD simulations are also utilised to understand the mechanism that enhances the
mechanical properties of biomaterials intended for hard tissues. Mathesan et al. observed
that both Young’s modulus and maximum stress increase with the rising content of HA and
the degree of CS cross-linking. Changes in the conformation of CS chains and the evolution
of intrinsic structural variables are tied to these mechanical properties. Further results
suggest that the formation of hydrogen bonds and electrostatic interactions force changes
in various systems [209]. MD simulations enable an understanding of the deformation
mechanisms of HA crystals under uniaxial stretching and compression at the nanoscale.
Depending on tensile and compressive loading direction, these can lead to significant
compression/stretch asymmetry and crystal anisotropy [210]. It is particularly notable as
native HA tends to be Ca deficient. In areas of Ca deficiency, cracks form and expand along
the direction of the vacancy. While Ca vacancies can impair the mechanical properties of
hydroxyapatite [211], it remains an open question whether these cracks in nanocrystals
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represent the initial stage of a self-healing mechanism (micro-remodelling process) or if
they signal the onset of hard tissue damage [212].

The functionalisation of CS is commonly employed to increase bioactivity, mainly
focusing on the selective modification of free amino groups [213]. The reactive primary
amines and the primary or secondary hydroxyl groups in CS lend it significant versatil-
ity [214,215]. CS derivatives are functional across numerous fields, such as food, agriculture,
environment, textiles, medicine, and pharmacy. They can be fabricated in various forms,
including gels, micro- or nanoparticles, coatings, and scaffolds [216].

A well-known example is chitosan sulphate (CSS) (see Figure 10). CSS mimics the
main GAG in alveolar bone: chondroitin sulphate (ChS). CSS is a negatively charged
polysaccharide that interacts with positively charged proteins, which could promote os-
teoblast adhesion, proliferation, or differentiation. The application of nanotechnology is
also crucial, as creating structures at the nanoscale level makes it easier to emulate the natu-
ral microarchitecture of bone [217,218]. While these mimicry methods cannot fully replicate
the complexity and precision of biomineralisation, they can support bone regeneration,
especially in its initial stages. Therefore, further research is needed to understand these
processes better.

Another example is carboxymethyl chitosan (CMC) (see Figure 10). A CMC-based
scaffold coated with tricalcium phosphate (TCP) can biomineralise by forming HA de-
posits in an ex vivo tooth model [219]. The high mineralisation potential is attributed
to carboxyl groups in the organic polymer, which facilitates the spontaneous growth of
apatite crystals [220]. The development of these apatite crystals imparts bioactivity to
the scaffold and may directly influence its bonding with surrounding structures [221].
Additionally, CMC has antibacterial properties, particularly against cariogenic bacteria,
and exhibits considerable potential for wound healing due to its ability to control the ex-
pression of the transforming growth factor TGF-β1, interleukin (IL-1), and tumour necrosis
factor (TNF-α) [222–224].

4. Three-Dimensional (3D)-Printed PCL-Based Scaffold

Three-dimensional printing technology has revolutionised BTE by enabling the pro-
duction of complex architecture PCL-based scaffolds. Moreover, the precision offered
by computer-regulated manufacturing in 3D printing allows for optimising control of
critical structural properties such as porosity, pore size, and interconnections in bone
scaffolds [49,225]. Table 1 lists the key fabrication parameters for PCL-based scaffolds.
Manufacturing 3D-printed grafts remains in its preliminary stages, and researchers still
need to establish uniform dimensions for these scaffolds dedicated to BTE. Despite this,
integrating cutting-edge imaging technologies with 3D printing, such as computed to-
mography (CT) and magnetic resonance imaging (MRI), enables the designing process
of a scaffold architecture for unique tissue defects [13]. As a result, this enhances the
efficacy of treating irregular wounds and tissue anomalies, significantly improving medical
treatment techniques. In particular, 3D-printed PCL-based scaffolds may significantly
contribute to specialised fields such as oral and maxillofacial surgery [11,226] due to their
ability to custom-fit unique tissue defects, making them an invaluable tool. Despite the
initial high costs associated with research on scaffolds in bone engineering, 3D printing
has emerged as a feasible alternative to conventional graft practices [10,227]. Although the
high costs associated with the initial stage of research on PCL-based scaffolds in bone engi-
neering are emphasised [119], in the long term, they can reduce the money, time, and effort
associated with implantation operations [49]. Consequently, the availability and accessi-
bility of grafts are substantially improved, offering promising prospects for the future of
bone engineering.
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Table 1. Summary of the varied parameters of PCL-based scaffolds.

Composite 3D Printing Method Scaffold Shape Scaffold Dimensions (mm) Interfibre Gap/Pore
Size (µm)

Scaffold (Macro)
Porosity (%) Ref.

PCL/β-TCP/CGI SLS Cylindrical 12.00(D) × 2.40(H) 300–500 75–77 Liao et al. [17]

PCL/HA,
PCL/β-TCP FDM

Cubic Mechanical tests:
10.0(L) × 10.0(W)× 10.0(T);

Approx. 800 Approx. 60 Nyberg et al. [228]

Cylindrical Other tests:
4.00(D) × 0.64(H)

PCL/CS E-jet 3D printing Cuboidal 21.0 ± 1.7(L) × 12.6 ± 0.9(W) × 123.1 ± 7.2(T) 195.8 ± 9.1 74 ± 3 Wu et al. [229]

PCL
(subsequently modified by

a CS thermogel)
FDM

Cuboidal Mechanical tests:
10.0(L) × 10.0(W) × 2.0(T); 325.2 ± 26.3 62.4 ± 0.23 Dong et al. [67]

Cylindrical 6.0(D) × 2.0(H)

PCL
(subsequently modified by a

CS thermogel)
FDM Cylindrical 15.0(D) × 5.0(H) Approx. 1200 Approx. 65 Hernandez et al. [230]

PCL/β-TCP Extrusion-based 3D printing Cylindrical 8.0(D) × 2.0(H) Approx. 300 Kim et al. [231]

