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Abstract: Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted
glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and
carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neu-
rological disorders, including diabetes, atherosclerosis, and Alzheimer’s disease. Aberrant CHI3L1
expression is also reportedly associated with tumor migration and metastasis, as well as contribu-
tions to immune escape, playing important roles in tumor progression. However, the physiological
and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative
diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1
and macrophages is crucial for disease progression. Recent research has uncovered the complex
mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage
functional polarization. In this article, we review recent findings regarding the various disease types
and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also
provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1
and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1
and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases,
neurodegenerative diseases, and cancers.
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1. Introduction

Chitinases and chitinase-like proteins (CLPs) are proteins that are widely present
in mammals and humans. The roles of chitinases and CLPs have been demonstrated
in the fields of plant and microbial immunity [1]. Host-derived chitinases cleave chitin
to prevent invasion by chitin-carrying pathogens. Compared to plants, mammals lack
endogenous chitin or chitin synthase. However, chitinase and chitinase-like proteins are
also endogenously expressed in the lungs and other organs of animals [2–5]. CLPs are
involved in the mediation of many diseases characterized by chronic inflammation and
tissue remodeling. Chitinase and CLPs are mainly expressed and secreted by macrophages
and are closely related to M2 macrophage activation [6]. Therefore, understanding the
physiological functions of chitin or chitinase-like proteins is crucial for disease prevention
and treatment.

CHI3L1 (chitin-3-like 1), also known as YKL-40 in humans, is a member of the 18-
glycoside hydrolase family composed of 383 amino acids. CHI3L1 has a molecular weight
of 40 KDa and no hydrolase activity due to mutations in two critical active residues, but it
retains a high affinity for chitin. A comparison of CHI3L1 sequences from different species
shows a high degree of conservation (shown in Figure 1a). This indicates that studying
the physiological functions and activities of CHI3L1 in animals can be strongly correlated
with relevant physiological activities in humans, which has significant clinical research
significance.
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Figure 1. Homologous sequence alignment, crystal structure, and heparin-binding site of CHI3L1. 
(a) Homologous sequence alignment of CHI3L1 from six different species, including Homo sapiens, 
Mus musculus, Rattus norvegicus, Bos Taurus, Sus scrofa, and Macaca mulatta; (b) Crystal structure 
of CHI3L1 (PDB code: 1NWR); (c) Proposed amino acids (R143, R144, D145, K146) in heparin-bind-
ing motif shown in blue and amino acids (K337, K342, R344) in actual binding sites shown in red. 

CHI3L1 is secreted and expressed by various cells, including macrophages [7], neu-
trophils [5], tumor cells [8], and vascular smooth muscle cells [9]. It plays a significant role 
in cell regeneration, proliferation [10], migration, tissue remodeling [11], and angiogenesis 
[12]. Levels of CHI3L1 mRNA and protein are significantly elevated in inflammatory 

Figure 1. Homologous sequence alignment, crystal structure, and heparin-binding site of CHI3L1.
(a) Homologous sequence alignment of CHI3L1 from six different species, including Homo sapiens,
Mus musculus, Rattus norvegicus, Bos Taurus, Sus scrofa, and Macaca mulatta; (b) Crystal structure
of CHI3L1 (PDB code: 1NWR); (c) Proposed amino acids (R143, R144, D145, K146) in heparin-binding
motif shown in blue and amino acids (K337, K342, R344) in actual binding sites shown in red.

CHI3L1 is secreted and expressed by various cells, including macrophages [7], neu-
trophils [5], tumor cells [8], and vascular smooth muscle cells [9]. It plays a significant role
in cell regeneration, proliferation [10], migration, tissue remodeling [11], and angiogene-
sis [12]. Levels of CHI3L1 mRNA and protein are significantly elevated in inflammatory
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diseases [8,13], cancer [14], and degenerative diseases [15] and are closely associated with
patient survival and poor prognosis. In recent years, extensive research has led to the
recognition of CHI3L1 as a widely used biomarker and drug target.

The crystal structure of CHI3L1 reveals two domains: an eight-stranded β/α-barrel do-
main and a second domain consisting of six antiparallel β-strands and an α-helix (shown in
Figure 1b). Structural analysis identifies two distinct heparin-binding domains in CHI3L1,
each containing positively charged arginine and lysine residues that interact with hep-
arin through electrostatic interactions [16]. However, a study investigating the binding of
heparin and CHI3L1 presents contrasting findings. By synthesizing short peptides with mu-
tated KR-rich domains and measuring their binding strength to heparin using ELISA [17],
it is demonstrated that the actual binding site between CHI3L1 and heparin is located in the
C-terminal KR-rich domain rather than the theoretically proposed binding motif (RRDK)
(shown in Figure 1c). Besides heparin, CHI3L1 also interacts with various proteins and
small molecules, such as IL-13Rα2 [18], CD44 [19], TMEM219 [20], Galectin-3 [21], and
chitin [16]. Due to the existence of different receptors for CHI3L1, it exerts its physiological
functions through diverse signaling pathways. Understanding these mechanisms is crucial
in comprehending the role of CHI3L1 in different diseases.

In recent studies on COVID-19, significant discoveries have emerged. This disease,
caused by SARS-CoV-2 (SC2), has been observed to be more severe and widespread in
elderly individuals and those with comorbidities. Interestingly, research conducted by
Kamle’s team indicates that CHI3L1, which is induced during aging and comorbidity,
acts as a potent stimulator for the SARS-CoV-2 receptor angiotensin-converting enzyme 2
(ACE2) and spike protein-priming proteases (SPP) [22]. These findings shed light on the role
of CHI3L1 in COVID-19 pathogenesis. Moreover, further research has found that CHI3L1
enhances SC2 infection by using the CHI3L1 axis, playing a critical role in the pathogenesis
of COVID-19, and is an attractive therapeutic target. Kamle et al. [23] demonstrated that
CHI3L1 increased the expression of ACE2 and SPP in epithelial cells by studying typical
delta (δ)- and omicron (o)-variant mutations of the virus, leading to the uptake of pseudo-
viruses expressing alpha, beta, gamma, delta, or omicron S proteins by epithelial cells,
thereby enhancing their infection. And anti-CHI3L1 inhibitors and Kanamycin partially
inhibit the infection of epithelial cells by these variant-of-concern (VOC) pseudo-viruses,
once again proving that CHI3L1 is a common and VOC-independent therapeutic target in
COVID-19.

A large amount of data shows that research on CHI3L1 has become increasingly im-
portant, as it is involved in disease progression, inflammatory responses, fungal infections,
cell activation, and other physiological activities. Whether as a biomarker of disease or a
therapeutic target for related diseases, CHI3L1 is an extremely important protein. Based
on this, this review summarizes recent studies on CHI3L1 to illustrate how CHI3L1 works
in different diseases. The aim is to find general rules and provide new ideas for future
CHI3L1 research.

