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Abstract: After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a
pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair.
In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration
and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by
the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These
toxins have a role in the development of neurological, cardiovascular, bone, and renal complications
of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have
shown that these molecules accumulate early in AKI and contribute to the establishment of this
pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was
to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in
each renal compartment.

Keywords: acute kidney injury; chronic kidney disease; AKI-to-CKD transition; uremic toxins

1. Introduction

Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly more
frequent and are therefore becoming major public health concerns. In a recent study,
the incidence rate for AKI and acute kidney disease (AKD) (standardized by age and
sex) ranged from 134 to 162 events/10,000 person-years [1]. CKD affects around one
person in ten [2] and mostly results from two cardiovascular disease risk factors: arterial
hypertension and diabetes. CKD and AKI are interconnected, and each is a risk factor for
the other [3,4]. Patients who experience an episode of AKI—even a nonserious one—have a
~25% greater risk of progression to CKD [5]. Both CKD and AKI are associated with higher
morbidity and mortality rates in general and cardiovascular morbidity and mortality rates
in particular [6–8]. CKD is known to accelerate the arterial and valvular calcification process
and promote cardiovascular events, such as acute coronary syndrome and stroke [6,9]. A
number of recent studies have demonstrated the link between AKI, cardiovascular events,
and mortality independent of CKD [10,11]. Patients are more likely to develop acute heart
failure and hypertension in the years following an episode of AKI [8,10–13]. Given that
both CKD and AKI are associated with a higher mortality rate, it is important to limit their
occurrence and, notably, to intervene early with regard to the AKI-to-CKD transition.

With a view to better understanding the risk of CKD progression after AKI and to identify
potential new therapeutic targets, several research groups have explored the underlying
cellular and molecular mechanisms [14]. These mechanisms involve all the compartments
of the kidney (i.e., tubular, interstitial, vascular, and glomerular components) and a variety
of pathways [14]. It is also thought that various patient-related and AKI-related factors
(including uremic toxins (UTs)) influence the AKI-to-CKD transition [15,16]. Indeed, UTs
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(particularly indoxyl sulfate (IS) and para-cresyl sulfate (pCS)) are known to accumulate in the
serum during CKD and AKI and are associated with CKD-related elevation in cardiovascular
risk [17–19]. The objective of the present study was to review (i) the mechanisms involved in
the AKI-to-CKD transition and (ii) UTs’ potential role in this transition. Figure 1 provides a
schematic view of the potential impact of UTs on the AKI-to-CKD transition.
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Figure 1. Tubular, endothelial, and glomerular mechanisms leading to the AKI-to-CKD transition
and the involvement of UTs. After tubular, endothelial, or glomerular injury, necrosed cells stimulate
the innate system and then the adaptive immune system. Imbalanced cytokine and TGF-β secretion
leads to tubular maladaptive repair (mitochondrial dysfunction, ER stress, cell cycle arrest, metabolic
reprogramming, tubular senescence, and EMT), endothelial senescence and rarefaction, hypoxia, and
podocyte loss. Across several compartments, the overproduction of profibrotic factors stimulates
extracellular matrix-secreting myofibroblasts, increases fibrosis, and hastens progression to CKD.
AKI, acute kidney disease; CKD, chronic kidney disease; EMT, epithelial-to-mesenchymal transition;
ER, endoplasmic reticulum. Created with BioRender.com.
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2. Acute and Chronic Kidney Diseases and Uremic Toxins: Definitions
2.1. AKI as a Risk Factor for CKD
2.1.1. Definition and Epidemiology of AKI

AKI is defined as a sudden loss of kidney function, as characterized by an elevation in
the serum creatinine level and/or a decrease in urine output. These two criteria are used to
classify AKI as being mild, moderate, or severe, according to the Kidney Disease Improving
Global Outcomes classification [20]. The incidence of AKI is increasing, and the condition
is frequently encountered in hospitals in general and in intensive care units (ICUs) in
particular [21,22]. More than 50% of ICU patients experience an episode of AKI [23,24].
AKI is associated with a high mortality rate; this can be as high as 50% in patients who
require dialysis [23,25]. There are several risk factors for AKI, including patient-related
factors, such as older age, pre-existing chronic organ failure (especially kidney, heart, or
liver failure), cancer or auto-immune disease, and AKI etiology [26–29]. Pre-existing CKD
is the most significant risk factor for AKI; it increases the risk more than 10-fold [30].

Except in certain specific cases of glomerulus injury, the main histological findings of
AKI are acute tubular lesions and interstitial infiltrates. The tubule is very sensitive to injury
by ischemia (induced mainly by septic or cardiogenic shock) and drug toxicity [31–33]. The
pathogenesis of acute tubular injury is a step-wise process [34,35]. The first phase of acute
tubular injury is characterized by tubular epithelial cell damage, tubular luminal dilatation,
proximal loss of the brush border, and loss of nuclei. Next, ischemic damage, endothelial
and tubular epithelial cell necrosis, and apoptosis are observed. Tubular cell detachment
can also obstruct the tubular lumen. In the third step, the release of pro-inflammatory
molecules worsens the existing damage. The last steps are marked by cell repair, cell
regeneration, and the reestablishment of normal tubular function; this phase has a central
role in the transition from AKI to recovery or CKD.

2.1.2. Changes in Kidney Function after an Episode of AKI

AKI is also a risk factor for CKD, and there is a continuum between the episode of AKI
and the development of CKD. In addition to its severity, AKI is defined by its duration (less
than 7 days) [36] and CKD by a persistent loss of kidney function over 3 months. Acute
kidney disease corresponds to the AKI-to-CKD transition, i.e., between 7 days and 3 months
post-onset. Histological analyses show that CKD damages all four compartments of the
kidney [37,38]. Interstitial fibrosis is the most frequent early-onset histological change and
is correlated with the progression of CKD [39]. Tubular atrophy is the second most frequent
change observed in CKD and is also associated with the degree of renal impairment [40].
Several cellular mechanisms (myofibroblast activation, a tubular epithelial-to-mesenchymal
transition (EMT), inflammatory molecule production, immune cell recruitment, and matrix
expansion and remodeling) and pathways (Notch and Wnt) have been considered fibrosis
markers and targets for slowing down the progression of CKD [41].

Various patient-related and AKI-related risk factors are associated with the course of
CKD [15,16]. Thus, gender (men), older age, comorbidities (such as uncontrolled diabetes
and hypertension and cardiovascular disease), sociodemographic disparities and genetic
factors contribute to the development and progression of CKD after AKI [42–47]. Factors
linked to AKI (the severity, etiology, and number of episodes) all contribute to the AKI-
to-CKD progression [48–50]. Thus, the risk of end-stage renal disease increases with AKI
severity; in a meta-analysis encompassing 2,017,437 patients, the hazard ratio for CKD
was 2.7 in AKI stage 1, 3.4 in AKI stage 2, and 8.9 in AKI stage 3 [51–53]. Moreover, each
episode of AKI doubles the likelihood of progression to CKD after AKI [54].

