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Abstract: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique
genome editing tool that can be easily used in a wide range of applications, including functional
genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene
therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on
Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery
methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their
possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed
outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses
the future expansion of genome editors’ toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
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1. Introduction

Genome editing has taken a leading position among genome modification technologies
in a short time and is now widely used in gene therapy. To date, there are three main systems
for genome editing: zinc finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs), and CRISPR/Cas nucleases. Genome editing has been successfully
used in the field of functional genomics for the identification of the function of genes and
genetic elements that regulate gene expression and for deciphering the mechanisms of
cross-talk of gene function in the cell. In addition, programmable nucleases are often used
to validate human disease-associated genes and to create gene knockouts in a variety of cell
lines. Moreover, the ability to provide a complete knockout of genes that are not amenable
to RNA interference, another common method of functional genomics, can be considered
an important achievement of the use of programmable nucleases [1–3].

In addition to functional genomics, programmable nucleases have been successfully
used for cell screening, which allows the development of modified cell lines with inserted
promoters, labels, or reporter elements integrated into endogenous genes or intergenic
regions [4]. Often, programmable nucleases are used to develop and optimize cell lines
with desired properties, for example, superexpressors of recombinant proteins or antibodies
for biotechnological and pharmacological purposes [5,6].

Since 2009, when the first knockout rat was developed [7], programmable nucleases
have been successfully applied at the level of whole organisms, most often to establish
animal models of human diseases and to improve plant varieties and breeds of farm
animals [8–13].

Scientific interest in programmable nucleases has only been growing in the last decade,
and most often there are scientific papers devoted to the development and study of
CRISPR/Cas9 nucleases (Figure 1). Last year marked 10 years since the development
of CRISPR/Cas9 as a genome editing tool, and Jennifer Doudna and Emmanuelle Char-
pentier were awarded the 2020 Nobel Prize in Chemistry for discovering one of gene
technology’s sharpest tools: the CRISPR/Cas9 genetic scissors.
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Figure 1. The number of articles in PubMed® (https://pubmed.ncbi.nlm.nih.gov/, accessed on
5 September 2023) with search terms “CRISPR Cas9”, “TALEN”, and “zinc finger nuclease”.

Finally, programmable nucleases are used to develop therapeutic drugs. In 2009, the
first clinical trial, NCT00842634 (https://clinicaltrials.gov/study/NCT00842634, accessed
on 5 September 2023), of a candidate therapeutic drug based on zinc finger nucleases was
initiated; in 2016, based on CRISPR/Cas (NCT02793856-https://clinicaltrials.gov/study/
NCT02793856, accessed on 5 September 2023, NCT02867345-https://clinicaltrials.gov/
study/NCT02867345, accessed on 5 September 2023, NCT02863913-https://clinicaltrials.
gov/study/NCT02863913, accessed on 5 September 2023, and NCT02867332-https://
clinicaltrials.gov/study/NCT02867332, accessed on 5 September 2023); and in 2017-based
on TALENs (NCT03226470-https://clinicaltrials.gov/study/NCT03226470, accessed on
5 September 2023).

To date, 130 genome editing clinical trials are mentioned on the CRISPR Medicine
News website (https://crisprmedicinenews.com/clinical-trials/, accessed on 5 September
2023). Of them, ~50% are clinical trials of CRISPR/Cas9-based therapeutics (Figure 2).
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From the very beginning, the CRISPR/Cas9-based therapeutic approach was the most
promising. 10 years seems like a short time in the innovative drug discovery process, but
CRISPR-based therapies have made significant progress. For the first five years, researchers
have been modifying existing CRISPR/Cas9 proteins to achieve increased genome editing
efficiency and reduced off-target activity and developing CRISPR for clinical use for the
first time. Over the next five years, new CRISPR/Cas proteins with different capabilities
were discovered and developed, the CRISPR toolbox expanded, and the first CRISPR/Cas9
trials were conducted, sometimes with amazing results.