PCL/HA SFF Cubic 5.0(L) × 5.0(W) × 5.0(T) Approx. 350 Approx. 45 Cho et al. [232]

PCL/TCP FDM Cylindrical 6.0(D) × 4.0(H) Approx. 420 Kurzyk et al. [233]

PCL/GEL/BC/HA FDM Rectangular strips 10.0(L) × 5.0(W) × 3.0(T); Approx. 300 Max. 80 Cakmak et al. [234]

PCL/HA Extrusion-based 3D printing Rectangular

Mechanical tests:
10.0(L) × 10.0(W) × 2.5(T);

Approx. 700 Gerdes et al. [122]
Biological tests:

10.0(L) × 10.0(W) × 2.4(T)

PCL/PGA FDM

Disc Morphological analysis and mechanical tests:
4.0(D) × 4.0(H) 250–400,

150–350,
>450

60, 50, 75 Hedayati et al. [235]

Cuboidal Biodegradation tests:
10(L) × 6(W) × 2(T)

PCL/TCP
PCL/HA

Laboratory-prepared 3D
plotting system

Cylindrical (ring) 3(Din) × 8(Dout) × 3(H) >200
100–200

<100
Approx. 80 Jeong et al. [236]

Plate 10(D) × 3(H)
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Table 1. Cont.

Composite 3D Printing Method Scaffold Shape Scaffold Dimensions (mm) Interfibre Gap/Pore
Size (µm)

Scaffold (Macro)
Porosity (%) Ref.

PCL/HA/HS FDM Disc

6.0(D) × 6.5(H)

400 70.8 Liu et al. [237]Biological tests:
6.0(D) × 1.0(H)

PCL
(subsequently modified

by PEGDA)
FDM Anatomic 24.7(L) × 11.8(W) × approx. 4(T) 284 ± 31 63 Moura et al. [238]

PCL/PLA/HA
(subsequently modified

by CS/HS)
FFF

Cylindrical Mechanical specimen:
6.0(D) × 8.0(H)

500 Thunsiri et al. [239]
Cubic

Mechanical specimen:
10.0(D) × 10.0(H)

Biodegradation specimen:
5.0(L) × 5.0(W) × 5.0(T)

PCL/HA Dual-extruder 3D printing Cuboidal 1.0(L) × 5.0(W) × 5.0(T) 77.1 ± 13.8 El-Habashy et al. [240]

PCL/HA FFF Cuboidal
15(L) × 15(W) × 5(T)
15(L) × 15(W) × 3(T)
35(L) × 13(W) × 8(T)

Approx. 1200 Kim et al. [241]

PCL/HA Cryogenic 3D printing Orthogonal grid 10(L) × 10(W) × 2(T) 235 ± 43 42.84 ± 1.41 Li et al. [242]

PLA/PCL/HA Indirect 3D printing Cubic 5(L) × 5(W) × 5(T) 141.0 ± 47.0 69.00–70.00 Oryan et al. [117]

PCL/HA/SPION
3D printing with a

screw-based
extruding system

Cubic 5(L) × 5(W) × 5(T)
Approx. 250 45.81 Petretta et al. [243]

Disc 15.0(D) × 5.0(L)

PCL/AgNps FDM Disc 10.0(D) 431.7 ± 24.6 Radhakrishnan
et al. [131]

PCL/CS 3D bioprinting Cuboidal 10(L) × 10(W) × 5(T) 360 Approx. 55 Rezaei et al. [244]

PCL
3D printing with novel

plasma-assisted
bioextrusion system

Cuboidal 11(L) × 11(W) × 5(H)

500
1000
1500
2000

60.7
75.5
78.6
85.7

Xu et al. [245]

PCL/CS
PCL/β-TPC

3D pneumatic melt
extruded scaffold

generation
Cuboidal

16.0(L) ×16.0 (W) × approx. 4.0(T)
381 ± 6
395 ± 17

47.0 ± 2.0–
63.0 ± 2.0

Yoshida et al. [121]Biological tests:
4.0(L) × 4.0(W) × approx. 2.5(T)

PCL/HA 3D printing with pneumatic
chamber system Cuboidal Mechanical tests:

12(L) × 12(W) × 4(T) Approx. 300 Zimmerling et al. [132]
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Table 1. Cont.

Composite 3D Printing Method Scaffold Shape Scaffold Dimensions (mm) Interfibre Gap/Pore
Size (µm)

Scaffold (Macro)
Porosity (%) Ref.

PCL/HA
3D printing with a

screw-fitted
chamber system

Cylindrical 10(D) × 2.5(H) Approx. 350 58.0–60.0 Biscaia et al. [246]

PCL Combination of 3D printing
and electrospinning Disc 21(D) × 1(H) Approx. 300 Gonzalez-Pujana

et al. [247]

PCL/HA FFF Cylinder Mechanical tests:
Approx. 1.6(D) × 80(H) Approx. 400 37.0 Rezania et al. [22]

PCL/HA/PEGDA 3D printing with
extrusion system Disc 10(D) × 3(H) 380 51.53 ± 2.00

–52.20± 1.67 Sousa et al. [248]

PCL/HA FFF Cuboid

Morphological analysis:
15(L) × 15(D) × 2(H)

Mechanical tests:
15(L) × 15(D) × 4(H)

Approx. 550 60.0 ± 0.9
–65.4 ± 0.3 Wang et al. [16]

PCL/HA
PCL/TCP FDM Cuboid 31.0(L) × 26.7(D) × 10.0(H) Gradient of approx. 200,

300 and 500, 600 Approx. 52.0 Daskalakis et al. [34]

PCL SLS Disc 20(D) × 2(H) Approx. 500,
and approx. 700 49.7 ± 3.0–63.6 ± 3.0 Janmohammadi

et al. [18]

PCL/CS
(subsequently loaded

with VAN)
FDM Disc-shaped 8.00(D) × 1.50(H) Approx. 200 Approx. 59.0 López-González

et al. [249]