It is noteworthy that many of the risk factors for the AKI-to-CKD transition are also
risk factors for AKI onset [55]. Based on those findings in general and histological kidney
lesions observed during AKI in particular, some researchers have looked for potential
biomarkers of CKD risk. In a longitudinal study of 656 patients, increases in the urine
concentrations of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-
1 (MCP-1), and plasma tumor necrosis factor receptor (TNFR)-1 during the 12 months
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after AKI were associated with a two- to three-fold greater risk of developing CKD [56].
Furthermore, preclinical and clinical studies suggest that neutrophil gelatinase-associated
lipocalin (NGAL) is a marker of non-recovery from AKI, whereas urine uromodulin is
associated with a reduction in CKD risk [56,57]. The accumulation of metabolites (and
especially uremic toxins) might also have a role in the AKI-to-CKD transition.

2.2. Uremic Toxins

During CKD, the kidneys’ reduced filtration capacity results in the retention of numer-
ous metabolites called uremic toxins (UTs). A UT is defined as a molecule that accumulates
in the blood and organs of CKD patients, where it exerts deleterious effects on biolog-
ical functions [58]. According to this definition, some 150 molecules are considered to
be UTs and are classified by the EUTOX (European Uremic Toxins Work Group) into
three groups depending on their physico-chemical properties [59,60]: water-soluble UTs
(molecular weight (MW) < 500 Dalton) with urea and trimethylamine-N-oxide (TMAO)
(Figure 2); water-soluble UTs (MW > 500 Dalton), including peptides and small proteins
(β2-microglobulin or parathyroid hormone); and protein-bound UTs (PBUTs), which are
strongly bound to plasma proteins, preventing them from renal filtration elimination and
therefore from hemodialysis, including indoxyl sulfate (IS), para-cresyl sulfate (pCS), and
indole-3-acetic acid (IAA).
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Figure 2. Chemical structure of UTs. TMAO and urea belong to the group of water-soluble UTs with
low molecular weight (MW < 500 Da). PTH belongs to the group of water-soluble UTs with high
molecular weight (MW > 500 Da). IS, pCS, and IAA belong to the group of protein-binding UTs. IAA,
indole-3-acetic acid; IS, indoxyl sulfate; pCS, para-cresyl sulfate; PTH, parathyroid hormone; TMAO,
trimethylamine-N-oxide.

UT precursor compounds are derived from the metabolism of certain dietary amino
acids by the gut microbiota (GM). They pass the intestinal barrier and reach the liver
through portal circulation, where they are metabolized by hepatic enzymes (sulfotransferase
family 1A member 1 (SULT1A1) and flavin-containing mono-oxygenase 3 (FMO3)) into
UTs. Once the UTs reach the systemic compartment, protein-binding UTs (including IS
and pCS) are strongly bound to plasma proteins (mainly on albumin’s Sudlow sites) [61].
Lastly, UTs are secreted by the kidney after being taken up by the basolateral organic anion
transporters 1/3 (OAT1/OAT3) expressed by proximal tubular cells [62,63].
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Protein-bound UT (PBUTs) accumulation was first described in CKD patients. Indeed,
in CKD patients, plasma PBUT concentrations increase from 27 times for IAA to 68 times
for IS compared to healthy patients [64]. The clinical symptoms caused by UT toxicity
are referred to collectively as “uremic syndrome.” Several preclinical studies describe an
impairment of cardiac, neuron, and kidney cell damage involving the activation of the
aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-κB), reactive oxygen
species (ROS) production, and the mitogen-activated protein kinase (MAPK), extracellular
signal-regulated kinase (ERK), and transforming growth factor β (TGF-β) signaling path-
ways in endothelial cells (ECs) [65,66], astrocytes [67], the blood–brain barrier [68], and
podocytes [69]. This newly acquired pro-inflammatory phenotype leads to fibrosis and
increased apoptosis, together with renal dysfunction [70], ventricular dysfunction [71], and
a poor cognitive state [72,73]. Several clinical studies in CKD patients have shown that
UTs promote cardiovascular morbimortality [18,74,75], poor post-stroke recovery [76,77],
cognitive impairment [78], and a greater risk of fractures [79].

Plasma UT concentrations in AKI are lower than plasma UT concentrations in
CKD [17,80,81]. However, studies of the accumulation kinetics of these UTs in AKI showed
contradictory data. In contrast to CKD, some UTs do not accumulate (p-cresyl glucuronide
(pCG) and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF)) [17,80,82]. In vitro and
ex vivo studies have already observed UTs’ (IS, pCS, p-cresol) deleterious effects (oxidative
stress, apoptosis, wound repair) after short exposure (30 min–1 h) in human umbilical vein
endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs) [83–85]. Although
several clinical studies shift towards a link between transient accumulation of PBUTs and
cardiovascular complications during AKI [86], the role of PBUTs in the progression of
renal damage remains to be determined, and several mechanisms directly implicate these
molecules in the AKI-to-CKD transition.

3. Uremic Toxins in the AKI-to-CKD Transition
3.1. Gut Microbiota Dysbiosis and AKI-to-CKD Transition

The GM plays a central role in the genesis of UTs, is directly linked to AKI and
CKD [87], and is located at the center of the bidirectional intestine–kidney axis [88,89]. Both
AKI and CKD are responsible for alterations in the GM. In the case of CKD, several factors
(a low fiber intake or specific treatment with phosphate binders and iron supplements)
are responsible for this dysbiosis favoring the accumulation of UTs [90,91]. In addition to
these factors, AKI is specifically associated with reduced levels of short-chain fatty acids
produced by commensal bacteria in the microbiota [92]. This phenomenon is linked to
systemic inflammation, which also promotes the formation of UTs [93,94].

On the other hand, GM dysbiosis is also associated with the progression of renal
disease. Under physiological conditions, the microbiota functions with a low O2 sup-
ply [95]. However, GM dysbiosis alters these hypoxic conditions, leading to inflammation
and apoptosis and contributing to the AKI-to-CKD transition [96]. GM dysbiosis also
influences mitochondrial dysfunction, leading to ROS increase and AhR signaling through
UT synthesis (IS, pCS, TMAO) and therefore to the progression of CKD [97–99].