In this review article, we will focus on the current CRISPR/Cas9 landscape. We will
discuss Cas9 variants with improved efficacy and specificity, Cas9 S. pyogenes nickases
and catalytically inactive Cas9 S. pyogenes (dCas9), Cas9-derived proteins such as base
editors, prime editors, dCas9-based imaging tools, Cas9-based transcription repressors and
activators, and Cas9-fusion proteins such as Cas-CLOVER and Cas-FokI. Moreover, we will
talk about CRISPR/Cas9 delivery methods, pre-existing immunity against CRISPR/Cas9
proteins, anti-CRISPR proteins, and their possible role in CRISPR/Cas9 efficacy improve-
ment. We will discuss CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally,
we will address future perspectives on CRISPR/Cas9 genome editing and the expansion of
genome editors’ toolboxes with Cas9 orthologs, other CRISPR/Cas proteins, and recently
described Fanzor enzymes.

2. Cas9 S. pyogenes—The Most Widely Used Cas9 Nuclease

Nowadays, Cas9 from S. pyogenes (SpCas9 or SpyCas9) is the most common, well-
known multi-domain CRISPR/Cas effector protein widely used for genome editing. Spy-
Cas9 is an RNA-dependent DNA endonuclease consisting of two nuclease domains—RuvC
and HNH, which are responsible for inducing a double-strand break in the target DNA
sequence. Different types of guide RNA (gRNA) are used for SpyCas9-specific targeting.
For example, the guide RNA can represent a complex of CRISPR RNA (crRNA) responsible
for specific recognition of the target sequence and trans-activating CRISPR RNA (tracr-
RNA) responsible for the binding of the enzyme and essential for pre-crRNA processing.
In addition, the guide RNA can be a single guide RNA (sgRNA), which combines crRNA
and tracrRNA in a single molecule [14].

The off-target activity of SpyCas9 still remains a problem, as Cas9 can edit a DNA-
target carrying up to five mismatches with its guide RNA [15–17]. This off-target effect
has been extensively analyzed by various in vitro and in vivo approaches [18–20], and
the criteria for specificity of the SpyCas9 system can be described as follows: (1) In most
cases, the system cannot recognize a DNA site carrying more than three mismatches;
(2) the CRISPR/Cas9 system cannot recognize and edit a DNA site with any number of
mismatches adjacent to protospacer adjacent motif–PAM (within 10–12 bp); (3) the higher
the concentration of the CRISPR/Cas9 complex, the higher the likelihood of non-specific
activity; (4) some 5′-NAG-3′-PAM sites can be targeted by the CRISPR/Cas9 system in
bacteria and in vitro experiments, but Cas9 has a much lower affinity for NAG-PAM than for
NGG-PAM. In addition, next-generation sequencing-based methods such as genome-wide,
unbiased identification of double-strand breaks enabled by sequencing (GUIDE-seq) [21],
digested genome sequencing (Digenome-seq) [22], and Chromatin Immunoprecipitation
Sequencing (ChIP-seq) [23] can identify non-target sites for the CRISPR/Cas9 system. These
high-throughput assays have confirmed that Cas9 has off-target activity, and careful guide
RNA design is necessary to reduce the risk of the off-target activity of Cas9.

The approaches used to diminish off-target effects include engineering SpyCas9
variants with improved efficacy and specificity [15,24–41], using SpyCas9 nickases [35],
base [42–51] and prime editors [52–54], Cas-CLOVER [55–57], and Cas-FokI [41,58–62]. As
well, SpyCas9 off-target activity can be reduced through optimization and/or modula-
tion of gRNA design [63–71] and combination with anti-CRISPR proteins or CRISPR
inhibitors [72–75]. Moreover, Cas9 orthologs with high specificity can be used instead of
SpyCas9 [76,77].
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3. Cas9 Variants with Improved Efficacy and Specificity

The problem of nonspecific editing is being solved by constructing (engineering) new
variants of S. pyogenes Cas9 [15,24–41]. Improved SpCas9 variants were generated using both
methods of directed evolution (i.e., random mutagenesis combined with high-throughput
screening) and structure- and/or function-guided protein engineering approaches.

Besides the high-fidelity SpCas9 variants, other Cas9 proteins, such as Staphylococcus
aureus Cas9 (SaCas9), with different PAM requirements, were developed. SaCas9 has com-
parably high activity in eukaryotic cells [78–80] and has a more compact size (1053 amino
acids for SaCas9 versus 1368 amino acids for SpCas9). Several high-fidelity SaCas9 variants
were constructed. All these variants possessed high on-target activities and comparable
specificity at most off-target loci [27,28,32,39]. Also, high-fidelity SaCas9 variants with
PAM-altered or -relaxed mutations were reported [81–83].