PCL/CS RP Anatomic
(mandibular condyle) 100–200 Lee et al. [250]

PCL/MMBG/Al2O3 LDM Cubic 5(L) × 5(W) × 5(T) 0.005–0.020
(mesopores) Above 80 Najafabadi et al. [251]

Abbreviation: PCL: polycaprolactone; TCP: tricalcium phosphate; HA: hydroxyapatite; HS: heparan sulphate; MMBG: magnetic mesoporous bioactive glass; AgNps: silver nanoparticles; PEGDA: diacrylate poly(ethylene
glycol); VAN: vancomycin; RP: rapid prototyping; SLS: selective laser sintering; FDM: fused deposition modelling; LDM: liquid deposition modelling; FFF: fused filament fabrication; SFF: solid freeform; L: length; W: width;
T: thickness; D: diameter; Din: inner diameter; Dout: outer diameter.
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4.1. Processing Conditions

The method of 3D printing for creating bone engineering scaffolds did not develop
earlier because solvent casting was the primary fabrication technique. This delay can
be attributed to the lack of suitable materials and control methods for extrusion [16,252].
Only recently has research focused on producing dispersions of nanomaterials in polymer
matrices, particularly in PCL, which has led to the development of 3D-printed scaffolds
in tissue engineering. These processes help meet the requirement for adequate physical
connectivity, which is crucial for effective cell anchoring and adhesion [246].

4.1.1. Filament Processing

The extrusion process for PCL filaments necessitates careful consideration of additive
content, rheological properties, and processing conditions tailored specifically for the
fused filament fabrication (FFF) 3D printing method. Extruded PCL-based filaments,
often combined with HA or CS, attract substantial interest due to their osteoinductive
potential. Unique behaviour is observed when materials like PCL/HA are used during
3D printing. They form distinctive structures with a higher viscosity than the PCL control
sample, requiring increased oversight due to an elevated risk of printer nozzle clogging.
Maintaining comprehensive control over the filament deposition temperature and the
distance between the filaments is critical to ensuring a successful 3D printing process [16].

Challenges arise when an increase in the HA concentration in the PCL-based filament
leads to a corresponding increase in viscosity. This issue can be mitigated by elevating
the heating temperature [121,253]. As for material composition, Biscaia et al. argued
that incorporating HA into the PCL matrix enhances its mechanical properties, but these
enhancements do not proportionally increase with the ceramics’ presence in the composite.
The most common weight ratio of polymer to ceramic is 80/20 or 60/40 wt.% [246,254]. In
contrast, Rezania et al. suggested that the optimal concentration of HA in the PCL matrix
is approximately 30 wt.% [22].

Excessively high HA content and greater fragmentation can increase the risk of ceramic
particle agglomeration in the polymer matrix, resulting in a brittle material. However, a
proper arrangement of bioceramic reinforcement in the polymer matrix can prevent stress
concentration [22,255] and promote the structural integrity of the final material [16,256].

4.1.2. Three-Dimensional (3D) Printing

In the context of processing, PCL is one of the most preferred polymers for extrusion-
based 3D printing dedicated to medical applications due to its low melting point of about
60 ◦C (melting temperature, Tm) [33,144,257]. Furthermore, the thermal degradation
process of PCL does not begin until approximately 300 ◦C (degradation temperature,
Td) [34]. This fact indicates high static and dynamic thermal resistance due to the range
between Tm and Td, known as the wide processing window.

From a rheological perspective, molten PCL displays a broad range of viscoelas-
tic behaviours. At lower temperatures within the processing window, it exhibits vis-
coelastic properties, whereas at higher temperatures, it assumes the characteristics of
a viscous liquid. Consequently, the viscosity within this wide processing window can
vary during printing. Therefore, adjusting printing parameters (temperature, melt index,
printing speed) ensures consistently structured outcomes with similar pore sizes, shapes,
and interconnections [121].

Interestingly, Ogata et al. demonstrated that polyesters (e.g., PLA) that have been
melted once do not significantly change their viscosity upon reheating at a higher temper-
ature [258]. However, concurrently, Yoshida et al. observed that the polymer’s heating
duration affects its extrusion’s smoothness. This effect is likely due to small bubbles in the
molten mix escaping during prolonged heating, which results in a more even distribution
of extrusion pressure [121].

Moreover, the optimal velocity and temperature printing adjustment relies not only
on the polymer features (such as the MW and polydispersity of PCL) but also on the
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individual 3D printer heating system and variable ambient temperature. Although DSC
studies demonstrate the low melting point of PCL (even approx. 51 ◦C) [259], the optimal
temperature for 3D printing PCL from the extruded filament is around 85–90 ◦C [121].
Therefore, the wide PCL processing window confirms its potential for creating detailed
and complex scaffold structures.

Interestingly, Ghorbani et al. [260] observed that the incorporation of HA induces a
higher melting temperature and degree of crystallinity in PCL. Conversely, Biscaia et al.
noted that incorporating HA into PCL reduces its endothermic melting enthalpy. This effect
is likely attributable to the high crystallinity of HA, which is thought to accelerate the nucle-
ation of PCL chain segments, thereby generating a lower degree of PCL crystallinity [246].
Moreover, 3D printing technology promotes oriented crystallisation [261]. The formation of
row nuclei facilitates this process, further enhanced by the flow stress applied to the poly-
mer melt during printing [12,261]. Notably, the crystallinity of the polymer significantly
influences the mechanical properties of the produced scaffolds [246,248,261].

Lastly, 3D printing technology offers a distinct advantage over conventional man-
ufacturing methods, such as salt leaching [262] and electrospinning [263,264]. As it
does not require toxic solvents, 3D printing provides a safer and more environmentally
friendly solution.