3.2. The Tubulo-Interstitial Compartment
3.2.1. Maladaptive Repair and the EMT
In the AKI-to-CKD Transition

After injury, tubular repair allows the patient to recover renal function and is achieved
through (i) the regeneration of the lost tubular epithelial cells by dedifferentiation–proliferation–
redifferentiation of surviving tubular epithelial cells and (ii) temporary, circumscribed, renal
fibrosis as a short-term, adaptive tissue repair mechanism. However, the persistence of
fibrosis after severe, repetitive injury leads to maladaptive repair, with replacement of the renal
parenchyma by connective tissue, preventing the total recovery of the estimated glomerular
filtration rate (eGFR) present before the AKI.
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Persistent fibrosis is maintained by cells having undergone partial EMT, although the
origin of these cells is still subject to debate [100]. EMT is a pathological mechanism in which
tubular epithelial cells transdifferentiate into a fibroblast-like phenotype during tubulo-
interstitial dialogue. The loss of epithelial cell junctions and polarity is followed by a change
in protein expression (under-expression of the epithelial proteins zonula occludens-1 (ZO-1)
and E-cadherin) and over-expression of mesenchymal markers (e.g., alpha-smooth muscle
actin (α-SMA), vimentin, and fibronectin). This leads to the acquisition of a pathological
extra-cellular matrix (ECM) secretory phenotype and to migratory capacity [101–103].
Maladaptive transdifferentiation sustains persistent, uncontrolled fibrosis, which drives the
AKI-to-CKD transition through several phenotypic changes: cell cycle arrest, reactivation
of proliferation pathways, organelle stress, and epigenetic alterations.

The Involvement of UTs

The results of several preclinical studies have shown that UTs accumulate in tubular
cells [104] and contribute to EMT by promoting epithelial marker loss and mesenchy-
mal marker acquisition via induction through TGF-β (Table 1). Exposure of proximal
renal tubular NRK-52E cells to IS alters the typical cubic aspect of epithelial cells and
turns them into fibroblast-like cells. The epithelial phenotype (ZO-1 and E-cadherin) is
replaced by a mesenchymal phenotype (with overexpression of α-SMA) associated with
induction of the ERK1/2 and MAPK apoptotic pathways. Pretreatment with the OAT3 in-
hibitor probenecid and inhibitors of the ERK1/2 and MAPK pathways reduced IS-induced
EMT [105]. Similarly, exposure of murine proximal tubule cells and an in vivo mouse
model to the UTs IS and pCS activated TGF-β excretion and initiated EMT via the Smad
and Snail pathways [106,107]. Fibroblasts are also activated in mice exposed per os to
IS [108]. Administration of AST-120 (Kremezin®) to mice allows epithelial cells to undergo
EMT [109–111]. Senescence and endoplasmic reticulum (ER) stress promoted by IS are
cellular adaptations for progression to a mesenchymal phenotype and are attenuated by
the administration of a chelating resin [111]. To date, the influence of UTs on the expression
of EMT markers has not been investigated in patients with renal disease.

Table 1. Mechanisms of UT toxicity involved in the AKI-to-CKD transition in the tubulo-interstitial
compartment.

UTs Mechanisms Underlying
the AKI-to-CKD Transition

The Tubulo-Interstitial Compartment

Models Main Results References

IS EMT, TGF-β

In vitro

Extinction of the epithelial phenotype: alteration of the
cubic epithelial aspect, ↓ ZO-1, ↓ E-cadherin
Mesenchymal expression: ↑ α-SMA, ↑ TGF-β,
↑ Smad2/3/4 pathway, ↑ Snail, ↑ fibronectin,
Inhibition of IS-induced EMT: probenecid
↓ EMT-induced MAPK/ERK pathway

[105,106,109,
112,113]

In vivo

Extinction of the epithelial phenotype: ↓ ZO-1,
↓ E-cadherin,
Mesenchymal expression: ↑ TGF-β, ↑ α-SMA,
↑ collagen, ↑ vimentin
↑ Fibrosis
Inhibition of UT-induced EMT:
- Losartan ↓ UTs, TGF-β and Snail and ↓ fibrosis
- AST-120 ↓ IS concentration, ↑ ZO-1, ↓ α-SMA,
↓ fibrosis

[106,107,109–
111,114–117]
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Table 1. Cont.

UTs Mechanisms Underlying
the AKI-to-CKD Transition

The Tubulo-Interstitial Compartment

Models Main Results References

IS

Oxidative stress

In vitro
- ↑ ROS, ↑ NF-κB, ↓ Nrf2
- N-acetyl cysteine or NF-κB inhibitors or NADPH
oxidase inhibitor→ ↓ NF-κB, ↓ NOX4

[112,118,119]

In vivo
- AST-120 ↓ urine and serum IS concentrations,
↑ kidney oxygenation, ↓ 8-OHdG, ↓ interstitial fibrosis,
↑ Nrf2, ↑ HO-1 and ↑ NQO1

[119–121]

Mitochondria dysfunction
In vitro

- ↓ Glucuronidation, ↓ complex II activity, ↓ electron
transport capacity
- ↓ Fusion, ↑ fission, ↑ autophagy

[122,123]

In vivo - ↓ Nitrogen metabolism, alteration of the inner
membrane, ↑ fission, ↑ autophagy [123]

ER stress
In vitro - ↓ GRP78, ↑ CHOP [124,125]

In vivo - AST-120 ↓ CHOP [125]

Metabolic reprogramming
In vitro - ↑ AhR-dependent arachidonic acid

pathway-reprogramming monocytes [126]

In vivo - Alteration of metabolic pathways, including
tryptophan metabolism [127]

Epigenetic alteration
Cycle cell arrest

Senescence

In vitro

- Methylation of CpG islands of sFRP =>
Wnt/β-catenin pathway activation
- Activation of p53 and p21
- NF-κB inhibitors suppressed IS-induced p53 and p21

[128–130]

In vivo

- Administration of recombinant sFRP5 alleviated
IS-induced fibrosis
- Hypermethylation of Klotho
- AST-120 decreased p65, p53, p21, β-galactosidase
activation, TGF-β, and α-SMA
- Stat3 siRNA suppressed IS-induced β-galactosidase
activation and fibrosis

[128–132]

Inflammation

In vitro

- ↑ Expression of IL-1β, IL-6, IL-15, IL-6 and IL-15,
TGF-β, NF-κB, Smad, Stat, B2m, Bax, and Bcl2
- Indole-3-propionic acid suppressed IS-induced MCP-1
- Correlation between CD14 + CD16+ monocytes and
plasma IS concentration in AAA patients
- Plasma IS from AAA patients promotes IL-10, PPARγ,
TGF-β, TIMP-1, IL-6, CCL2, and COX2

[133–136]

In vivo
- ↑MCP-1
- Indole-3-propionic acid ↓ IS-induced MCP-1
- AST-120 ↓ IS-induced Mac-1

[134,135,137]

Iron death pathways
In vitro

- ↑ Hepcidin expression through AhR
- ↑ Intracellular Ca2+ concentration and ceramide
concentration in erythrocytes
- ↑ Eryptosis and thrombosis

[138–141]

In vivo - AST-120 ↓ IS-induced hepcidin expression [138]

IAA Iron death pathways In vitro - ↑ Eryptosis and thrombosis [141]

pCS Inflammation In vitro - ↑ Expression of IL-1β, IL-6, IL-15, IL-6 and IL-15,
TGF-β, NF-κB, Smad, Stat, B2m, Bax, and Bcl2 [133,134]

Me2PY
Me4PY Oxidative stress Clinical

study
- Correlation between Me2PY or Me4PY and the
oxidative stress marker GSH [142]
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Table 1. Cont.