All the Cas9 variants mentioned above are listed in the table below (Table 1) and form
a versatile toolbox of high-fidelity Cas9 proteins. But still, more Cas9 variants with both
high fidelity and activity need to be designed and investigated for further therapeutic
applications in vivo.

Table 1. CRISPR/Cas9 improved variants.

Name Key Features Reference

Cas9 variants engineered using random mutagenesis combined with high-throughput screening

Sniper-Cas9

Sniper-Cas9 showed much higher on-target activities and comparable
specificity at most off-target loci when compared with other engineered
high-fidelity SpCas9 variants such as SpCas9-HF1, HypaCas9, evoCas9,
and eSpCas9(1.1). However, Sniper-Cas9 showed stronger tolerance to
single mismatches in the PAM-distal region (e.g., 16th, 18th, and 19th).

Sniper-Cas9 showed on-target activities with extended or truncated
sgRNAs and worked well in a preassembled ribonucleoprotein (RNP)

format to allow DNA-free genome editing

[33]

HiFi Cas9 HiFi Cas9 (R691A variant) demonstrated the highest on-target activity
(82%) in the RNP format compared to other improved Cas9 variants [30]

xCas9

Cas9 variant with expanded PAM compatibility (xCas9 can recognize a
broad range of PAM sequences, including NG, GAA, and GAT). xCas9
demonstrated lower genome-wide off-target activity at all NGG target

sites, as well as minimal off-target activity when targeting genomic
sites with non-NGG PAMs

[38]

SpartaCas

SpartaCas (D23A, T67L, Y128V, and D1251G variants) had reduced
off-target events while maintaining high on-target editing in T-cells.

The editing efficiency of SpartaCas was slightly reduced when
compared to wild-type Cas9, but it demonstrated dramatically higher

editing efficiency when compared to SpCas9-HF4 and eCas9

[34]

efSaCas9

efSaCas9 (N260D variant) is a high-fidelity, high-activity variant that
could be harnessed for safe and reliable genome editing. efSaCas9

demonstrated dramatically reduced off-target effects (approximately 2-
to 93-fold improvements) compared to wild-type SaCas9

[28]

Cas9 variants engineered using a structure- and/or function-guided protein engineering approach

SpCas9-D1135E

SpCas9-D1135E possessed genome-wide specificity and demonstrated
reduced off-target effects. The D1135E mutant was able to better

discriminate between NGG and NGA PAMs compared with wild-type
SpCas9. Moreover, it had decreased activity against non-canonical

NAG, NGA, and NNGG PAMs relative to wild-type SpCas9

[25]
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Table 1. Cont.

Name Key Features Reference

eSpCas9
eSpCas9 variants, also known as “enhanced specificity”, SpCas9

showed reduced off-target effects and maintained robust on-target
cleavage.

[27]

SpCas9-HF1 (and -HF2,
-HF3, -HF4)

SpCas9-HF are high-fidelity SpCas9 variants harboring alterations
designed to reduce non-specific DNA contacts. SpCas9-HF retained

on-target activities comparable to wild-type. SpCas9-HF rendered all
or nearly all off-target events undetectable, even for atypical, repetitive

target sites

[24]

HypaCas9

HypaCas9 (N692A, M694A, Q695A, and H698A variants) exhibited
dramatically improved genome-wide specificity compared to wild-type

SpCas9 and showed equivalent or better genome-wide specificity
relative to both SpCas9-HF1 and eSpCas9 variants

[31]

SuperFi-Cas9

SuperFi-Cas9 was able to discriminate between on- and off-target
substrates without compromising DNA cleavage efficiency, but a recent

study showed that it had significantly reduced on-target activity in
mammalian cells

[36,84]

LZ3 Cas9

The LZ3 Cas9 variant is known to exhibit high activity, increased
specificity, and a differential +1 insertion profile as compared to

wild-type SpCas9. Further rational engineering of LZ3 Cas9 might
provide novel opportunities for non-templated correction of

disease-causing frameshift mutations in the human population

[37]

eSaCas9

eSaCas9 is a high-fidelity version of SaCas9 obtained by weakening
interactions between Cas9 and the target DNA. eSaCas9 demonstrated
high on-target activities and comparable specificity at most off-target

loci

[27]

SaCas9-HF
SaCas9-HF showed high genome-wide targeting accuracy without

compromising on-target efficiency, as validated by rigorous evaluation
of its on- and off-target activities across multiple endogenous sites

[32]

KKH-SaCas9-SAV1 (and
-SAV2)