4.1.3. Hybrid Techniques

Despite its numerous advantages, a 3D-printed PCL-based scaffold has limitations,
particularly in the postprocessing stage. The most significant of these are the following:
(i) the sterilisation process required before implantation, and (ii) the brittleness of the
final scaffold. First, sterilizing PCL-based scaffolds without disturbing their structure can
be challenging. This issue partially depends on other characteristics such as mechanical,
degradation, surface, and biological properties. Second, some researchers have adopted
innovative postprinting modifications like enveloping the 3D-printed PCL scaffold with
a layer of CS hydrogel [265] or using a PCL/CS composite [266] hydrogel to develop
electrospun sheets, offering a potential solution to the brittleness problem [67]. It is worth
noting that CS maintains its thermal stability at PCL printing temperatures. The first
melt isothermal process, which occurs above 100 ◦C, relates more to the loss of bound
water than to polysaccharide breakdown [264], thereby preserving its structural integrity
during printing. Therefore, to tackle the above problems, 3D printing is combined with
other methods, facilitating the development of scaffolds that encapsulate the benefits of
both techniques.

3D printing can be combined with electrospinning to produce a scaffold that provides
high control over micro- and macrostructure, shape, and mechanical strength. Electro-
spinning enables the production of fibres with dimensions ranging from microns to the
submicron scale. Gonzalez-Pujana et al. demonstrated high metabolic activity and mineral-
isation of cells cultured on microfibres made from a PCL-based scaffold. Due to electrospun
fibres, a microscale structure mimics the cells’ natural environment, promoting osteogenic
differentiation [247].

Another hybrid technology involves the combination of 3D printing and freeze-drying.
This technology can produce spongy structures with controlled pore size gradients, result-
ing in scaffolds that exhibit interconnected and adjustable pore structures [267]. When a
scaffold is soaked in a solution containing growth factors or other bioactive substances and
then subjected to freeze-drying, these bioactive factors become fixed within the scaffold
structure [268]. For instance, PCL has been functionalised with a decellularised bone extra-
cellular matrix (dbECM) to produce osteoinductive fibres for 3D printing. Adding bone
dbECM to PCL enhanced the mechanical properties of the resulting scaffold, improved cell
adhesion, and promoted osteogenesis in mesenchymal stem cells (MSCs) [21,269].
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4.2. Structural and Mechanical Properties
4.2.1. Size and Geometry of Interconnected Pores

One of the key aspects of scaffolds is their external morphology structure, which
affects their performance and tissue interaction. The parameters closely related to the
functionality of the scaffold are the size and geometry of pores and their interconnections.

Well-designed porosity with interconnected pores stimulates new bone tissue
growth [270]. Additionally, vascular infiltration can be modulated by controlling pore
size. Macropores provide space that facilitates cell migration and tissue penetration, thus
promoting bone tissue regeneration. Numerous studies have examined the effect of varying
pore sizes on the adhesion, proliferation, and migration of different cell types, such as
osteoblasts, chondrocytes, and fibroblasts [271]. Oh et al. reported that the appropriate pore
size for osteoblast and chondrocyte growth ranges from 300 to 400 µm, while fibroblasts
should be around 200 µm [272]. Therefore, the suitable pore size in PCL scaffolds can be
estimated to lie between 200 and 400 µm [238]. However, two optimal pore size ranges were
also distinguished: 200–600 µm [16,273,274] and 450–700 µm [275]. For instance, Wang et al.
used a pore size of 550 µm, which falls within these ranges [16]. Furthermore, pore sizes above
300 µm have been reported to improve vascularity and bone ingrowth [131,246,276–278].

Interestingly, Ghayor et al. challenged the long-standing assumption that the optimal
pore size for bone scaffolds ranges from 0.3 to 0.5 mm. They contend that the ideal pore size
should fall between 0.7 and 1.2 mm. These assertions stem from their work with TPC-based
scaffolds produced through 3D printing, which they assessed for potential in facilitating
in vivo bone formation. They suggest that these findings may pave the way for innovative
methodologies in treating bone defects [36,108].

Building on Ghayor’s paradigm regarding larger pore sizes, the research of Hernan-
dez et al. warrants consideration. They devised a hybrid system using a PCL-based scaffold
featuring a pore size of 1.2 mm complemented by a hydrogel. This design exhibited cy-
tocompatibility, as evidenced by the successful adhesion and viability of hMSC within
the hydrogel matrix and on the solid scaffold surfaces. Furthermore, biomineralisation
tests in SBF highlighted the nucleation and growth of apatite crystals both within the
hydrogel and on the PCL scaffold, attesting to its bioactivity. While this hybrid system is
optimised for addressing long bone defects, comprehensive in vitro and in vivo studies
remain indispensable [230].

Although pore size and geometry are known to influence cell behaviour and tissue
formation in vitro, it is unclear how this translates to in vivo scenarios [279]. However,
pore architecture inside a scaffold is inevitably necessary for effectively binding growth
factors and nutrient transport to cells.

In addition to macropores, scaffolds also contain micropores, which can have positive
and negative effects. On the one hand, they can accelerate surface roughness, degradation,
and resorption of PCL, which is inherently slow. On the other hand, these micropores could
reduce the structure’s compressive strength [246]. Therefore, a balance must be found to
maintain the scaffold’s structural integrity.

Equally important is the scaffold’s mechanical behaviour, which heavily depends on a
precisely defined pore geometry and directly affects cell interaction. Scaffold structures
can be fabricated in various forms, such as helixes, meshes, rings [265], or orthogonal,
circular, and sinusoidal shapes [280]. Thus, innovative, versatile, and efficient strategies to
3D print PCL scaffolds with unique anisotropic and curved geometries could better mimic
natural tissue.

In conclusion, while size and geometry influence cell behaviour and tissue forma-
tion in vitro, our understanding of how this translates to the in vivo scenario remains
limited [108,279]. However, one thing is certain: pore architecture is a necessary, though not
sufficient, condition for the effective binding of growth factors and transport of nutrients
to cells. By appropriately designing porosity, pore size, and geometry, we can achieve
scaffolds with optimal mechanical properties, enhancing osteoconductive features.
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4.2.2. Mechanical Compressive Strength and Elastic Modulus

In BTE, predicting the forces exerted on native bone during normal function is par-
ticularly relevant for designing, fabricating, and integrating a printed scaffold with the
host. The most important mechanical property parameters for alveolar bone are the com-
pressive strength and modulus of elasticity, as, during the opening and closing of the jaw,
the most significant force induced at the dental symphysis is the compressive force in the
transverse direction [281]. The mechanical properties of the 3D-printed PCL scaffold’s
layer-by-layer construction can be estimated based on the compact and cancellous bone
structure’s volume ratio.