UTs Mechanisms Underlying
the AKI-to-CKD Transition

The Tubulo-Interstitial Compartment

Models Main Results References

CMPF
Mitochondrial dysfunction In vitro - Hemodialyzed patient serum with CMPF inhibited

ADP-stimulated oxidation [143]

Iron death pathways In vitro - ↓ GSH levels and GPX4, FHC, FLC, and
↑ intracellular iron concentration [144]

D-serine Cycle cell arrest In vitro - Activation of GCN2→ senescence [145]

ADMA TGF-β In vivo - ↑ TGF-β, ↑ α-SMA, ↑ collagen, ↑ fibronectin, ↑ fibrosis [146]

Abbreviations: 8-OHdG, 8-hydroxyguanosine; AAA, abdominal aortic aneurysm; ADMA, asymmetric dimethy-
larginine; AhR, aryl hydrocarbon receptor; α-SMA, α-smooth muscle actin; B2m, β-2 microglobulin; Bax, Bcl-2–
associated X protein; Bcl2, B-cell lymphoma 2; CCL2, chemokine ligand 2; CHOP, C/EBP homologous protein;
CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropionate; COX2, cyclooxygenase 2; EMT, epithelial-mesenchymal
transition; ER, endoplasmic reticulum; FHC, ferritin heavy chains; FLC, ferritin light chains; GCN2, general
control nonderepressible 2; GPX4, glutathione peroxidase 4; GRP78, glucose-regulated protein 78; GSH, re-
duced glutathione; HO-1, heme oxygenase-1; IAA, indole-3-acetic acid; IL, interleukin; IS, indoxyl sulfate;
Mac-1, macrophage-1 antigen; MCP-1, monocyte chemoattractant protein 1; Me2PY, N-methyl-2-pyridone-5-
carboxamide; Me4PY, N-methyl-4-pyridone-5-carboxamide; NF-κB, nuclear factor-κ B; NOX4, NADPH oxidase
4; NQO1, NAD(P)H quinone dehydrogenase 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; pCS, para-
cresyl sulfate; PPARγ, peroxisome proliferator-activated receptor-γ; ROS, reactive oxygen species; sFRP, secreted
frizzled-related protein; TGF-β, transforming growth factor β; TIMP-1, tissue inhibitor of metalloproteinase 1; UT,
uremic toxin; ZO-1, zonula occludens-1.

3.2.2. Hypoxia
In the AKI-to-CKD Transition

During AKI, an initial acute injury may expose tubular cells to hypoxia. The kidneys are
particularly sensitive to hypoxia [147–149]. Under hypoxic conditions, stimulation of oxidative
stress, an imbalance between the mitochondrial production and the elimination of ROS (prin-
cipally the peroxide ion O2

2− and the superoxide ion O2
•−), activates the hypoxia-inducible

factor (HIF) heterodimer, which enables the transcription of genes that compensate for oxygen
scarcity (angiogenesis, erythropoiesis, anaerobic glycolysis) [150,151]. Hypoxia contributes
to the AKI-to-CKD transition by promoting a mesenchymal phenotype via tubulointerstitial
fibrosis [152,153]. The involvement of TGF-β and tumor protein 53 (p53) as intermediates be-
tween ROS secretion and tubular injury has also been demonstrated [154]. Hypoxia-triggered
EMT can be inhibited using HIF siRNA [155]. In a mouse model of ischemia/reperfusion
(I/R), exposure to a molecule mimicking the action of the superoxide dismutase (SOD) or
the nuclear factor erythroid 2-related factor 2 (Nrf2) reduced ROS and peroxidized lipid
production, apoptosis, renal tubular damage, and the number of CD68+ cells, promoting
macrophage infiltration [156,157].

The Involvement of UTs

The literature data show that UTs are capable of inducing hypoxia and ROS secretion—both
of which are involved in the AKI-to-CKD transition [158,159]. Nakagawa et al. showed that
exposure of human proximal tubular (HK2) cells to IS and IAA led to intracellular ROS pro-
duction [120]. This effect was suppressed by probenecid (OAT3 inhibitor) and antioxidants
(NAC or probucol) [112]. Shimizu et al. demonstrated that ROS activation by IS is achieved
through NF-κB. Exposure to NF-κB inhibitors (siRNA, pyrrolidine dithiocarbamate, and
isohelenin), an antioxidant (NAC), and an NADPH oxidase inhibitor (diphenyleneiodo-
nium (DPI)) reduces the effect of IS on angiotensinogen production by tubular cells and
lessens fibrosis and inflammation [118]. Bolati et al. confirmed the involvement of ox-
idative stress in an in vivo model; the inhibition of transcription factor Nrf2 by IS via
NF-κB led to a decrease in levels of the antioxidant enzymes heme oxygenase 1 (HO-1) and
NAD(P)H quinone dehydrogenase 1 (NQO1) [119]. Furthermore, the antioxidant action
of HO-1 and NQO1 was restored by administration of AST-120 to the animals. Animals
exposed per os to indole (an IS precursor) developed kidney hypoxia and damage at 16
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weeks [121]. Administration of AST-120 restored physiological oxygen consumption and
reduced hypoxia and kidney damage. An improvement was also observed in vitro with the
use of the Na/K/ATPase inhibitor ouabain and the NADPH oxidase inhibitor apocynin.
Lastly, in a cohort of CKD patients, a negative correlation was identified between plasma
concentrations of the UTs N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-
5-carboxamide (2PY and 4PY) and the plasma concentration of reduced glutathione (GSH),
the most abundant antioxidant and a major detoxification agent in cells [142]. Inhibition
of this protective molecule increases the risk of oxidative cells damages and can lead to
CKD [160].

3.2.3. Organelle Stress
In the AKI-to-CKD Transition

The mitochondria is the powerhouse of the cell, and ROS-dependent mitochondrial
stress is associated with many kidney diseases [161]—including AKI and the AKI-to-CKD
transition [162]. Several in vivo studies have confirmed the involvement of mitochondrial
stress in renal tubules in the progression from AKI to CKD through various mechanisms:
redox alterations (ROS production, decreased β-oxidation, depolarization of membrane
potential) [163], activation of mitochondrial fission [164], and decreased mitochondrial
ATP synthesis [165]. Clinical studies have corroborated these data, as shown by Hu et al.’s
report of a correlation between the urine mitochondrial DNA concentration and markers in
patients with severe AKI relative to patients with mild AKI [166].