KKH-SaCas9-SAV1 and SAV2 are SaCas9 variants that exhibited low
off-target and high on-target activities and revealed a pivotal role of the

previously unreported Y239H substitution in determining target
accuracy while maintaining the activity of KKH-SaCas9

[39]

Cas9 variants engineered using directed evolution combined with structure-guided modeling

evoCas9

EvoCas9 is a variant that has fidelity exceeding both wild-type (79-fold
improvement) and rationally designed Cas9 variants (4-fold average
improvement), while maintaining near-wild-type on-target editing

efficiency (90% median residual activity)

[29]

SaCas9-Q414A The Q414A variant of SaCas9 exhibited even higher fidelity than the
N260D variant of SaCas9 while retaining the most on-target activity [28]

Cas9-based fusion proteins with improved properties

miCas9

Cas9 variant with improved homology-directed repairing capacity
(2.5-fold higher). To improve Cas9’s homology-directed repair capacity,

SpCas9 was fused to a minimal motif consisting of thirty-six amino
acids (Brex27 motif)

[40]

Cas9-pDBD

Fusing a programmable DNA-binding domain (pDBD) to Cas9
combined with the attenuation of Cas9’s inherent DNA binding affinity
produced a Cas9-pDBD chimera with dramatically improved precision

and increased targeting range

[85]
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Table 1. Cont.

Name Key Features Reference

Cas-Cas9 chimeras

RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease
formats, were designed as versatile genome engineering systems. In

both formats, Cas9-Cas9 fusions displayed an expanded targeting
repertoire and achieved highly specific genome editing. Dual-nuclease

Cas9-Cas9 chimeras had higher target site activity and generated
predictable, precise deletion products between target sites

[86]

4. Cas9 S. pyogenes Nickases

By introducing mutations into one of the two SpyCas9 nuclease domains, researchers
developed SpyCas9 nickases. The D10A mutation inactivates the RuvC nuclease domain,
so this nickase only cleaves the target strand (which is complementary to sgRNA). On
the other hand, the H840A mutation in the HNH–nuclease domain cleaves the second
strand [87]. The main feature of nickase is that it introduces a single-strand break in the
DNA. It has been shown that genome editing with the simultaneous use of two guide RNAs
and SpyCas9 nickase reduces the likelihood of nonspecific editing. As single-strand breaks
are usually rapidly repaired by homologous recombination with an intact complementary
template DNA strand, the off-target effects of SpyCas9 nickases are minimized [35].

Cas9 nickases introduce tandem single-strand DNA breaks at target loci and, together
with exogenous donor DNA templates, foster seamless and scarless genome editing through
homology-mediated end joining (HMEJ). SpyCas9D10A nickase does not trigger p53
signaling in human iPSCs, which makes it a fitting tool for the genomic engineering of cells
with high sensitivity to DNA damage, e.g., pluripotent and tissue-specific stem cells [88].

In 2021, the existing Cas9 nickase toolkit was enlarged by the conversion of a panel
of Cas9 nucleases with enhanced specificities, i.e., SpCas9-KA [27], SpCas9-KARA [27],
eSpCas9 (1.1) [27], Sniper-Cas9 [33], SpCas9-HF1 [24], evoCas9 [29], and xCas9-3.7 [38],
into Cas9 nickases [89]. These high-specificity Cas9 nickases are capable of distinguishing
highly similar sequences and preserving genomic integrity, as demonstrated by unbiased
genome-wide high-throughput sequencing assays [89].

The existing CRISPR/Cas9 nickase toolkit expands the range and precision of DNA
knockout and knock-in procedures. CRISPR/Cas9 nickases may help to develop novel high-
specificity genome editing therapeutic strategies with improved predictability and safety.

5. Catalytically Inactive Cas9 S. pyogenes (dCas9) and Its Derivatives
5.1. dCas9 S. pyogenes

In 2013, Qi et al. performed mutagenesis in the catalytic nuclease domains of the
Cas9 protein from S. pyogenes. As a result, two mutations were introduced: H840A in
the HNH domain and D10A in the RuvC domain of Cas9. Thus, a catalytically inactive
Cas9 protein, also called “dead Cas9” or dCas9 null mutant, was obtained [90]. dCas9 is
unable to cleave target DNA but retains the ability to RNA-mediated (sgRNA) target DNA
sequence binding with the same precision as catalytically active Cas9. Unlike Cas9, dCas9
does not cause irreversible changes in the genome but only affects the transcription of the
target site, which leads to reversible gene silencing.