Generally, the compact structure of bone, depending on the orientation of HA crystal
growth (transverse or longitudinal), mechanically resembles either a semibrittle or vis-
coelastic material [282]. The transverse compressive strength of the compact bone structure
ranges from 131 to 224 MPa. The modulus of elasticity for compact bone is 17.0 to 20.0 GPa
in the longitudinal direction, with a shear modulus of 3.30 GPa and a structural density
of 1.80 g/cm3 [283].

As for the cancellous bone structure, it is highly porous, and its density is 0.20 g/cm3.
The compressive strength of the spongy bone structure depends on its apparent density and
ranges from 2.0 to 5.0 MPa. The modulus of elasticity ranges from 90.0 to 400.0 MPa [284].

The volume ratio of these structures, constituting the alveolar bone, is determined by
various factors such as the location of bone loss in the alveolar bone, age, sex, and health
status. The optimal compressive strength might range between 5.0 and 131.0 MPa, while
the elastic modulus could lie between 400.0 MPa and 17.0 GPa. Lv et al. contend that
scaffolds, which mimic the structure of natural cancellous bone, adapt more adeptly to the
microenvironment [285]. Conversely, Pitrolino et al. questioned the validity of designing
scaffolds to align with the mechanical properties of native bone tissue. They argued that
designing an optimal cellular niche should take precedence over delineating the mechanical
strength specifications of scaffolds, as osteocytes—when formed in the appropriate cellular
niche—assume the role of structural and mechanical integration within the tissue [286].

Although modelling the alveolar bone’s mechanical properties requires more detailed
research and analysis, compact and cancellous bone structures’ compressive strength and
elastic modulus provide valuable data. Implanting a scaffold with either excessive or
insufficient mechanical strength at the implant site could fail to support native bone growth
or lead to bone resorption. Thus, the scaffold’s ability to provide the required mechanical
support is a critical criterion for the resulting structure. For instance, Wang et al. obtained
PCL-based scaffolds with HA (20 wt.%), achieving compressive strength and elastic modu-
lus of 8.0–11.7 MPa and 11.4–29.2 GPa, respectively. According to the proposal above, these
values meet the proposal requirements of the mechanical property of trabecular bones [16].

Apart from orientation, location, and host age, the water environment plays a crucial
role in the mechanical assessment of the scaffold. The behaviour of bone in a wet state
significantly diverges from that in its dry form [79,287]. To facilitate proper regeneration
without notable deformations, the PCL-based scaffold—modified by introducing HA and
CS—should offer an elastic modulus identical to that of hard tissues: 1500 MPa in dry and
approximately 10 MPa in wet conditions. Pressure causes the liquid to be extruded from the
porous structure, thereby increasing the colloidal osmotic pressure and, consequently, the
Young’s modulus. An elevated Young’s modulus enhances resilience to high stress [288,289],
and the higher the elastic modulus, the less likely the scaffold will deform.

4.2.3. Mechanotransduction

The alveolar bone develops healthily when optimal mechanical forces act on it. Osteo-
cytes embedded in the bone matrix are the primary mechanically sensitive cells involved
in the transduction of mechanical stress into a biological response [6]. It is assumed that
resorption of the alveolar bone occurs especially when a tooth is missing, i.e., when the
alveolar bone is unaffected by mechanical forces. Regarding the designed scaffolds, struc-
tural parameters (porosity, pore connections, pore size, and pore geometry) and mechanical
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parameters (compressive strength and modulus of elasticity) affect how osteocytes per-
ceive mechanical stimuli, which may affect their biochemical reactions. In this respect, the
intramembranous ossification of the alveolar bone can be analogously compared to the
piezoelectric effect. Since the mechanical stresses in the piezoelectric material generate an
electric field (electrical signal), the mechanical stresses in the alveolar bone initiate a bio-
chemical signal towards enzymatic activation for biomineralisation, which ultimately ends
in ossification. This unique ability to convert mechanical forces into a biochemical signal is
called mechanotransduction. Probably, ionic proteins are responsible for mechanotrans-
duction [290]. These proteins immediately respond to mechanical stimuli by initiating an
ionic current. As evidence grows regarding the critical role of this phenomenon in the
management of physiological processes, there is a need to identify these proteins [291].
Design scaffolds taking this phenomenon into account become increasingly urgent.

Understanding the relationship between the structural and mechanical parameters
of the scaffold and its mechanotransduction capacity is crucial in bone tissue regenera-
tion [122]. The question arises: how does mechanotransduction affect the ossification
process? Al-Maslamani et al. developed cell-stretching devices to explore the molecular
pathways responsible for cellular responses to mechanobiological processes [292]. There-
fore, in the context of BTE, essential factors influencing regenerated bone dynamics are not
only biological but also mechanical issues. Figure 11 shows theoretical diagrams of the
relationship between mechanical stress (MS), biochemical signals (BS), and the ossification
process (OP). Ossification of the healing alveolar bone uses physical movement, mainly
compressive forces (less stretching), imitating orthodontic tooth movement.
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Figure 11. Diagrams of the relationship between mechanical stress (MS), biochemical signals (BS),
and ossification process (OP). Several models explaining the relationship between MS and BS in OP
may be considered. In the parallel model (a), MS and BS are presumed to function independently, yet
they concurrently influence OP without mechanotransduction. In the series model (b), it is suggested
that MS initiates BS, which then triggers OP, indicating the presence of mechanotransduction. Finally,
the series-parallel model (c) proposes that MS and BS interact with each other through a coupled
mechanism, affecting OP, which is characteristic of mechanotransduction. Option (a) is a theoretical
concept and is regarded as the least likely, while option (c), although more complex, is considered the
most plausible.