2. Correlation between CHI3L1 and Macrophages

Originally, macrophages were defined as mobile cells with phagocytic activities. Most
macrophages originate from monocytes, migrate to the circulatory system, and then move
to peripheral tissues as needed. However, the exact function of macrophages has not been
fully studied [24]. In some tissues, macrophages have specialized phenotypes, such as
microglia in the central nervous system, alveolar macrophages in the lungs, and Kupffer
cells in the liver. These different phenotypes of macrophages play important roles in
maintaining tissue homeostasis [25]. At the same time, as important immune cells involved
in innate immunity, macrophages have significant heterogeneity and polarization [26].

Macrophages have two common polarization phenotypes: the classically activated
M1 phenotype and the alternatively activated M2 phenotype. M1 macrophages can be
differentiated by LPS, IFN-γ, and CSF2 stimulation [27], while M2 macrophages can be
differentiated by IL-4, IL-13, TGF-β, TNF-α, and glucocorticoids [26,28–30]. Macrophage
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polarization is temporary and malleable, and macrophages can quickly change their phe-
notype to adapt to changes in the surrounding tissue microenvironment. In other words,
macrophages can be transformed from the M1 phenotype to the M2 phenotype under
certain conditions, while M2 macrophages can reprogram various genes expressed by M1
macrophages by using reagents that increase IL-10 levels [31,32].

The close relationship between tumor-associated macrophages (TAMs) and CHI3L1
has been demonstrated in many diseases, especially during inflammation. Macrophages are
the precursor of TAMs, and research on their immune regulation function helps in further
understanding the role played by TAMs in diseases. Numerous research findings have
consistently demonstrated significant physiological associations between macrophages
and CHI3L1 across various diseases, establishing their correlation with the two classical
phenotypes of macrophage differentiation. In the following discussion, we delve into the
interplay between the M1 and M2 phenotypes alongside CHI3L1 while also providing an
overview of the connection between CHI3L1 and macrophages in select diseases.

In a mouse model of breast cancer, co-culturing 4T1 cells with RAW264.7 cells in vitro
resulted in a significant increase in CHI3L1, LCN2, and MMP-9 levels in serum, which
promoted tumor metastasis [33]. The same results were observed in a mouse mammary
ductal carcinoma model. In addition, silencing the CHI3L1 gene or treating it with re-
combinant CHI3L1 (rCHI3L1) can reduce the level of IFN-γ cytokines produced by M2
macrophages [34]. Spleen macrophages carrying breast cancer tumors secrete higher lev-
els of proinflammatory mediators CCL2, CXCL2, MMP-9, and CHI3L1 stimulating this
increased secretion [35]. Treatment with rCHI3L1 also enhances the expression of CCL2,
CXCL2, and MMP-9 in mouse stromal and alveolar macrophages after LPS treatment,
consistent with the aforementioned results that CHI3L1 stimulates macrophages to produce
IL-8 (mouse CXCL2 homolog), MCP-1 (CCL2), and MMP-9 [34,36].

CHI3L1 is also specifically upregulated in cancer-associated fibroblasts (CAFs), and
CAF-derived CHI3L1 appears to be unique in that it can reprogram TAMs into an M2-like
phenotype, which is associated with tumor progression. Knockdown of CHI3L1 in CAFs
results in a decrease in M2-like macrophages, an increase in CD8+ T cells, and a shift in
CD4+ T cells towards the TH1 phenotype. This indicates that CHI3L1 from CAFs affects
macrophage pathological phenotypes by affecting TAMs and T cells [33]. The promotion of
CCL2, CXCL2, and MMP-9 by CHI3L1 shows the opposite effect to its downregulation of
IFN-γ produced by M1 macrophages but ultimately leads to the same result: promoting
macrophage differentiation into the M2 phenotype.

The promotion of M2 macrophage differentiation has also been found in other diseases.
Lung metastasis studies have found that CHI3L1-KO mice have reduced Th2 inflammation,
while overexpression of CHI3L1 reverses this phenotype and is expressed in activated
T cells and Th2 cells, regulating Th1 and Th2 differentiation by increasing IFN-γ signal-
ing pathways. CHI3L1 enhances type 2 immune responses, stimulates M2 macrophage
differentiation and the formation of TGF-β1, and regulates melanoma and breast cancer
metastasis through the Sema7a/CHI3L1/IL-13Rα2 axis [37]. In mouse models of A549
lung cancer, the administration of anti-CHI3L1 antibodies has been observed to modulate
the tumor microenvironment. These antibodies exert their effects by suppressing STAT6-
dependent PLG signaling, consequently leading to a reduction in M2 polarization [38]. M2
macrophage differentiation, to some extent, is advantageous, and the relationship between
CHI3L1 and macrophage polarization may bring a new therapeutic approach.

Understanding the differentiation mechanism of macrophages in atherosclerosis is
crucial for comprehending the associated regulatory mechanisms. Jung et al. found
that CHI3L1 promotes the expression of PPARδ in THP-1 and HUVECs [39]. Further-
more, it inhibits NF-κB phosphorylation and the secretion of proinflammatory factors such
as TNF-α and MCP-1 induced by LPS during atherosclerosis. Acting as a stimulus for
M1 macrophages, CHI3L1′s ability to suppress TNF-α secretion is thought to mediate
macrophage differentiation and contribute to atherosclerosis. However, further investiga-
tion is required to determine whether the attenuation of Th1 immune responses results in
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the dominance of Th2 responses in CHI3L1-mediated macrophage differentiation mech-
anisms in atherosclerosis. This potential explanation may shed light on why CHI3L1
levels increase with disease progression, but additional research is needed to confirm this
theory [40].

The relationship between CHI3L1 and macrophage differentiation in different diseases
is summarized in Table 1. However, relevant reports are not limited to the diseases men-
tioned above. For example, in CHI3L1-KO mice with occlusion of the middle cerebral artery
injury, the absence of CHI3L1 accelerates stroke development through the activation of
STAT6-dependent M2 microglia [41]. In choroidal neovascularization (CNV) development,
CHI3L1 can regulate M2 differentiation-mediated angiogenesis via VEGFA-dependent
or independent pathways [42]. CHI3L1 promotes food allergies through Th2 immune
responses and the combination of MAPK/ERK and M2 macrophage polarization-mediated
Th2 immune responses and PI3K/AKT signaling pathways [43]. Hyaluronic acid (HA)
may promote macrophage recruitment and M2 polarization through IL-1/CHI3L1 and
TGF-b/CHI3L1 axes [44], in which CHI3L1 plays a key role in Th2 inflammatory response,
M2 macrophage activation, and skin barrier function in the development of specific der-
matitis [45]. Monocyte-derived cells strongly express CHI3L1 under the stimulation of Th2
cytokines IL-4 and TGF-β [46]. miR-24 targets the CHI3L1 gene, promotes M1 macrophage
polarization, reduces M2 macrophage polarization, etc. [47]. Although the mechanism of
CHI3L1′s impact on these diseases may not have been fully studied, research data certainly
indicate a close correlation between CHI3L1 and macrophage differentiation. The infiltra-
tion, activation, and polarization of macrophages play different roles in different diseases.
By summarizing the relationship between CHI3L1 and macrophage polarization or how it
affects polarization in different diseases, the results show that most CHI3L1 is secreted by
M2-like macrophages and promotes M2-like polarization of macrophages in most diseases.
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Table 1. The relationship between CHI3L1 and macrophage polarization in different diseases.