Permanent triggering of the unfolded protein response (UPR) pathway during ER
stress activates apoptotic pathways via the CEBP-homologous protein (CHOP, a molecular
intermediate triggered by ER stress and a mediator of apoptosis) and promotes the AKI-to-
CKD transition [167–169]. Lastly, clinical studies have corroborated the preclinical results
by highlighting a correlation between ER stress marker activation (CHOP, X-box binding
protein 1, and ER-associated protein reticulon 1A) and a decrease in the eGFR [170]. These
markers were also overexpressed in AKI patients with progression relative to AKI patients
without progression [171].

The Involvement of UTs

The AKI-to-CKD transition might also involve stressed organelles, including mito-
chondria. Some UTs (notably, hippuric acid (HA), IAA, and uric acid) can be produced by
mitochondria via physiological or pathological pathways [172]. UTs (such as IS, pCS, HA,
and CMPF) may be responsible for mitochondrial stress in renal tubular cells, as has already
been shown in muscle [173,174] and the endothelium [84]. Mutsaers et al. showed that
exposure of CiPTEC kidney cells to UTs inhibited mitochondrial succinate dehydrogenase
(complex II) activity by over 20% compared with controls. There was also an 18% reduction
in the capacity of the electron transport system [122]. Aerobic and anaerobic metabolic
pathways were impaired in a model of nephrectomized B-6 mice treated with IS and pCS;
the increased mitochondrial fission and autophagy were similar to those observed in senes-
cent cells and in AKI [123]. Lastly, a study of a cohort of hemodialysis patients showed
that CMPF reduced mitochondrial respiration by inhibiting ADP-dependent oxidation of
NADH-dependent substrates [143].

A few studies have investigated the induction of ER stress by UTs in kidney. For
example, Jeon et al. found that apigenin treatment in an HK-2 cell model attenuated the ER
stress induced by IS and led to a decrease in interleukin (IL)-6 and cyclin-dependent kinase
inhibitor 1 (p21) levels [124]. Similar results were found in vivo. Indeed, administration of
AST-120 in a nephrectomized rat model reduced the plasma concentrations of IS and CHOP.
Inhibition of activating transcription factor-(ATF)-4 (the endoplasmic receptor activating
the UPR pathway) by siRNA reduced the expression of IL-6, a proinflammatory cytokine
involved in fibrosis [125].
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3.2.4. Metabolic Reprogramming
In the AKI-to-CKD Transition

Metabolic reprogramming is the ability of cells to adapt their metabolic response to
changes in their environment. Tubulointerstitial cells need a lot of ATP to carry out their
excretion and reabsorption functions. These functions depend mainly on the β-oxidation
of fatty acids, since glucose is reabsorbed by sodium glucose cotransporters (SGLTs),
making glycolysis less available. During AKI, β-oxidation decreases and ATP synthesis is
compensated through aerobic glycolysis (insufficient to meet NADH and FADH2 cofactor
requirements), followed by anaerobic glycolysis (leading to lactate synthesis). Activation
of the HIF-1α factor and activation of AhR [175] and mitochondrial dysfunction [176] are
both causes and consequences of the transition from normoxic to anaerobic metabolism. In
addition, the processes involved in the progression of renal pathology (collagen deposition,
chronic inflammation, etc.) require large amounts of energy [177–179].

The Involvement of UTs

Some UTs arise directly from metabolic reprogramming, notably, kynurenine [177] and
lipid intermediates [180]. However, they are as much the result of kidney damage as the
driving force behind its progression. Hopp et al. showed a link between kidney damage,
metabolic reprogramming, and the accumulation of UTs, where an alteration in tryptophan
metabolism was associated with a deterioration in kidney function and the accumulation
of UTs in an in vivo model of autosomal dominant polycystic kidney disease [127]. UTs
also stimulate inflammation via an AhR-dependent reprogramming of arachidonic acid
metabolism [126].

3.2.5. Epigenetic Alterations and Cell Cycle Arrest
In the AKI-to-CKD Transition

Epigenetic alterations triggered by hypoxia via the HIF (histone modifications, DNA
methylation, non-coding RNAs, and chromatin conformational changes) form the patho-
physiological “hypoxic memory” of the primary injury [181]. These epigenetic changes are
conserved in kidney cells after AKI and predispose the cell to progression to CKD [182].
Several in vivo studies have shown that epigenetic alterations aggravate AKI [183–186].
A number of clinical studies have confirmed these data: methylation-enriched areas in
renal biopsies [187], hypermethylation of the kallikrein gene [188], and overexpression of
circulating RNAs [189,190].

In response to severe or repeated injury, tubular cells exhibit G2/M cell cycle arrest (as
opposed to G1/0 arrest under normal conditions); this leads to premature renal tubular
cell senescence in AKI [191] and CKD [192]. Several in vitro models have evidenced a link
between G2/M phase arrest-triggering senescence (p21) and transdifferentiation towards a
pro-inflammatory phenotype (α-SMA, fibronectins, and fibroblast size) [193,194]. In vivo
studies have confirmed these data [195,196]. Furthermore, NAC reduced cisplatin-induced
renal senescence in a C57BL/6 mouse model [197]. Several clinical studies have found that
two urine biomarkers of cell cycle arrest (tissue inhibitor metalloproteinase (TIMP)-2 and
insulin-like growth factor-binding protein (IGFBP)-7) predict the imminent risk of AKI in
critical care patients [198].

The Involvement of UTs

The results of a few preclinical studies have illustrated the effects of UTs on epigenetic
alterations in renal tubular cells and thus their contribution to the AKI-to-CKD transition. In
a study of HK-2 cells, for example, IS increased the methylation of secreted frizzled-related
protein (sFRP) CpG islands (inhibiting its expression) and led to Wnt/β-catenin pathway
activation and to aberrant kidney fibrosis. Administration of recombinant sFRP5 in vivo
alleviated IS-induced fibrosis [128]. In a nephrectomized B-6 mouse model, exposure to
IS and pCS induced expression of the DNA methytransferase involved in the hyperme-
thylation of Klotho; this abrogated Klotho expression in renal tubules [129], as also seen
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in AKI [199]. The impact of UTs on renal cell cycle arrest initiates molecular pathways
involved in the AKI-to-CKD transition. In a renal tubular cell model, D-serine (a novel UT)
induced senescence via activation of general control nonderepressible 2 (GCN2) [145]. In the
same manner, IS promoted senescence in HK-2 cells through activation of NF-κB, leading to
TGF-β overexpression, p53 and p21 activation, and senescence. These effects were blocked
by the NF-κB inhibitors pyrrolidine dithiocarbamate and isohelenin. Similar results were
found in a rat CKD model, in which AST-120 administration decreased the upregulation of
phosphorylated p65, p53, p21, β-galactosidase, TGF-β, and α-SMA [130–132].