In a biomechanical context, tensile stress breaks down adjacent ECM molecules,
thereby evenly distributing protein molecules. Compressive stress causes the accumu-
lation of adjacent molecules, shortening the distance between HA crystals and affecting
bone tissue growth. Both of these stresses regulate bone tissue homeostasis at the local site.
Undoubtedly, bone tissue expands as a result of its regular mechanical stimulation. Due to
the nature of the load, this stimulation can be divided into two types, static load (Wolf’s
law) and dynamic load (Delpech’s law), which affect the formation of bone trabeculae.
Too little or too much static load on the bones causes osteoporosis, while too little or too
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much dynamic load causes atherosclerosis. Disproportionate stress and friction promote
inflammation, activating the action of osteoclasts and cytokinins [289]. The hypothesis
remains unsettled as to whether the action of compressive and tensile forces in the early
period of alveolar process healing is necessary.

4.3. Degradation Properties

A particular challenge in designing a PCL-based scaffold is considering its degrada-
tion properties. From a materials engineering perspective, degradation deteriorates the
structural integrity of the structure and leads to a decline in the mechanical properties
of the scaffold. It indicates that a scaffold must be designed so that native bone tissue
forms in place of the degraded polymer, subsequently assuming the structural and strength
functions. The primary task within this paradigm is to synchronise scaffold degradation
kinetics with tissue regeneration rates while maintaining identical structural and mechani-
cal integrity [293]. In the context of bone engineering, PCL has a long degradation time of
two to four years [264,294], while bone remodelling takes about six months [295]. Factors
that may affect the rate of degradation and the structural and mechanical integration of the
scaffold include the following:

• Material characteristics (degree of crystallinity, polydispersity and MW of PCL, amount
and type of components with osteoinductive potential in the PCL matrix).

• Topological features (porosity, size and shape of pores, thickness of solid material).
• Degradation environment (pH, ion exchange) [34,296].

4.3.1. Degradation Mechanism

Understanding the degradation mechanism of PCL is essential for its application
in the biomedical and pharmaceutical domains [297]. PCL belongs to semicrystalline
polymers. Chemical degradation primarily occurs in the amorphous regions of PCL
where hydrolysis of ester bonds takes place, breaking longer PCL chains into oligomeric
(shorter) ones [296,298,299]. Yoshida et al. reported that the hydrolysis of PCL ester
groups exhibits first-order kinetics, meaning that the degradation rate depends mainly
on the amount and MW of the polymer [121]. However, an autocatalytic effect emerges
in the amorphous regions as the degradation progresses. The cleavage of labile ester
moieties, and thus the formation of oligomers with carboxylic and hydroxyl end groups,
can uncontrollably accelerate the hydrolysis of adjacent ester moieties [300,301]. PCL
degradation products diffuse less easily than other polyesters with shorter aliphatic chains.
In addition, the oligomers formed are acidic. Yoshida et al. recorded a pH value that
dropped from pH 7.45 to pH 6.11 within 28 days of degradation, a finding also consistent
with the downward trend reported by Sung et al. [32]. Lowering the pH confirms that
acidic metabolites are formed due to PCL degradation [264]. Although a decrease in pH
occurs, PCL degradation products induce fewer pH changes in the local medium than
other aliphatic polyesters [296]. Incorporating ceramic particles into a PCL matrix exhibits
buffering behaviour [117]. However, a comparison of the degradation kinetics of PCL-based
scaffolds containing different ceramic materials still needs to be included [34].

Although the amorphous regions of semicrystalline polymers are more suscepti-
ble to hydrolytic degradation [296,299], degradation also occurs in the less accessible
crystalline regions, which, in the case of PCL, are represented by numerous spherulites.
As the degradation of the intact chains in the crystalline regions progresses, the form of
the spherulites changes into so-called “crystalline residues” that take on the structure of
“elongated-chain crystallites” [297].

Along with hydrolytic degradation, the phenomenon of recrystallisation occurs. It
involves the amorphous areas of PCL rearranging to more ordered structures in contact
with the crystalline areas (interspherulitic boundaries). Li et al. reported that adding PCL
(approx. 25 wt.%) to other aliphatic polyesters such as PLA (approx. 75 wt.%) leads to an
increase in the degree of crystallinity of the composite—from the initial 14 wt.% by mass up
to 52 wt.%—after 63 weeks of research on the degradation process. This reorganisation is
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attributed to the low glass transition temperature of the polymer [302]. The preservation of
amorphous regions and the dominance of imperfect and defective crystalline regions helps
counteract the phenomenon of recrystallisation, thereby increasing the degradation rate.
It can be found that the addition of CS reduces the spherulites and forms more distinct
interspherulitic PCL boundaries [260]. The effect of counteracting the phenomenon of
recrystallisation is attributed to the hydrolysis of glycosidic bonds between polysaccharide
rings in CS chains [265,303], which aids in the hydrolytic degradation of PCL ester groups.

In vivo, enzymatic degradation also occurs, which attacks the crystalline regions of
PCL, disintegrating the scaffold structure. In vitro studies in which a PCL-based scaffold
was subjected to enzymatic degradation began to be reported in the literature [304,305].
However, Bartnikowski et al. exposed PCL-based 3D scaffolds to concentrated hydrochloric
acid (HCl). Acid etching of these scaffolds with different concentrations of HCl, due to
the intense penetration of protons (H+), ultimately led to the disintegration of the scaffold
structure. The features of acid hydrolysis represent degradation under physiological
conditions. Acid digestion can be compared to the action of enzymes in the oral cavity
at the site of the defect, which, due to inflammation, is locally acidic. By imitating the
microenvironment of the cavity, one can estimate material characteristics and scaffold
topology, both of which are dependent not only on the structure and components but also
on the technique used to manufacture the material [296].