Disease Type CHI3L1
Change

Research
Objects

Macrophage
Polarization

Signaling
Pathway CHI3L1 Receptor

CHI3L1
Function

in Disease
Year and Country Reference

Glioblastoma Increased Cell, Mice M2 infiltration CHI3L1/Gal3-
PI3K/AKT/mTOR Gal3

Promotes
macrophage-mediated
immune suppression

2021, USA [48]

Breast cancer,
gastric cancer Increased Cell, Mice M2 infiltration ERK, JNK, MAPK IL-13Rα2 Promotes cancer

metastasis 2017, China [49]

IDD Increased Cells, Human Tissues M2a infiltration ERK, JNK IL-13Rα2 Promotes
ECM degradation 2021, China [50]

ESCA Increased Cells, Mice, Human
tissues

M2-like
polarization TGF-β unknown Stimulates M2 gene

expression 2021, China [51]

Staphylococcus
aureus infection Increased Cell M1-like

polarization ERK, JNK unknown Macrophage polarization 2017, China [47]

Glioma Increased Cell, Mice, Human
serum and samples

M2-like
polarization NF-κB ACTN4, NFKB1

Promotes tumor cell
proliferation and

survival
2022, China [52]

TME Increased Cell, Mice, Human
serum and samples

M2-like
polarization

AKT, β-catenin,
NF-κB Unknown Promotes tumor growth

and metastasis 2022, China [53]

Colorectal Cancer Increased Cell, Mice, Human
serum and samples

Macrophage
infiltration ERK, JNK Unknown

Promotes the chemotaxis
of macrophages and

angiogenesis
2012,
Japan [45]

nAMD Increased Cell, Mice, Human
serum

M2-like
polarization ERK IL13-Ra2 Angiogenesis 2019, China [42]

Food Allergy Increased Cell, Mice, Human
Serum

M2-like
polarization ERK, AKT IL13-Ra2

Th2-associated
inflammation and M2

macrophage polarization
2020,

Korea [43]

AD Increased Cell, Mice, Human
Tissues

M2 macrophage
activation Unknown Unknown Affects the development

of AD
2019,

Korea [45]

Breast Tumor Increased Cell, Mice Reprogramming to an
M2-like phenotype MAPK, PI3K Unknown Promotes tumor

progression
2017,
Israel [33]

Abbreviations: IDD, Intervertebral Disc degeneration; ESCA, esophageal cancer; TME, Immunosuppressive Tumor Microenvironment; nAMD, Neovascular Age-related Macular
Degeneration; AD, Atopic Dermatitis.
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3. Therapeutic Approaches of CHI3L1 for Treatment of Diseases

As further research is conducted on the function, structure, and physiological effects
of CHI3L1 protein, scientists have discovered and identified many inhibitors, including an-
tibodies, small molecules, miRNA, and others, as shown in Table 2. Fascinatingly, research
findings about various CHI3L1 inhibitors have once again underscored the significant
association between CHI3L1 and lung cancer, breast cancer, as well as neurological dis-
eases. Notably, the inhibitory effects of small molecules on CHI3L1 predominantly involve
regulating the functional polarization of macrophages or impeding the binding of CHI3L1
to receptors, thereby contributing to the amelioration of cancer progression. The substantial
advancements achieved through CHI3L1 inhibition have significantly improved disease
progression while demonstrating favorable biological safety and holding tremendous
promise for future application.
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Table 2. Overview of CHI3L1 inhibitors.

Type Compound Related
Diseases Mechanism Binding Area Impact on

CHI3L1
Key Pro-
tein/Cell

Related
Pathway Results Year and

Country Reference

Small
molecular

K284-6111 Lung cancer
Prevents the binding of

CHI3L1 to receptor
IL-13Rα2

chitin-binding
domain (CBD) Inhibition IL-13Rα2 JNK, AKT,

AP-1

Prevents lung cancer
cell metastasis and

growth.

2022,
Korea [54]

K284-6111 Alzheimer’s
disease

Suppresses p50 and p65
translocation into the

nucleus and
phosphorylation of IκB

in vivo and in vitro

chitin-binding
domain (CBD) Inhibition NF-κB NF-κB, IκB

Anti-amyloidogenic
and anti-

neuroinflammatory
effects with

improving neuronal
survival and memory

deficiency

2018,
Korea [55]

G721-0282 Osteosarcoma
(OS)

Induces the inactivation
of mitogen-activated

protein kinases
(MAPKs) with a
decrease in the

phosphorylation of Src
and STAT3 in OS cells

unknown Inhibition STAT3 STAT3

Inhibits the
proliferation of OS
cells and induces

apoptosis

2020,
Korea [56]

G721-0282

Chronic
unpredictable

mild stress
(CUMS)

Regulates
IGFBP3-mediated

neuroinflammation via
inhibition of CHI3L1

unknown Inhibition IGFBP3 NF-κB
Lower

CUMS-induced
anxiety-like behaviors

2022,
Korea [57]

Natural
molecular Ebractenoid F Lung cancer

significantly
decreases

phosphorylated AKT
expression

unknown Inhibition AKT AKT Inhibits lung cancer
cell growth

2022,
Korea [58]
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Table 2. Cont.

Type Compound Related
Diseases Mechanism Binding Area Impact on

CHI3L1
Key Pro-
tein/Cell

Related
Pathway Results Year and

Country Reference

MicroRNAs
(miRNA)

mja-miR-35 Brest cancer
silences CHI3L1 gene

expression in a
cross-phylum manner

unknown Inhibition unknown unknown Inhibits breast cancer
metastasis

2018,
China [59]

miR-24 Staphylococcus
aureus

significantly inhibits the
M1 phenotype;

increases M2 phenotype
unknown Inhibition Macrophage MAPK

Downregulates the
expression level
of CHI3L1 and

regulates the MAPK
pathway in S. aureus-
induced macrophages

2017,
China [47]

Bispecific
antibody FRGxPD-1 Melanoma

simultaneously induces
CD8+ CTL

differentiation and
tumor cytotoxicity

unknown Inhibition
CD8+

cytotoxic T
cells

Wnt/β-
catenin

Generates an additive
antitumor response

2020,
USA [60]

Antibody

polyclonal
CHI3L1-

neutralizing
antibodies
(nCHI3L1

Abs)

Lung,
pancreas, and
colon tumor

models

enhances CD8+
T-cell cytotoxicity and

attenuates Treg and
M2-type

macrophage
polarization to induce

anti-tumor
properties in vitro

unknown Inhibition Rab37, M2 AKT, NF-κB,
β-catenin

Reduces tumor
growth/metastases

and elicits an
immunostimulatory

TME

2022,
China [53]
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4. CHI3L1 and Different Diseases
4.1. Correlation between CHI3L1 and Diabetes and Atherosclerosis

Diabetes is a metabolic disease characterized by high blood glucose levels due to
dysfunction in the body’s glucose-handling mechanism, often caused by insulin secretion
defects or impaired biological function, or both, and is generally classified into type 1 and
type 2 diabetes (T1/2D) [61]. Elevated levels of CHI3L1 have been found in the plasma
of both types of diabetes, and CHI3L1 levels are closely related to insulin resistance in
T2D [62–64]. The increase in CHI3L1 serum levels in diabetic patients suggests its potential
as a relevant marker, and further studies have found that CHI3L1 not only stimulates
the growth and proliferation of fibroblasts but also participates in the degradation or
breakdown process of connective tissue inflammation. In T1D patients, elevated plasma
CHI3L1 levels are positively correlated with proteinuria, indicating that CHI3L1 plays a
role in microvascular disease caused by renal vascular damage.