3.2.6. The TGF-β Signaling Pathway
In the AKI-to-CKD Transition

TGF-β is produced by dedifferentiated epithelial tubular cells after renal injury; it
promotes epithelial dedifferentiation and cell cycle arrest, sensitizes cells to apoptosis,
shortens peritubular capillaries, aggravates hypoxia, and favors progression from AKI to
CKD. Furthermore, TGF-β stimulates EMT and aggravating fibrosis. Lastly, TGF-β acts as a
chemoattractant for macrophages and promotes their infiltration of the tubules. Knock-out
of the gene for TGF-β receptor II (TGF-βRII) in a mouse model attenuated the symptoms
of AKI [200]. Furthermore, control mice showed greater TGF-β expression, fibrosis, and
macrophage infiltration than TGF-βRII-/- mice [201,202], prevented by the use of genetic or
pharmacologic TGF-β inhibitors [203]. Finally, a review of nephrodiabetic patients showed
that TGF-β induced EMT in both the proximal and the distal region of the nephron [204].

The Involvement of UTs

Several studies have demonstrated that UTs stimulate the production of TGF-β, a
central mediator in the progression of tubules towards fibrosis. A growing body of evidence
from preclinical studies points in this direction. In an HK-2 cell model, for example, IS
induced TGF-β expression and thus expression of the EMT marker α-SMA [113]. Another
UT (IAA) is also capable of inducing TGF-β [112]. Several in vivo studies have demon-
strated that administration to animals of asymmetric dimethylarginine (a water-soluble
UT), IS or pCS is associated with oxidative stress, elevated TGF-β, EMT, and renal fibro-
sis [106,107,146]. Lastly, administration of AST-120 decreased UT and TGF-β levels and
thus reduced renal fibrosis—confirming UTs’ involvement in renal EMT [114–117].

3.2.7. Inflammation
In the AKI-to-CKD Transition

During the activation of the adaptive immune system, the balance between pro-
inflammatory phenotypes (M1 macrophages and interferon gamma-secreting lymphocytes)
and anti-inflammatory phenotypes (M2 macrophages and IL-10-secreting lymphocytes) fa-
vors (or not) tubular repair and fibroblast overactivation and thus determines the resolution
of AKI or its progression to CKD. Several studies of preclinical models have shown that the
hypersecretion of pro-inflammatory cytokines by macrophages is involved in the progres-
sion of AKI to CKD [205]. Mitochondrial injury can also induce inflammation [206,207].
The results of a number of clinical studies have confirmed these findings. Histological
analysis of post-mortem renal biopsies from patients with AKI after septic shock showed
intense leukocytic infiltration and marked apoptosis [208]. In a study of a cohort of post-
surgical AKI patients, elevated C-reactive protein (CRP) levels were associated with higher
mortality [209].

The Involvement of UTs

UTs stimulate the production of proinflammatory molecules by immune cells. This was
demonstrated by Sun et al.’s study of inflammation genes expressed by renal tubular cells
after exposure to IS and pCS. The cytokines IL-6, IL-15, and TGF-β were overexpressed, as
were the NF-κB, Smad, Stat, and apoptosis pathway components (B2m, Bax, and Bcl2) [133].
This effect was attenuated by treatment with anti-Stat3 siRNA [132], indole propionic
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acid antioxidant [134], and AST-120 [135]. In a cohort of patients with abdominal aortic
aneurysm (AAA) and matched control patients, there was a positive correlation between the
plasma IS concentration and the proportion of proinflammatory CD14+/CD16+ monocytes.
After exposure of THP1 monocytes to increasing concentrations of IS or serum from AAA
patients, the cells differentiated into macrophages secreting proinflammatory cytokines
(IL-6, MCP-1, and cyclooxygenase 2 (COX2)) [136]. The induction of MCP-1 expression
by IS was also observed in vivo and was associated with renal monocyte/macrophage
infiltration [137].

3.2.8. Iron Death Pathways
In the AKI-to-CKD Transition

Ferroptosis is a type of cell death that is different than apoptosis and necrosis, playing
a role in the AKI-to-CKD transition [210]. Iron metabolism is a key factor in initiating the
ferroptosis process via the accumulation of products of lipid peroxidation and overproduc-
tion of ROS [211,212]. Several cellular pathways involved in the AKI-to-CKD transition
depend on ferroptosis (mitochondrial dysfunction, fibrosis) [213–215]. Inflammation is
closely linked to ferroptosis, and they favor each other. On the one hand, multiple metabo-
lites produced during the inflammatory state increase the susceptibility of the kidney to
ferroptosis [216,217], and on the other hand, ferroptosis is able to promote the production
of damage-associated molecular patterns (DAMPs) and inflammatory mediators [218,219].
In a mouse model of AKI, pre-treatment with an anti-oxidant, FG-4592, reduces the progres-
sion of fibrosis by blocking ferroptosis [220]. Finally, ferroptosis is also interconnected with
other forms of cell death (necrosis, pyroptosis, eryptosis), which accelerates the destruction
of renal tubular cells [221,222]. Eryptosis (programmed erythrocytes death) is involved in
anemia during CKD [223] and depends on iron homeostasis and oxidative stress [224,225].

The Involvement of UTs

Only a few studies have examined the role of UTs in ferroptosis during AKI-to-
CKD transition. In a recent in vivo study, the authors observed a higher level of lipid
peroxidation and a higher iron concentration in the kidneys of AKI mice, in association
with overexpression of ferroptosis proteins (such as transferring receptor 1 (TfR1)) [144].
PBUTs have also been implicated in ferroptosis in vitro. CMPF showed the greatest effect,
inhibiting the expression of ferritin and GPX4, a protein decreasing lipid peroxidation. In
another study, the authors demonstrated the involvement of IS in iron metabolism during
CKD [138]. Indeed, IS increases the gene and protein expression of hepcidin through
AhR. Moreover, IS and IAA promote eryptosis via cytosolic Ca2+ and ROS accumulation,
aggravating anemia and CKD [139–141,226].

3.3. Endothelial Dysfunction
3.3.1. In the AKI-to-CKD Transition

Renal microcirculation in general and peritubular capillaries in particular are very sus-
ceptible to injury [14]. Vascular lesion begins with poor repair and results in functional and
structural lesions, with vasoreactivity alteration, greater inflammation, altered endothelial
permeability, and capillary rarefaction [227]. In preclinical models, an imbalance between EC
destruction and regeneration contributes to the transition to chronic vascular lesions [228]. ECs
exhibit an expression of caspase-3, an abnormal cytoskeleton, and a disruption to adherens
junctions, with increased vessel permeability and apoptosis [229–231]. Although dialogue
between ECs and pericytes allows for the remodeling and repair of injured vessels [232,233],
the loss of pericytes provokes permanent EC damage in peritubular capillaries and is as-
sociated with tubular injury in AKI mice [234]. Furthermore, the expression of angiogenic
factors (such as vascular endothelial growth factor (VEGF)) are markedly lower [235,236] after
kidney injury and inhibited EC proliferation [237,238], whereas the anti-angiogenic factors
(such as endostatin) are overexpressed [239,240]. The angiogenic factor silent information
regulator two protein (Sirtuin)-1 protects against capillary rarefaction by blocking premature
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EC senescence secondary to p53 and Notch1 signaling downregulation [241–243]. Both ECs
and pericytes are able to differentiate into myofibroblasts that also promote kidney fibrosis and
progression to CKD [100,244]. Overall, all these factors promote the AKI-to-CKD transition.