4.3.2. Structural and Mechanical Integrity

The type of erosion determines the structural and mechanical integrity of PCL-based
scaffolds. Subject to hydrolytic and enzymatic degradation, scaffolds may undergo either
surface or bulk erosion or a combination of both.

Surface erosion is common with polyesters, which, despite being hydrophobic, are
highly susceptible to surface hydrolysis. The advantage of surface erosion is that while
the structure’s size decreases with weight loss, its density remains unchanged. This char-
acteristic allows the scaffold to maintain its mechanical integrity, a property critical to
BTE. Generally, the surface will degrade initially when the scaffold structure comes into
contact with a degrading medium. As the medium penetrates the material, most of the
scaffold’s solid material begins to break down. This process results in bulk erosion, dur-
ing which the construct’s volume stays the same, but there is a decrease in density and
mechanical strength [306].

Although surface erosion is generally slower than mass erosion, it is typically more
desirable because the material decomposes uniformly at a constant rate, making it easier to
control. Furthermore, uncontrolled autocatalytic degradation often occurs in conjunction
with progressing bulk erosion. It is frequently observed with polyesters, as their acidic
degradation products cannot easily diffuse through the polymer network. This results in
a localised increase in acidity, which in turn accelerates the scaffold’s degradation in an
uncontrolled manner [29,307].

The task involves designing a scaffold with a specific surface erosion timeline and esti-
mating the final stage of degradation when simultaneous surface and volume erosion occurs
to predict the time of structural and mechanical disintegration. Maintaining structural and
mechanical integrity depends not only on the underlying mechanism of PCL degradation
but also on the scaffold’s topology and the surrounding microenvironment [296].

The type of erosion also depends on the fibre thickness and the nature of the solid
scaffold material. For instance, once the critical thickness of aliphatic polyester fibre exceeds
2 mm, the degradation mechanism changes from surface erosion to bulk erosion, regardless
of ion exchange [306]. In the core part of the materials, partially degraded oligomeric
chains accumulate and initiate hydrolysis with a high catalytic effect, potentially leading
to accelerated and uncontrolled hydrolytic degradation in the core part—a phenomenon
referred to as core-accelerated bulk erosion. However, concerning poly(L-lactide) PLLA, a
polyester belonging to the same polymer family as PCL, Tsuji et al. observed that when the
diameter of the scaffold fibres is less than 2 mm and optimal ion exchange is ensured, PLLA
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tends to undergo surface erosion [297]. In this case, ions do not diffuse into the material,
meaning that a substantial part remains unaffected. Interestingly, Grizzi et al. noted that
foils, powders, and microspheres of PLLA degrade much more slowly than solid material
samples [308]. The smaller the polymer size (corresponding to an increased specific surface
area), the slower the degradation rate.

Although enhancing the surface area of aliphatic polyester-based scaffold fibres slows
down degradation, the degradation process becomes more uniform and easily controlled
due to the reduction in internal heterogeneous autocatalytic degradation. An illustrative
example is a study on the degradation rate of films of another aliphatic polyester (e.g.,
PLLA) about porosity. It was found that nonporous PLLA degrades faster than porous
PLLA [309,310]. This phenomenon can be attributed to the fact that ion exchange is
facilitated in a porous structure, thus inhibiting autocatalytic bulk erosion and maintaining
the structure’s integrity for extended periods.

The type of erosion also depends on factors related to the degradation medium, such
as pH, temperature, and the presence of ions and enzymes. Therefore, the site of implant
placement is vital. In areas with poor vascularisation and low diffusion, degradation
products tend to linger, resulting in increased acidity. Bulk erosion is in environments
where the ion exchange of Ca2+ and Pi is restricted [297]. Consequently, the type of erosion
is strongly determined by the ion exchange characteristics of the microenvironment. When
optimal ion exchange occurs, the types of erosion generally occur sequentially: surface
erosion precedes bulk erosion.

In conclusion, the degradation of aliphatic polyesters, e.g., PCL, involves a complex in-
terplay of several parallel and successive phenomena, including water absorption, cleavage
of ester bonds, neutralisation of terminal carboxyl groups on the surface, internal autocatal-
ysis, diffusion and solubilisation of oligomers, and recrystallisation effects [311,312]. The
type of erosion that PCL naturally undergoes in a physiological environment is currently
debated. Although pure PCL scaffolds do not experience significant erosion initially (nomi-
nally less than 1 wt.% loss, up to 1 to 3 months) [313,314], the situation alters slightly for
a PCL scaffold with incorporated ceramic particles or CS. These scaffolds exhibit weight
loss within the first seven days. However, the origin of this material loss is challenging to
ascertain. It could be attributed less to PCL degradation and more to the strong binding of
water to HA and CS, as these compounds make it difficult to remove moisture [121].

4.4. Surface Properties

A scaffold in bone engineering should be biocompatible and biodegradable, and also,
its surface should be conducive to migration and anchoring osteoblasts as a direct site
of interaction with host cells. The scaffold’s physical properties (e.g., surface roughness,
development of the specific surface area) [315] play a critical role in providing cell anchor-
age [16]. Successful anchoring enables effective cell adhesion [316]. Cell adhesion allows
cells to stick to the scaffold’s surface through specific molecular interactions, promotes
cell proliferation, and enables cell differentiation through the development of a specific
surface area [251,317].

Natural polymers such as proteins (e.g., CGI) and polysaccharides (e.g., CS) are
considered suitable materials for facilitating osteoblast anchoring due to the presence of
functional groups that differ in polarity, electrostatic charge, and ability to interact via van
der Waals forces [318]. Unfortunately, their relatively poor mechanical properties, such as
high brittleness and insufficient compressive strength, do not meet the necessary structural
and mechanical requirements. Thus, while natural polymers possess high osteoinductive
potential, they lack osteoconductive features. This leads to the consideration of synthetic
biopolymers like PCL in BTE. PCL has appropriate mechanical properties but is marked by
significant hydrophobicity [319]. Modifying a PCL-based scaffold is required to improve
its surface wettability [103,320].