Inflammation is involved in all aspects of human immunity, metabolism, and disease
progression. Subclinical systemic inflammation exists in T2D and participates in the
pathogenesis of all stages of atherosclerosis [65]. Plasma CHI3L1 levels in T2D patients are
positively correlated with insulin resistance and blood lipid abnormalities, and CHI3L1
levels were 50% higher than the median in a control group. This indicates that using
CHI3L1 as a marker for T2D patients is very practical [62]. Especially with an increased
level of CHI3L1 in the plasma of T2D patients, the secretion of IL-6 and tumor necrosis
factor-alpha (TNF-α) is enhanced by cytokine IL-18, which is closely related to insulin [66].
This suggests a possible functional relationship between IL-18, IL-6, TNF, and CHI3L1,
although there is no specific evidence to prove it. The correlation between CHI3L1 content
in plasma and IL-6 has been partially validated [67].

Atherosclerosis is a common complication of diabetes and an important cause of
coronary artery disease and stroke in clinical practice. In the early stage of atherosclerotic
disease, chronic inflammation usually occurs, and as the disease progresses, plaques
composed of lipids, necrotic cores, calcification areas, inflammatory smooth muscle cells,
endothelial cells, immune cells, and foam cells form and grow on the vascular wall, leading
to narrowing or rupture of the vascular channel. Severe cases can result in bleeding
due to vascular wall rupture. Plaque erosion and rupture are also considered the main
causes of acute vascular events, such as acute myocardial infarction, stroke, and sudden
death [68–71]. In the inflammatory process, blood monocytes migrate from the blood to
lymphoid and non-lymphoid tissues in response to signals from tissues such as infection
or tissue damage [72]. They engulf other cells and toxic molecules such as oxidized
LDL (oxLDL), produce inflammatory cytokines, and can differentiate into inflammatory
dendritic cells (DCs), macrophages, or foam cells [73,74]. Previous studies have shown that
CHI3L1 expression in different subpopulations of macrophages in atherosclerotic plaques
is highly upregulated, and the expression levels of CD36, CD14, and CD18 are significantly
increased in monocytes of diabetic patients. Differentiation and maturation of CD14+
monocytes into CD16+ macrophages are also accompanied by CHI3L1 expression [75].

The relationship between CHI3L1 and atherosclerosis is closely related to macrophage
activation, and the enhancement of TNF-α also promotes the expression of CHI3L1 in
macrophages. Another study found that the activation of TLR2 and TLR4 further increased
the release of CHI3L1 in THP-1 monocytes activated by TNF-α [76]. CHI3L1 mRNA
expression is highly upregulated in different subpopulations of macrophages in atheroscle-
rotic plaques. The formation of plaques involves the infiltration of monocytes into the
subendothelial space of the vascular wall, followed by lipid accumulation in activated
macrophages. Macrophages infiltrating deep into lesions have higher mRNA expression of
CHI3L1 than other lesion sites, and this is expressed highly in early-stage macrophages
of atherosclerotic lesions. CHI3L1 may inhibit macrophage apoptosis by upregulating the
expression of the apoptotic inhibitor Aven and inhibiting the activation of the apoptotic
initiator caspase-9. This inhibition of macrophage apoptosis leads to impaired programmed
cell removal (PrCR) in plaques, and macrophages that should undergo apoptosis and be
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removed by phagocytosis gradually accumulate, eventually enlarging plaques and exacer-
bating the formation of early-stage atherosclerosis [77]. Yue et al. used xCell analysis to
obtain immune cell enrichment from the GSE41571 database and found that, compared to
stable plaques, ruptured plaques had higher infiltration of plasma B cells, bone marrow-
activated dendritic cells, and macrophages as well as higher infiltration of M1 and M2
macrophages [78].

In addition, studies have found that CHI3L1 is not only upregulated in more vulner-
able plaques but also significantly correlated with inflammatory markers and the loss of
stable differentiated SMC content [79]. CHI3L1 enhances endothelial cell migration and
angiogenesis through its receptor IL-13Rα2-dependent pathway and activates downstream
signaling molecules AKT and ERK [80]. IL-13Rα2, one of CHI3L1′s receptor proteins,
participates in and enhances the migratory effect of CHI3L1 on EC cells, and two other
studies have obtained similar results [81,82]. The upregulation of CHI3L1 may represent a
compensatory response aimed at preventing SMC ‘dedifferentiation’ and inflammation [79],
which often occurs in conjunction with macrophage differentiation, consistent with the
relationship between CHI3L1 and macrophages mentioned above.

4.2. Correlation between CHI3L1 and Liver Diseases

The liver is an important organ in the human body, responsible for detoxification,
metabolism, promoting blood circulation, immune defense, and other important physiolog-
ical functions. Viral, bacterial, and parasitic infections, improper diet, alcohol consumption,
stones, and other diseases can cause lesions in the liver, leading to different types of liver
diseases. Many scholars have already discovered changes in the content of CHI3L1 in liver
injury, liver cancer, liver fibrosis, cirrhosis, and other diseases [83–89].

Recently, a study on obstructive sleep apnea–hypopnea syndrome (OSA) pointed
out that, as a possible precursor to liver fibrosis, if OSA is detected and diagnosed, it can
prevent liver fibrosis to some extent [90]. By studying the levels of five serum liver fibrosis
markers in OSA patients, a novel marker—CHI3L1—was found, and detecting CHI3L1
content in serum is safer and faster than detecting other markers. Moreover, compared to
those in the normal population, levels of hyaluronic acid, collagen type IV, and CHI3L1 in
the serum of OSA patients were significantly increased, indicating that detecting the serum
level of CHI3L1 to determine the progression of OSA and prevent fibrosis is possible [91].
Early diagnosis and continuous monitoring of liver fibrosis are crucial for the clinical
treatment of chronic diseases and prognosis evaluation. Using serum CHI3L1 content alone
as an indicator to predict the degree of fibrosis is feasible, but the level of CHI3L1 in the
liver gradually increases with normal aging, which is unrelated to the existence of liver
fibrosis disease (shown in Figure 2).
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and Kupffer cells in the liver, thus making it a promising diagnostic and staging biomarker for
liver fibrosis.