dCas9 bound to a target site causes steric hindrance, which interferes with the normal
functioning of the transcription apparatus. This effect underlies a method called CRISPR
interference (CRISPRi). CRISPRi provides a simplified approach for rapid gene repression
that can be used in a wide variety of organisms and can be adapted for high-throughput
interrogation of genome-wide gene functions and genetic interactions [91]. CRISPRi re-
pression efficiency is rather high (up to 1000-fold) with no detectable off-target effects [92].
It works quite well in bacterial, yeast, and other prokaryotic cells but is less effective at
suppressing gene expression in mammalian cells [93]. What is more, CRISPRi can be easily
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scaled up for the simultaneous repression of many genes using multiple designed guide
RNAs [94].

As CRISPRi-mediated genetic screens have the potential to address basic questions in
cell biology, genetics, and biotechnology, sgRNA libraries are established to enable strong
and consistent knockdown across mammalian cell lines [95]. Moreover, the CRISPRi system
can be fine-tuned to regulate gene expression at a certain level between fully-repressing
and non-repressing states (>45-fold) to optimize processes in metabolic engineering and
synthetic biology [96].

Using dCas9 itself as a transcription repressor was just the beginning. Soon after,
researchers began creating chimeric dCas9s with the effector domains of repressor or
activator proteins to exploit dCas9’s targeting capabilities for reversible gene activation,
epigenomic editing, and more. Whether it’s a promoter region, a regulatory region, or a
coding region, scientists can use dCas9 as a modular scaffold to easily attach an effector,
allowing control of any gene without introducing irreversible DNA-damaging mutations.

5.2. dCas9-Based Transcription Repressors

Limitations in the use of CRISPRi led to the development of the dCas9-KRAB system,
in which dCas9 is fused with a functional KRAB (Krüppel-associated box) transcriptional
repressor domain [93]. This system mediates transcriptional repression through the ability
of KRAB to recruit a diverse set of histone modifiers that reversibly suppress gene expres-
sion through the formation of heterochromatin. Using this system, a 60–80% reduction
in the expression of highly specific eukaryotic genes was achieved during transient trans-
fection [93]. In addition, dCas9-KRAB, stably integrated into the genome in HeLa cells,
caused a stable 5–10-fold repression of genes and promoter regions [93], and a 100-fold
effect was observed when the target site was located at 50–100 bp downstream of the tran-
scription start site [90]. The presence of dCas9-KRAB also had no effect on cell growth or
viability [97]. What is more, the dCas9-KRAB repressor can be induced by adding abscisic
and gibberellic acids [98], and doxycycline [99,100].

Unlike other classical approaches to gene inactivation, such as RNA interference, the
dCas9-KRAB system provides reversible inhibition at the DNA level [101]. This provides
highly specific gene repression as well as inhibition of non-coding RNAs, microRNAs,
antisense transcripts, and nuclear-localized RNAs [93].

dCas9-based repression is a powerful platform for silencing gene expression, but it
suffers from incomplete silencing of target genes; therefore, novel highly efficient repressors
had to be developed. In 2018, Nan Cher Yeo et al. showed that dCas9 tandemly fused
with KRAB-MeCP2 demonstrated improved gene silencing when compared to dCas9-
KRAB [102]. Later, the dCas9-KRAB toolkit was expanded with 57 KRAB domains with
different potencies. The ZIM3 KRAB domain was identified as an exceptionally potent
repressor that silences gene expression more efficiently than existing platforms [103]. It
should be mentioned that ZIM3-dCas9 provides an excellent balance between strong on-
target knockdown and minimal non-specific effects on cell growth or the transcriptome [95].
Recently, dCas9-SALL1-SDS3 was shown to significantly improve CRISPR-mediated re-
pression compared to dCas9-KRAB and dCas9-KRAB-MeCP2. dCas9-SALL1-SDS3 exhibits
higher levels of target gene repression while retaining high target specificity [104].