One method of enhancing the hydrophilicity of a PCL-based scaffold surface is through
the incorporation of HA. The presence of ceramic particles increases the material’s hy-
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drophilicity due to the micropores that appear on the surface of the scaffold fibres, which
are associated with greater polarity. While the reasons for the altered surface architecture
are unclear, as noted by various authors, a strong correlation has been identified between
increased roughness and improved cell adhesion [152,246]. The uniform distribution of
HA in the PCL matrix, with some particles exposed on the surface of the filament and some
forming agglomerations, amplifies its cellular activity [16,321]. For instance, a higher value
of surface roughness of the scaffold fibres was also observed when the concentration of CS
was increased [121].

Two specific methods for surface functionalisation, aimed at eliciting desired biological
responses, are also noted: gas plasma treatment and the exposure of the polymer surface to
other reactive reagents, such as through acid and alkali etching [319].

These methods enhance surface roughness and introduce new functional groups
through the covalent modification of the polymer surface due to surface degradation.
These surfaces can then be further modified by attaching biologically active compounds
such as CGI and growth factors (e.g., BMP-2). This wetting effect can enhance the degree of
biomineralisation [322–325]. The surface properties of PCL can be altered by combining
plasma treatment and collagen modification. Studies were also conducted to immobilise
collagen on the surface of ultrathin PCL films, significantly improving hydrophilicity after
surface modification [326]. The rate of cell attachment and proliferation on the resulting
films was increased. Integrins, cytoskeletal and ECM proteins such as CGI and the arginyl-
glycyl-aspartic acid (RGD) peptide, can be covalently attached or physically deposited (via
electrostatic adsorption) on the PCL surface.

Another method to increase the hydrophilicity of a PCL-based scaffold involves
etching with concentrated acids or bases. For instance, a PCL-based scaffold can be
immersed in a NaOH solution for 24 h, increasing hydrophilicity promoted by alkaline
hydrolysis [238]. This process contributes to the formation of additional carboxylate
(COO−) and hydroxyl (OH−) groups at the ends of the PCL chain on the surface of the
scaffold, thereby increasing its roughness through surface erosion. The interaction of the
PCL-based scaffold with a drop of water has been found to correlate with scaffold–protein
and scaffold–cell interactions [327,328]. Therefore, the contact angle can be interpreted as
an indicator of the scaffold’s initial cell adhesion capacity. For instance, PCL scaffolds with
higher HA concentrations (20 wt.%) exhibit a smaller contact angle (approx. 78◦), reflecting
superior hydrophilicity [236].

5. Conclusions

Designing scaffolds for alveolar bone augmentation poses a significant challenge.
Any discussion to determine scaffold characteristics should begin with a systematic meta-
analysis of biomineralisation and ossification. Currently, the literature primarily consists
of phenomenological descriptions of these processes. Although our understanding of
bone tissue growth at the micro- and macroscopic levels is limited, an examination of the
mechanisms of biomineralisation and ossification through the lens of materials engineering
and bone tissue can provide direction for the development of osteoconductive scaffolds
with osteoinductive potential.

The initial proposal for design involves the selection of materials. A scaffold based on
polycaprolactone (PCL), characterised by its optimal biocompatibility, biodegradability, and
bioresorbability, emerges as a suitable candidate for scaffolds that exhibit osteoconductive
characteristics. Synthetic polyesters can undergo modifications to render their properties
suitable for bone tissue engineering (BTE). PCL-based scaffolds, when modified with
hydroxyapatite (HA), type I collagen (CGI), and chitosan (CS) particles, demonstrate
high osteoinductive potential. Molecular dynamics (MD) simulations of the CGI–HA and
CS–HA interactions serve as a guide for in vitro testing.

The strategy for designing PCL-based scaffolds is in its nascent stages. Currently, it
involves employing heuristic methods to explore the most effective ways of obtaining and
analysing scaffold properties. A research path ranging from fundamental principles to
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clinical applications must be standardised to implement a scaffold in an alveolar bone defect
successfully. The present challenge at the meta-analytical level calls for an interdisciplinary
approach (Figure 12). Each step of the design process necessitates verifying and evaluating
correlation relationships to ensure the scaffold meets the required standards and proves
safe and effective for final clinical applications.
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Figure 12. Diagram presenting the pathways from fundamental principles to clinical applications.
Each phase of the methodology is predicated on a structured analytical procedure, which entails the
decomposition of multifaceted issues into more manageable constituent elements. This is followed by
a synthesis procedure, which involves a methodical progression from elementary subjects and phe-
nomena to those of greater complexity. Finally, an enumeration procedure is employed, necessitating
a thorough and systematic review to ascertain that all facets of the problem under investigation have
been duly considered.

Currently, the prevailing trend in designing precise augmentation of alveolar bone
defects involves fabricating scaffolds using 3D printing. The ideal pore size and interconnec-
tivity for cell migration, nutrient transport, and vascularisation have yet to be standardised.
Moreover, integrating mechanotransduction and cell signals into 3D-printed scaffolds to
guide and stimulate bone growth still needs to be explored. The standardisation of mechan-
ical properties is also a subject of debate. Additionally, while most studies initially focus
on mechanical properties, the long-term performance of scaffolds in vitro and in vivo, as
degradation progresses, remains to be investigated.

Further research is required to determine how to maintain structural and mechanical
integrity. Moreover, surface modifications of the scaffold play a pivotal role. A burgeoning
area of research involves introducing HA/CS composites into the PCL matrix or depositing
CGI onto the surface of the PCL scaffold.

Despite current research gaps, the potential of 3D-printed PCL-based scaffolds rein-
forced with HA, CGI, and CS for BTE is significant. The design of the scaffolds’ structural,
mechanical, degradation, and surface properties could promote osteoblast adhesion, prolif-
eration, and differentiation. These are crucial mechanisms for successful bone regeneration,
especially in the case of the alveolar bone, which is sensitive to disturbances in homeostasis.
Future research to resolve the discussed limitations will facilitate the development of new
concepts and research procedures in BTE.
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