A study indicated that the accuracy of joint diagnosis of fibrosis by using serum
CHI3L1 levels and HA levels was higher than that of using serum CHI3L1 levels
alone [84,91,92]. In the process of liver fibrosis, CHI3L1 promotes the proliferation and
activation of hepatic stellate cells by stimulating the production of COL1A1 and ACTA2.
This process is independent of TGF-β1 regulation. Additionally, CHI3L1 plays a crucial role
in liver fibrosis by directly affecting hematopoietic stem cells [93,94], which is corroborated
by the results of Masaaki et al. [95], who found that CHI3L1 deficiency significantly reduces
the level of liver TGF-α but does not affect the level of TGF-β and that CHI3L1 is involved
in the apoptosis of liver macrophages by mediating Fas expression and the Akt signaling
pathway. The above results suggest that CHI3L1 mainly inhibits the apoptosis of M1-like
liver macrophages rather than their M2 counterparts in liver fibrosis, which requires further
research to explain.

In patients with acute liver injury (ALI), the level of CHI3L1 is negatively correlated
with the level of ALI [89]. Diseases caused by factors such as oxidative stress, excessive
inflammatory response, and mitochondrial damage usually involve inflammation, result-
ing in liver cell damage and apoptosis, thereby affecting normal liver function [96,97].
Acetaminophen (APAP) is a common analgesic used to relieve pain and reduce fever. Liver
damage caused by APAP is called APAP-induced liver injury (AILI). Overuse of APAP
is the main cause of acute liver damage in the United States and can lead to a large accu-
mulation of platelets in the liver. Shan et al. found that CHI3L1 recruits platelets through
its receptor CD44 on macrophages, thus promoting AILI [98]. In the TAA-induced ALI
mouse model, rCHI3L1 inhibits the differentiation of IFN-γ+ Th1 cells through the STAT3
signaling pathway, thereby suppressing IFN-γ secretion and improving Th1 cell-mediated
inflammatory response in the liver, providing a possible target for ALI treatment [98,99].
Recent research has obtained highly specific humanized CHI3L1 monoclonal antibodies
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through single-memory B-cell culture and achieved significant results in treating AILI,
indicating the feasibility of CHI3L1 as a target for ALI treatment [100].

Further research on the liver and CHI3L1 shows that the level of CHI3L1 in the liver is
positively correlated with the level of CHI3L1 in circulation, and liver cells are the main
source of CHI3L1 in the liver. The proinflammatory cytokine IL-6 significantly increases
CHI3L1 expression in primary liver cells independently of TGF-β1 [84,101–103]. In vivo
studies have shown that CHI3L1 enhances caspase-3 and cleaved-caspase-3 expression
levels in liver cells through the PAR2/JNK signaling pathway, thus exhibiting a significant
pro-apoptotic effect on liver cells. The JNK pathway is involved in cell apoptosis in the
liver and, together with CHI3L1, it forms the CHI3L1/PAR2/MAPK/JNK/caspase-3 liver
cell apoptosis pathway [104]. The high expression of CHI3L1 in liver cells, combined with
its pro-apoptotic effect on liver cells, form a negative feedback loop.

In addition, a review of macrophages and their role in liver disease pointed out
that M1/M2 macrophage polarization plays an important role in the progression of liver
diseases. Maintaining macrophage polarization of a certain phenotype also depends on
different types of liver diseases. For example, in ALI and alcoholic liver disease (ALD),
maintaining M2 macrophage polarization is more conducive to inflammation and disease
relief. In HBV, HCV infection, and hepatocellular carcinoma (HCC), the M1 macrophage
phenotype is more conducive to disease relief and tumor development. Different phe-
notypes of macrophages have different effects on different types of liver fibrosis during
progression [26]. CHI3L1 is mainly derived from M1 macrophages and has higher expres-
sion levels in M1 macrophages than in other subgroups [95]. The specific physiological
effects of CHI3L1 in various liver diseases have not been thoroughly studied. However,
due to the complexity and variability of liver diseases and the different effects of M1/2
polarization on disease progression, even in the same disease, the influence of macrophage
polarization may vary depending on different inducers. CHI3L1 and macrophage polar-
ization certainly play an important role in the progression of liver diseases, making it
particularly important to study the physiological function of CHI3L1 in liver diseases.

4.3. Correlation between CHI3L1 and Neurological Diseases

Central nervous system (CNS) diseases, also known as neurodegenerative diseases,
are characterized by cognitive decline, motor disorders, behavioral changes, and other
clinical features [105]. Alzheimer’s disease (AD) is a CNS disease, and the progression of
AD generally includes three stages—preclinical (asymptomatic), mild cognitive impairment
(MCI), and resulting dementia. AD is caused by various factors, such as aging, smoking,
obesity, diabetes, etc. [106,107]. The pathological features of AD are mainly located in
neurofibrillary tangles (NFTs) inside neuronal cells and extracellular amyloid plaques
(Aβ), the former composed of different forms of phosphorylated Tau protein and the latter
composed of Aβ deposits throughout the brain [108].

As a persistent and difficult-to-recover neurodegenerative disease, early prevention
and treatment of AD, as well as late-stage treatment, are very important. The reliable
diagnosis of AD generally involves detecting amyloid plaques and NFTs composed of
pathological deposits of Tau protein in neuronal tissue, but this type of tissue detection is
difficult to achieve.

Modern medical research has focused on measuring biomarkers in various body
fluids to infer the progression of different diseases, such as cerebrospinal fluid (CSF) and
blood [109,110]. Several studies have found that the level of CHI3L1 in AD patients
significantly increases and further increases with disease progression, providing a new,
minimally invasive, and easily obtained AD biomarker [111–113]. Rosen et al. found that
the level of CHI3L1 in the CSF of AD patients was significantly higher (77%) than that
of normal individuals [114,115]. At the same time, another related study indicated that
CSF CHI3L1 is not a pre-biomarker for early symptoms of AD, which makes measuring
AD progression by measuring CHI3L1 levels in CSF seem unreliable. However, most
researchers still believe that using plasma CHI3L1 as a biomarker is very promising, while
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a better method is to combine other markers to determine AD progression to obtain more
accurate results [15,114,116].

As mentioned before, the main cause of AD is the presence of chronic brain inflam-
mation. A report about the brains of AD patients and normal individuals found that
the significant difference in CHI3L1 can be attributed to an imbalance in the cell acti-
vation spectrum, with increased neuronal activity in the low-CHI3L1-expression group
(LCEG) and enhanced inflammatory processes mediated by microglia activation in the
high-CHI3L1-expression group (HCEG), suggesting that CHI3L1 may activate microglia
to promote inflammation and AD progression and may be related to gender [117]. This
is consistent with the conclusion of another study: Brian et al. used animal models to
further reveal that CHI3L1 knockout changes neurogenic inflammation responses in animal
models while promoting astrocytes and microglia to engulf Aβ, reducing the formation of
amyloid plaques, indicating that CHI3L1 knockout has potential protective effects in AD
but enhances LPS-induced inflammatory responses and does not affect amyloid plaque
deposition, suggesting that CHI3L1 is a potential therapeutic target for limiting plaque
accumulation, optimizing plaque engulfment response, and slowing down AD progression,
but it is destructive in acute inflammatory environments [118].