What is more, dSaCas9-KRAB repressors expand the CRISPR/Cas9 toolbox for basic
research and gene therapy applications [105], and dCas9-SRDX repressors are used for
silencing gene expression in plants [106–108].

dCas9-based transcription repressors allow researchers to selectively block the expres-
sion of target genes in their natural chromosomal context. In combination with sgRNA
libraries, dCas9-based transcription repressors can be easily used for large-scale functional
genome screening studies.
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5.3. dCas9-Based Transcription Activators

To endow dCas9 with the ability to activate genes, dCas9 was fused to classical
transcription activators such as VP64 (a synthetic tetramer of the herpes simplex virus
16 protein) or p65 (a transcription factor involved in many cellular processes). Although
these systems have demonstrated the ability to activate gene transcription in a variety of
eukaryotic cells, only moderate activation (2- to 5-fold) has been achieved [109].

In order to increase the degree of activation, a system of synergistic activation me-
diators (SAM) was developed [110]. This system is based on dCas9-VP64 but includes
modified sgRNA able to recruit additional transcriptional activators to achieve a synergistic
activation effect. This modified sgRNA contains two hairpin RNA aptamers that bind
dimers of bacteriophage MS2 coat proteins. Fusion of bacteriophage MS2 coat proteins
with additional activators such as p65 and human heat shock factor 1 (HSF1) results in the
recruitment of 13 activating molecules per dCas9 molecule. This novel dCas9-SAM system
can reliably enhance gene expression from 10- to several thousand folds, depending on the
level of basal expression [109].

Another dCas9-based system for transcription activation uses a novel protein scaffold,
a repeating peptide array termed SunTag, which can recruit multiple copies of VP64. This
system allows for strong activation of endogenous gene expression [111,112]. To further
improve the efficiency of dCas9-based transcription activators, the dCas9-SPH (SPH stands
for SunTag with p65-HSF1) platform was established [113].

Church and colleagues developed a system that consists of a combination of three
activators, VP64, p65, and RTA, the so-called dCas9-VPR system [114]. Effective activation
with dCas9-VPR does not require the use of aptamer-modified sgRNA, greatly simplifying
the development process. The degree of gene activation achieved through the use of the
proposed system was comparable to that using dCas9-SAM [115].

dCas9-based transcription activators can become an indispensable tool in the devel-
opment of therapeutic drugs for genetic screening and transcriptional manipulation of
endogenous and synthetic genetic sequences in various cell types [92,115]. Researchers are
already using the dCas9-SAM system to activate human immunodeficiency virus 1 (HIV-1)
transcription to induce apoptosis and subsequent destruction of infected cells, as well
as to induce transcription of HIV-1 proviral DNA integrated into the genome of cellular
reservoirs for its complete elimination [116,117].

Moreover, dCas9-VPR can be used to develop novel, attractive gene therapies for
inherited disorders caused by mutations in disease-causing genes that possess functionally
equivalent counterparts. dCas9-VPR is used to transcriptionally activate the appropriate
counterpart(s) to compensate for the missing gene function. The main advantage of such
an approach is that it is mutation- and gene-size-independent, unlike conventional gene
therapies [118].

dCas9-based transcription activators [119] are simple tools that allow researchers to
selectively activate the expression of target genes in their natural chromosomal context.
When combined with a sgRNA library, dCas9-based transcription activators can be used
for large-scale functional screening studies, making them a powerful tool for studying
biological processes and signaling pathways.

5.4. dCas9-Mediated Epigenetic Editing

It is well known that the phenotype can be influenced to varying degrees by epige-
netic modifications, which include modifications of both nucleosomes and the DNA itself.
Epigenetic regulation affects the structure of regions of chromatin, either compressing
it into a compact and transcriptionally inactive state (heterochromatin) or opening it for
expression (euchromatin). Years of effort in functional genomics have mapped and charac-
terized millions of epigenetic regulatory elements in a variety of tissues and cell types, but
current methods for studying each locus are labor-intensive, expensive, and can be toxic
to living cells. To study the epigenome, chimeric dCas9s with different effector domains
were generated.
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Histone acetylation is one of the most powerful systems that enhances gene expression.
Hilton et al. developed the dCas9-p300 system, which allows direct modification of the
chromatin state involved in a wide range of cellular pathways and processes [120]. In this
system, dCas9 is combined with the catalytic domain of the human E1A-associated protein
p300, a key component that acetylates histones. dCas9-p300 successfully activates gene
expression when targeting coding or regulatory regions, demonstrating its effectiveness as
a transactivator of downstream genes [120]. Activation ranges from 50- to 10,000-fold when
targeting promoters or enhancers and is highly specific, as confirmed by transcriptome
profiling [120]. dCas9-p300 uses mammalian p300, so it has minimal immunogenicity
potential, making it attractive for in vivo applications. Recently, dCas9-p300 was used to
facilitate human foreskin fibroblast transdifferentiation into Leydig-like cells to treat male
hypogonadism [121]. Interestingly, dCas9-p300 is able to increase histone acetylation at the
enhancer region of the activity-regulated cytoskeleton-associated protein (Arc) immediate-
early gene, known as synaptic activity response element (SARE), normalizing deficits in
Arc expression, leading to attenuation of adult anxiety and excessive alcohol drinking in a
rat model of adolescent alcohol exposure [122].