3.3.2. Role of UTs in Endothelial Dysfunction during the AKI-to-CKD Transition

UTs (especially IS and pCS) are known to have harmful effects on the vascular wall dur-
ing CKD (Table 2). In clinical studies, IS and pCS have been linked to cardiovascular disease
and mortality [245–247]. In preclinical studies, IS exerted direct toxicity on ECs by decreas-
ing cell viability and proliferation and by promoting oxidative stress [83,84,248]. Moreover,
IS induced the upregulation of vascular adhesion molecules (such as ICAM-1 and MCP-1)
associated with leukocyte extravasation and decreased vascular relaxation [249–251]. IS also
acts on the calcification process by inducing the expression of osteoblast-specific proteins in
VSMC and ECs’ secretion of procalcifying IL-8 [252,253]. Furthermore, IS increased tissue
factor production and induced a pro-thrombotic state [254]. Recent studies have revealed a
novel antiangiogenic action of IS through the activation of AhR associated with a decrease in
EC proliferation [255]. Moreover, plasma angiopoietin-1 concentration increased significantly
after hemodiafiltration, a technique used to purify UTs in the dialysate of CKD patients [256].
In the kidney vasculature specifically, IS also exerts toxicity on arterioles obstructed by
ECs. After 8 weeks of intravenous IS administration, larger arteries presented reduplica-
tion of elastic lamina [69]. Like IS, pCS is associated with cardiovascular events in CKD
patients [257–259]. Several preclinical studies have investigated pCS’s pathological effects on
vascular cells. pCS is responsible for the release of microparticles and an increase in endothe-
lial wall permeability [260]. Furthermore, pCS promotes atherogenesis and plaque instability
via its action on leukocyte recruitment and on VSMC migration and proliferation [261,262].

There are now some preclinical data on the pathological vascular role of UTs during
AKI. Short-term exposure of ECs to increasing concentrations of IS induced ROS produc-
tion and ICAM-1 expression and reduced cell viability and NO bioavailability [84,248,249].
Furthermore, IS inhibits EC regeneration via its toxic effect on endothelial progenitor cells
(EPCs), with a decrease in their proliferation and an increase in their senescence. In another
preclinical study of cultured human EPCs, VEGF expression (usually induced by HIF-1α and
IL-10/STAT3 pathways) was suppressed by IS pretreatment [263]. In an animal model of AKI,
IS induced a pro-oxidant state with the downregulation of endothelial nitric oxide synthase
(eNOs) expression in kidney arteries after I/R and a decrease in EPC egress from the bone
marrow [264]. IS also upregulated EC expression of E-selectin in kidney via IL-1β activation,
associated with ROS overproduction and greater endothelial monocyte adhesion [265]. In the
same manner, ex vivo aorta exposure to IS induced a reduction in vasorelaxation [266,267].
A few studies have demonstrated the harmful action of pCS during AKI. pCS induced ROS
production by ECs and VSMCs after only 30 min of exposure in vitro [85]. This effect was
associated with vascular leukocyte adhesion and pathological constriction of the aorta in vivo.
It was also responsible for an alteration in vascular permeability [268]. Given IS’s ability to
block angiogenesis during AKI, this UT probably contributes to the AKI-to-CKD transition.
Moreover, IS is able to promote pro-inflammatory cytokines (such as IL-1β) that block the ex-
pression of angiogenic factors [235,236,265]. Furthermore, IS is harmful to the EPCs involved
in vascular repair [269]. Notably, through its action on vascular wall permeability, pCS might
contribute to the AKI-to-CKD transition [260,268].
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Table 2. Mechanisms of UT toxicity involved in the AKI-to-CKD transition in the endothelial
compartment.

UTs Mechanisms Underlying
the AKI-to-CKD Transition

Endothelium

Models Main Results References

IS Oxidative stress
In vitro

- ↑ ICAM-1, ↑MCP-1, ↑ NF-κB, ↑ ROS,
↑ E-selectin, ↑ IL-1β
- NADPH oxidase inhibitors decreased
IS-induced oxidative stress
- ↓ Hypoxia-induced migration and
tube formation
- ↓ Vasorelaxation

[84,248,249,263,265–267]

In vivo - ↓ eNOs
- AST-120 ↑ neovascularization [263,264]

pCS Oxidative stress
Inflammation

In vivo - ↑ ROS [85]

In vivo - ↑ Leukocyte adhesion, ↑ vascular
permeability [268]

Abbreviations: eNOs, endothelial nitric oxide synthase; ICAM-1, intercellular adhesion molecule-1; IL-1β,
interleukin 1β; IS, indoxyl sulfate; MCP-1, monocyte chemoattractant protein 1; NF-κB, nuclear factor-κ B; pCS,
para-cresyl sulfate; ROS, reactive oxygen species; UT, uremic toxin.

3.4. Glomerular Injury
3.4.1. Glomerular Injury in the AKI-to-CKD Transition

During AKI and CKD, immune activation includes the recruitment of different inflam-
matory cells (predominantly neutrophils and monocytes/macrophages), leading to tubular
inflammation. Macrophages are also able to promote the injury of other cells [270]. The
podocyte is particularly susceptible to injury and is involved in the AKI-to-CKD transition.
In a murine model, podocyte lesions were more prominent than tubular lesions 28 days
after I/R injury and characterized by excessive foot process fusion, glomerular basement
membrane exposure, and downregulation of proteins with an important role in podocyte
integrity (especially synaptopodin and nephrin) [271]. In addition, pro-inflammatory cy-
tokines and angiotensin II cause podocyte lesions and loss, which lead to ROS production
and Notch activation [272–274]. Notch signaling induced podocyte foot process effacement
and EMT, which also promote glomerulosclerosis [273,275]. Furthermore, the senescence
of glomerular cells (including podocytes and ECs) leads to senescence-associated secretory
phenotypes (SASPs) as part of a switch to a permanent senescence process linked to CKD
progression [276]. Glomerular parietal epithelial cells are also involved in the AKI-CKD
transition via the formation of crescents [277,278] and the development of glomerulosclero-
sis [279,280].