Glial cells play an important role in the progression of AD, and glial activation in AD
is believed to have both advantages and disadvantages. On the one hand, activated glia
can engulf Aβ and Tau proteins to prevent protein damage, but on the other hand, exces-
sive inflammatory activation can accelerate plaque accumulation and synaptic loss [119].
In addition to regulating glial cell activation, CHI3L1 also regulates the release of proin-
flammatory cytokines in neuroglia. Increased expression of CHI3L1 has been found in
post-mortem tissue samples from sporadic AD patients aged 70–80 and is further enhanced
by systemic infection. Strangely, no significant changes in CHI3L1 mRNA were observed
in young AD patients with severe symptoms, which makes us wonder if the increase in
CHI3L1 expression in AD requires age-related synergy or infection [13].

The high expression of CHI3L1 in nearly all brain disorders may be attributed to the
activation of astrocytes during disease states, leading to gliosis and exacerbating disease
progression [120]. It remains unclear whether CHI3L1 functions as a neuroinflammatory
signaling molecule that triggers receptor systems in brain cells and regulates inflammatory
responses in a cell-type-specific manner [121]. Moreover, given the multitude of receptors
and signaling pathways associated with CHI3L1, it is equally imperative to investigate
whether CHI3L1 acts upon established receptors and signaling pathways in the brain or
potentially novel receptors to comprehend its involvement in Alzheimer’s disease or the
advancement of brain disorders [122].

Fungal infections have been linked to cancer, including 35 types of cancer, mostly
located intracellularly [123,124]. In 2014, researchers discovered fungal biomolecules
in the brains of Alzheimer’s disease patients for the first time [125]. Treatment with
antifungal medication reversed dementia in many patients. Fungal infections typically
induce inflammatory reactions and vascular modifications, similar to the slow progression
of AD. Fungal infections can induce the Th1 signaling pathway, producing TNF, IFN-β, IL-1,
IL-6, and IL-12, and can also induce Th2 responses. CHI3L1, as a member of the chitinase
family, plays an important role in fungal infection models. In a model of corneal candidiasis,
CHI3L1 is primarily expressed in epithelial cells and exerts protective effects against
fungal infection by influencing the expression of anti-inflammatory factors and chemokines
through an IL-13Rα-2-dependent mechanism [126]. CHI3L1 mediates cell activation in
inflammation progression, which may be closely related to its antimicrobial effects in the
brains of AD patients. In the invasive pulmonary aspergillosis (IPA) model, pentoxifylline
(PTX) significantly inhibits CHI3L1 expression in non-neutropenic IPA mice (HC-IPA) [127],
suggesting that CHI3L1 may also be a potential target for fungal infection and inflammation
in the brains of AD patients, which is worth further exploration by researchers.

Regarding CHI3L1-related treatment methods, some researchers have achieved certain
results. A team in Korea screened for CHI3L1 inhibitors in a drug library and discovered
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K284-6111, which can inhibit CHI3L1 to suppress the ERK and NF-κB signaling pathways.
Another inhibitor, G721-0282, can also reduce neuroinflammation induced by chronic
unpredictable mild stress (CUMS) and alleviate anxiety behavior characteristics [57,128].
This is similar to previous research, where small molecules inhibited NF-κB pathway
activation, reducing the expression of genes such as iNOS and decreasing the accumulation
of amyloid plaques (shown in Figure 3). The success of early experiments on CHI3L1
inhibitors once again suggests that targeting CHI3L1 as a therapeutic target is feasible, but
there is still a long way to go.
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Figure 3. Inhibition of the NF-κB signaling pathway by small-molecule inhibitors: In AD progression,
CHI3L1 is primarily secreted by microglia and astrocytes. Small molecule inhibitors reduce the
expression of genes such as iNOS, and COX-2 by inhibiting the activation of the NF-κB signaling
pathway, slowing down the deposition of amyloid plaques, and improving disease progression.

5. Correlation between CHI3L1 and Cancers

The close connection between CHI3L1 and cancer has been proposed by numerous
researchers and is now well established. In many types of cancer, the level of CHI3L1 is
related to disease progression and prognosis, with overexpression of CHI3L1 generally
associated with poor outcomes. Studies have shown that the spread and metastasis of
tumors often accompany the expression of CHI3L1 from macrophages [14,38,129–132].
CHI3L1 participates in cancer progression through different pathways, such as enhancing
the production of proinflammatory/pro-tumor angiogenic factors to aid tumor spread or
regulating signaling pathways in tumor progression [34,35,129]. In addition to directly
affecting cancer progression, CHI3L1 also acts as an intermediate protein involved in the
regulation of other proteins in cancer [59,133–136].

Most of the CHI3L1 involved in cancer progression and regulation comes from
macrophages, a group of cells that play an important immune role in the body. Macrophages
participate in the metastasis and proliferation of cancer cells by secreting cytokines. Tumor-
associated macrophages play a crucial role in cancer progression. Different stimuli can
cause macrophages to differentiate into various phenotypes, and TAMs infiltrating into
cancer sites have different physiological functions than normal macrophages. Researchers
have found that TAMs in breast tumors differ in phenotype and function from macrophages
in normal breast tissue [137]. The functional polarization of macrophages plays a crucial
role in resisting cancer cells and controlling diseases.
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As mentioned earlier, the relationship between different subtypes of macrophages and
CHI3L1 has been discussed. However, due to the variability of inducers, the complexity of
the cancer environment, and the variability of the disease, it is difficult to summarize the role
of the CHI3L1 protein in different cancers. Therefore, the following subsections elaborate
and summarize several studies involving CHI3L1 and various cancers and macrophages.

5.1. CHI3L1 and Breast Cancer

Breast cancer, as the most common malignant tumor in women, has been studied
by researchers from different fields regarding its pathogenesis. The complex interactions
between breast cancer cells and immune cells of the adaptive and innate immune systems
play a central role in tumor growth, metastasis, and treatment throughout the entire course
of the disease [33,138]. In breast cancer progression, serum CHI3L1 levels are closely related
to the degree of malignancy of breast cancer, and TAMs also play an important role. The
most fatal aspect of breast cancer progression is often the metastasis and invasion of cancer
cells in the later stages of the disease. One study showed that, in normal breast tissue,
except during the degeneration phase, CHI3L1 is only minimally expressed in mammary
ductal epithelial cells, but during lactation, CHI3L1 expression significantly increases,
indicating that CHI3L1 mediates the reconstruction and degeneration of mammary epithe-
lial cells [139]. However, overexpression of CHI3L1 in epithelial cells did not cause cell
proliferation or carcinogenesis, suggesting that it is not carcinogenic and may participate in
the development of tumors through synergistic effects with other carcinogens.

CHI3L1 plays a pathological role in advanced breast cancer rather than in the early
stages of the disease, which is consistent with the above research results. Many researchers
have found that CHI3L1 protein is specifically secreted by M2 macrophages and induces
the expression of MMP-9 in the 76N MECs mammary epithelial cell line by inhibiting
E-cadherin, thereby playing a role in the remodeling and degeneration of breast tissue [139].
CAFs are one of the most prominent stromal cells in breast cancer tumors. CAFs promote
tumor cell invasion and progression by directly stimulating tumor cells, enhancing an-
giogenesis, and modifying the extracellular matrix (ECM). In vivo, CAFs promote tumor
growth and recruitment by expressing CHI3L1 and activating macrophage MAPK and
PI3K signaling pathways to downregulate M1 macrophage-associated factors and promote
M2 polarization [33]. This is similar to results obtained by other researchers, specifi-
cally results indicating that, in breast cancer progression, CHI3L1 is mainly expressed by
M2 macrophages and promotes further metastasis and spread of breast cancer through
M2 macrophages.

In addition, compared to other diseases, breast cancer has a higher incidence of
metastasis to the lungs in patients with chronic lung disease [140]. The formation and
metastasis of tumors are closely related to the generation of neovascularization and the
formation of the microenvironment. By studying the role of CHI3L1 in the ‘pre-metastatic’
lungs of breast tumor-bearing mice, it was found that overexpression of CHI3L1 induced
the production of vascular growth factors CCL2, CXCL2, and MMP-9 by normal mouse
alveolar and interstitial macrophages. In addition to having angiogenic activity, CCL2,
CXCL2, and MMP-9 can also act as chemokines to recruit tumor cells, myeloid-derived
cells, and macrophages, providing conditions for breast cancer metastasis while promoting
further deterioration of the tumor [35,49,130,141].

CHI3L1, as a protein involved in immune suppression in breast cancer, is directly
correlated with the downregulation of IFN-γ expression in tumor-bearing mice, suggesting
that CHI3L1 may participate in inducing pre-Th2-type responses, thereby reducing the
production of Th1-type cytokines [35]. Shibata et al. [142,143] found in a mouse model of
allergen-induced chitin treatment that as IFN-γ production increased, the immune response
shifted from Th2 to Th1, which is similar to the conclusions drawn by the above researchers
and indicates that CHI3L1 primarily affects the progression of breast cancer by influencing
macrophage immune mechanisms. A study on shrimp found that the anti-viral miRNA
mja-miR-35 in the shrimp body can target the CHI3L1 gene in M2 macrophages in breast
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cancer mice in a cross-phylum manner, thereby inhibiting breast cancer metastasis and
achieving an anti-tumor effect [59]. This interesting study provides a new direction for the
treatment of breast cancer.

5.2. CHI3L1 and Endometrial Cancer

Endometrial carcinoma (EC) is one of the most common gynecological diseases, with
over 417,367 new cases worldwide each year [144]. Chemotherapy and radiotherapy
are the most important and common methods in contemporary EC treatment [145]. In
the past, CA125 was the only early detection marker accepted clinically for EC, but this
marker lacked specificity for EC, as this marker may show levels exceeding the 95th
percentile of normal values in a significant proportion of women with benign or malignant
diseases [146]. Therefore, finding a more specific marker is critical. CHI3L1 is highly
expressed in gynecological tumors such as endometrial cancer [147], cervical cancer [148],
and ovarian cancer [149]. A meta-analysis on CHI3L1 included 234 EC patients and
300 normal individuals, showing that 74% of EC patients had elevated CHI3L1 levels,
indicating that CHI3L1 is indeed a valuable tumor marker for EC [150]. High CHI3L1
immune reactivity is associated with poor prognosis in endometrial cancer patients, and
CHI3L1 also plays a role in angiogenesis and primary and metastatic tumors around tumor
blood vessels [151]. As early as 2011, Francescone et al. found that CHI3L1 can promote
glioblastoma angiogenesis and radioresistance [152], while Chen et al. found that silencing
CHI3L1 can inhibit the VEGF/VEGFR and ERK1/2 signaling pathways, further reducing
tumor angiogenesis and inhibiting tumor metastasis [153].

In addition, researchers transfected CHI3L1 siRNA into endometrial cancer cells
(HEC-1A), significantly inhibiting CHI3L1 expression and changing HEC-1A migration
and invasion potential, suggesting that combining CHI3L1 siRNA with other postoperative
chemotherapy may provide more effective treatment for EC patients, effectively preventing
postoperative recurrence [154]. Similar results were obtained in an experiment where
lentiviral siRNA transfected into HEC-1A and THP-1 cells significantly inhibited the
expression of two inflammatory factors, IL-8 and MMP-9, suggesting that macrophages
play an important immunomodulatory role in EC progression through CHI3L1 gene
silencing and its effects on inflammatory factors.

Inflammation and TAMs play important roles in many cancers, and their relation-
ship with disease progression is close. The relationship between CHI3L1, inflammatory
factors, and TAMs may be a potential therapeutic relationship chain, as the close con-
nection between CHI3L1 and TAMs has been found in many other diseases. Similar to
breast cancer, CAFs play an important role in regulating the tumor microenvironment
in EC, mainly by promoting tumor growth and metastasis through exosomes [155,156].
Researchers have found that the level of NEAT1 released by CAFs in EC is elevated, and
NEAT1 promotes tumorigenicity in vivo by regulating the miR-26a/b-5p–STAT3–CHI3L1
axis [157]. Targeting CHI3L1 as a therapeutic target for endometrial cancer is feasible. A
common CHI3L1 inhibitor, CHI3L1 neutralizing antibody, has been shown to significantly
inhibit angiogenesis and tumor growth [158,159] and promote tumor cell death in various
diseases [60]. Based on the important regulatory function of CHI3L1 in EC progression, the
screening and use of its related inhibitors are also extremely important. Further research is
needed to understand how CHI3L1 participates in the regulation of EC.

5.3. CHI3L1 and Colorectal Cancer

In colorectal cancer (CRC), there is a significant expression of CHI3L1 in serum. The
overexpression of CHI3L1 alters the tumor microenvironment, thereby enhancing the
metastatic potential and sensitivity to cetuximab in CRC [160–162]. Evaluation and analysis
of various biomarkers’ clinical potential in colorectal cancer patients have revealed that
CHI3L1 demonstrates a higher diagnostic value compared to mature miRNA levels in
serum (miRNA-576-3p, miRNA-613) and serum NDRG2 levels. In CRC patients, CHI3L1
exhibits an area under the curve (AUC) of 0.97, a specificity of 91.7%, a sensitivity of
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96%, and a p-value of 0.0001 [163]. Moreover, following liver resection surgery in CRC
patients, it has been observed that some patients experience early recurrence. There is a
correlation between high levels of CHI3L1 and IL-6 in serum and shorter overall survival.
This suggests that monitoring CHI3L1 levels is particularly beneficial for postoperative
detection and treatment of CRC patients [164,165].

Early detection of cancer can significantly improve treatment outcomes and patient
survival rates, while using CHI3L1 alone as a diagnostic marker for early detection of
CRC is not accurate. Therefore, for early diagnosis of colorectal cancer, the combination of
CHI3L1 with other markers is usually required to improve accuracy. Based on this, a team
has proposed the combined use of stanniocalcin 2 (STC2) and CHI3L1 as a detection method.
The combined use of both markers does not seem to alter the predictive performance of
STC2 when used alone but provides a new combination for marker utilization [166,167].