3.4.2. The Role of UTs in Glomerular Injury during the AKI-to-CKD Transition

During CKD progression, IS also has harmful effects on glomerular function (Table 3).
IS induces podocyte injury both in vitro and in vivo. Mice exposed to intravenous IS
for 8 weeks presented elevated albuminuria and histological damage (ischemic damage
to the glomerular basement membranes and mesangiolysis) [69]. A specific analysis of
podocytes also revealed foot process effacement and cytoplasmic vacuoles. Furthermore,
the expression of podocyte proteins (such as synaptopodin) was lower, whereas AhR
expression was higher. In vitro, mouse podocytes showed an altered actin cytoskeleton and
a switch to a pro-inflammatory phenotype. IS also induced oxidative stress (particularly
in mesangial cells) with the production of ROS in a dose-dependent manner [281,282].
Moreover, IS activated heat shock protein 90 (HSp90) through the AhR pathway and
promoted renal fibroblast activation [108]. In uremic rats orally supplemented with IS, a
histological analysis of the kidney demonstrated higher levels of glomerular sclerosis; these
were reversed by AST-120, an oral sorbent that reduced the serum IS level [283,284].
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Table 3. Mechanisms of UT toxicity involved in the AKI-to-CKD transition in the glomerular com-
partment.

UTs Mechanism Underlying the
AKI-to-CKD Transition

Endothelium

Models Main Results References

IS Podocyte loss and senescence

In vitro

- ↑ AhR, ↑ vimentin
- Podocyte effacement, with ↓ in Actn4, Cd2ap, Myh9,
Nphs1, Nphs2, Podxl, Synpo, and Wt1 mRNA
- ↑ reduction rate, ↑ ROS, ↑ SOD sensitivity in
mesangial cells

[69,281]

In vivo

- ↑ AhR, ↑ vimentin
- Podocyte effacement, with ↓ in Actn4, Cd2ap, Myh9,
Nphs1, Nphs2, Podxl, Synpo, and Wt1 mRNA
- AST-120 ↓ glomerular sclerosis

[69,283,284]

Abbreviations: AhR, aryl hydrocarbon receptor; IS, indoxyl sulfate; ROS, reactive oxygen species; SOD, superox-
yde dismutase; UT, uremic toxin.

Although pCS is known to have specific toxic effects on interstitial and tubular cells,
nothing is known about its potential toxic effects on glomerular cells [285]. Furthermore,
there are no data on the potential acute glomerular toxicity of UTs. However, we can assume
that IS is also involved in the AKI-to-CKD transition through its harmful glomerular effects.
Thus, podocyte and mesangial cell alterations observed after IS exposure are known to con-
tribute to features of the AKI-to-CKD transition, such as ROS production, the upregulation
of pro-inflammatory cytokines, cell senescence, fibrosis, and the downregulation of proteins
required for podocyte integrity (synaptopodin, nephrin, and CD2AP) [69,271,272,276,281].

4. Therapies and Future Research Directions

Today, the only effective way of temporarily reducing plasma concentrations of PBUTs
and their complications is renal transplantation. Because of their binding to plasma proteins,
PBUTs are poorly eliminated by the various dialysis techniques. Carbon chelating agents
(AST-120 (Kremezin®), sevelamer carbonate (Renvela®)) make it possible to limit PBUTs
upstream of their accumulation in plasma, for example, by reducing the passage of their
amino acid precursors through the intestinal barrier. However, there is no consensus on
their use [286–289], and there is a lack of data on the long-term effects on improving renal
function and reducing cardiovascular complications.

During CKD and AKI, the GM modifies its metabolism, favoring proteolytic fermen-
tation, to the detriment of saccharolytic fermentation [93,290]. Several clinical studies in
patients with CKD have shown that a high-fiber, low-protein diet reduces plasma concen-
trations of UTs [291–295]. However, further long-term studies of nutritional intervention
are needed to assess the contribution of single or repeated administration of specific
foods or nutrients to plasma retention of UTs in patients. SGLT inhibitors also restore
the proteolytic/saccharolytic fermentation balance [296–298]. Another strategy targeting
the absorption phase is the use of prebiotics, probiotics, and postbiotics. Their use is also
controversial, with in vivo data showing efficacy [299] and clinical studies showing mixed
results [300,301]. A randomized double-blind clinical trial in 29 patients with chronic
renal failure showed that administration of enzobiotic therapy (synbiotics with proteolytic
enzymes) for 3 months reduced plasma pCS concentrations with an eGFR that remained
stable compared with the placebo group [302]. Fecal microbiota transplantation is another
avenue worth exploring to limit the endosynthesis of UTs [303–305]. However, preclinical
studies show contradictory results in terms of the benefit in animals with AKI [306,307]. To
our knowledge, there are currently no clinical studies looking at fecal transplantation in
the context of renal disease, and a standardization before setting up such studies is needed
(pre-treatment with ATB, galenic form, frequency of administration, inter-individual vari-
ability, and management of adverse effects). Certain classes of drugs, such as vancomycin,
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can be used to restore an altered GM [308]. Genetic modification of the Bacteroides strain
no longer expressing tryptophanase may decrease the plasma accumulation of UTs [309].

Another approach is to intervene in the hepatic metabolism of UTs by inhibiting the
hepatic enzymes that synthesize them. Thus, in a mouse model of acute renal failure,
administration of molecules that inhibit the hepatic enzyme SULT1A1 induces nephropro-
tection against the renal toxicity of IS [310,311]. Similarly, the study of the inhibition of
the FMO3 responsible for the activation of trimethylamine to TMAO may be a therapeutic
pathway [312].

PBUTs are very poorly eliminated by conventional dialysis methods. In order to opti-
mize PBUT elimination, various alternative techniques are being studied, such as the com-
bination of diffusive and convective techniques in pre- or post-hemodiafiltration [313–315].
The use of an adsorbent during hemodialysis (albumin, nanoporous monolith, activated
charcoal, highly porous microparticles, graphene nanoplatelets) has also shown interesting
results [316,317]. Another method is to use molecules with a higher affinity for albumin
than UTs (sodium octaonate, furosemide, ibuprofen) [318–321]. Finally, it is likely that
limiting the deleterious effects of UTs will require a combination of all of these therapies.

5. Conclusions

Many studies of preclinical models of AKI and CKD have shown that post-injury
cellular defense and adaptation mechanisms induce the progression from AKI to CKD
regardless of the injured renal compartment (the tubule, glomerulus, or endothelium).
After AKI, the induction of an immune response leads to the secretion of proinflammatory
and profibrotic factors. This harmful environment modifies the metabolism of tubular
cells, glomerular cells, and ECs, which leads to ROS secretion, organelle stress, induction
of NF-κB, cellular senescence, EMT, ECM synthesis, and fibrosis. UTs are involved in the
same cellular adaptation mechanisms in each kidney compartment, which ultimately lead
to chronic inflammation, tubular fibrosis, and progression to CKD. The various cellular
and molecular mechanisms described here are interrelated. For example, ER stress and
mitochondrial stress are strongly activated under hypoxia. It is therefore difficult to
study each mechanism individually. To date, only one preclinical study has specifically
investigated the impact of these UTs on the AKI-to-CKD transition. Further studies are
therefore needed to investigate the link between UTs and AKI/CKD in order to determine
whether these toxins are risk factors and therapeutic targets for the AKI-to-CKD transition.
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