CHI3L1 is upregulated in CRC progression and plays a significant role in promoting
macrophage infiltration, angiogenesis, and the secretion of IL-8 and MCP-1 [34]. In CRC
tumor tissue, CHI3L1 is associated with the expression of MMP-8, IL17A, and PD-L1,
thereby influencing the tumor microenvironment [168]. Kawada et al. discovered that
CHI3L1 in CRC patients primarily originates from human colorectal cancer cells rather
than inflammatory cells. Additionally, CHI3L1 enhances the secretion of IL-8 and MCP-
1 in colon cancer cells through signaling mediators such as ERK and JNK [34]. These
findings suggest that CHI3L1 not only promotes tumor growth by stimulating cancer
cell proliferation but also facilitates it through macrophage recruitment and angiogenesis.
Elevated levels of CHI3L1 can increase the sensitivity of cetuximab by downregulating
p53 and upregulating EGFR, thereby promoting colorectal cancer cell proliferation. These
insights provide therapeutic guidance for the use of cetuximab [34,162,165,169].

Common genetic mutations often increase the risk of colorectal cancer (CRC). The
low-frequency coding variant rs3768 in SMAD7 has been found to increase the risk of
CRC in the Chinese Han population, while the intronic variant rs4464148 may also affect
the prognosis of CRC patients, which indicates the significant importance of the SMAD7
gene [170]. The CHI3L1 gene encodes a protein that regulates the production of TGF-β, and
SMAD7, as the most important negative regulator of TGF-β1 activity, is also regulated by
it. This genetic explanation sheds light on why CHI3L1 can contribute to the progression of
CRC [171].

Unfortunately, despite the early discovery of macrophage infiltration and functional
polarization in CRC, the physiological connection between the two remains elusive. Recent
studies have focused on the impact of CHI3L1 on the expression of downstream secretory
factors in macrophages, but there is no direct evidence demonstrating how they collab-
oratively promote CRC progression. In an in situ colon cancer model, treatment with
CHI3L1 antibodies significantly reduced the growth of primary tumors and suppressed
tumor metastasis to the liver [53]. Additionally, the CD31 signal was further reduced
in the antibody-treated group, indicating the involvement of CHI3L1 in CD31-mediated
disease physiology. These findings provide further hints about the relationship between
CHI3L1 and macrophages in CRC. However, the specific mechanisms still require further
elucidation by future researchers.

6. Conclusions

As a member of the chitinase protein family, CHI3L1 (YKL-40) has been found to be
significantly elevated in various diseases, such as liver fibrosis, endometrial cancer, and
asthma. In recent years, with further research, similar trends have been found in other
diseases, such as esophageal cancer, bladder cancer, allergies, and respiratory diseases. This
highlights the importance and necessity of CHI3L1 as a biomarker or therapeutic target.

There are many methods and developments for treating various diseases and cancers
including, but not limited to, photodynamic therapy, immunotherapy, radiotherapy, and
gene therapy. Immune therapy has many different applications, and immune checkpoint
inhibitors play an important role in regulating immune cell expression and modulating
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immune activation levels. In recent years, research on immune checkpoint blockade (ICB)
has made significant progress regarding cancer treatment. ICB uses therapeutic antibodies
to disrupt poorly functioning immune checkpoints and activate pre-existing immune
responses to achieve therapeutic or interference effects [172]. Antibodies targeting cytotoxic
T-lymphocyte antigen 4 (CTLA4) or PD-1–PD-L1 have been approved for use in various
cancers. While targeting other potential immune checkpoints, small molecules or antibodies
that disrupt negative regulation between tumor cells and T cells or between bone marrow
cells and T cells, such as LAG3, TIGIT, TIM3, B7H3, CD39, CD73, and Adenosine A2A
receptors, are in clinical trials [172].

Of course, the effect of immune checkpoint blockade is also affected by individual
patient factors (age, gender, genetic diversity, etc.), environmental factors, and inherent
factors in tumor stroma [173–175]. Previous studies have shown that CHI3L1 levels in the
bloodstream are significantly elevated in the progression of multiple tumors [22,76,176].
PD-L1, as a ligand–protein pair involved in immune suppression, has been observed to
have a close association with CHI3L1 [169]. The expression of CHI3L1 is positively corre-
lated with the expression of immune checkpoints such as CD274 (PD-L1) and HAVCR2
(LAG3) [52]. Knocking down CHI3L1 can regulate cell cycle inhibition, promote cancer
cell apoptosis, and enhance the pro-apoptotic effect of anti-PD-L1 antibodies in vitro and
in vivo in diffuse large B-cell lymphoma (DLBCL) [177]. This is consistent with another
study that demonstrated that blocking CHI3L1 enhances the therapeutic efficacy of anti-PD-
L1 treatment [178]. Ma et al. found that PD-L1 was spread in a CHI3L1-dependent manner,
meaning that CHI3L1 stimulates CD68 macrophages to produce PD-L1 through its receptor
IL-13Rα2. They developed and validated a bispecific antibody—FRG (CHI3L1 antibody) ×
anti-PD-1, which has significantly better therapeutic effects than the use of single antibodies
or the simple addition of two antibodies, with broad application prospects [60]. HA poten-
tially promotes macrophage recruitment and M1 polarization through the IL-2/CHI1L3
and TGF-b/CHI1L3 axes, while also regulating the expression of PD-L1 [44]. Another
study has demonstrated that CHI3L1 derived from M2 macrophages induces the expression
and secretion of growth differentiation factor 15 (GDF15). This, in turn, coordinates the
upregulation of PD-L1 through the activation of PI3K, AKT, and/or ERK pathways [179].
These findings support the close association between macrophage polarization, CHI3L1,
and PD-L1, consistent with the relationship between macrophages and CHI3L1 mentioned
earlier. However, given the complexity and diversity of diseases, further investigations
are needed to elucidate the specific physiological mechanisms underlying the interactions
between macrophages, CHI3L1, and PD-L1 in different diseases.

Various data indicate that CHI3L1 is a key regulatory factor in numerous diseases. It
participates in macrophage infiltration, M1/2 differentiation, Th1/2 activation, and the
release of proinflammatory and anti-inflammatory factors through classical signaling path-
ways such as JNK, ERK, MAPK, PI3K, STA3/6, and others. It also participates in influencing
disease progression, tumor development and metastasis, and vascular genesis (shown in
Figure 4). This article does not summarize all diseases that CHI3L1 participates in but lists
in-depth studies on several diseases, including atherosclerosis, breast cancer, endometrial
cancer, colorectal cancer, Alzheimer’s disease, and liver disease. Throughout the review
process, it was found that there is a close correlation between CHI3L1 and macrophages.

Most importantly, the use of CHI3L1 antibodies as a treatment direction seems feasible
and effective based on laboratory results. However, since most of the research is concen-
trated on mouse models, the actual use of antibodies still requires a long period of clinical
research evaluation.
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of M2 macrophages. This, in turn, leads to angiogenesis and tumor metastasis.
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