dCas9-LSD1 is a gene repression system in which dCas9 is combined with lysine-
specific histone demethylase 1 (LSD1). dCas9-LSD1 has the ability to repress downstream
genes by targeting the distal enhancer region of a gene but not its promoter, making
dCas9-LSD1 a promising tool for studying the regulatory activity of enhancers [123,124].

The dCas9-TET1CD system is capable of editing the epigenome through targeted
demethylation. In this system, catalytically inactive Cas9 is combined with the catalytic
domain (CD, catalytic domain) of the protein TET1 (Tet Methylcytosine Dioxygenase 1),
an enzyme that triggers DNA demethylation. The guide RNA can be further modified
to recruit bacteriophage MS2 coat proteins, which additionally carry two more TET1CD
modules each. Such a system has demonstrated the ability to increase transcription across
an array of genes in a locus-specific manner with little off-target variation in different
human and mouse cell lines [125]. The dCas9-TET1CD system was successfully used for
epigenetic editing in the promoter region of the tumor suppressor gene BRCA1, whose
excessive repression through hypermethylation is associated with the occurrence of breast
and ovarian cancer [126]. Also, the dCas9-TET1CD demethylation system can target
spontaneous epialleles in Arabidopsis, leading to methylation reduction and being stably
inherited in the progeny. These findings may give rise to future research on spontaneous
epialleles in other crops and also broaden ideas for future crop breeding [127].

dCas9-DNMT3A (DNA methyltransferase 3 alpha), developed by Vojta et al., com-
bines, via a flexible glycine-serine linker (Gly4Ser), dCas9 with the catalytic domain of
DNMT3A, an active DNA methyltransferase that is capable of methylating CpG sites
in vivo. dCas9-DNMT3A was shown to successfully induce site-specific CpG methyla-
tion distal and proximal to the promoter, with the highest methylation activity (60%) at
27 bp below the PAM sequence. When multiple guide RNAs were used, the effect of
dCas9-DNMT3A was synergistic. dCas9-DNMT3A has also been used to directly methy-
late the promoters of tumor suppressor genes, the hypermethylation of which has been
correlated with the occurrence of several types of cancer [128]. In 2022, it was shown that
targeted methylation of the amyloid precursor protein gene via dCas9-DNMT3A can be a
potential therapeutic strategy for Alzheimer’s disease [129]. To improve dCas9-DNMT3A
activity, a modular dCas9-SunTag-DNMT3A epigenome editing system was developed.
dCas9-SunTag-DNMT3A overcomes the pervasive off-target activity of dCas9-DNMT3A
constructs [130].

In 2021, a programmable epigenetic memory writer consisting of a single catalytically
inactive Cas9 fusion protein that establishes DNA methylation and repressive histone
modifications named CRISPRoff was presented. The main advantages of CRISPRoff are
(i) its ability to silence most genes, including those without CpG islands; (ii) its high
specificity and broad targeting window across gene promoters; and (iii) its persistence of
epigenetic memory through the differentiation process [131].
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dCas9-fusion proteins for transcriptional and epigenetic regulation are extremely
diverse (see Table 2 below) and allow mapping the complex relationships between the
epigenome, regulatory elements, and target gene expression in functional genomics studies.
The use of such tools in combination with guide RNA libraries may provide a high-
throughput and systematic way to identify all enhancers and suppressors associated with
genes of interest and study enhancer (suppressor)-gene interactions. Also, these tools will
aid in the investigation of the role of DNA methylation in gene expression regulation in
specific genomic contexts. Such systems could also be used to restore the functional activity
of other tumor suppressor genes needed to fight cancer and other diseases.

Table 2. dCas9-fusion proteins for transcriptional and epigenetic regulation.

Action Name Function Reference

Transcription repression

dCas9 (CRISPRi) Steric hindrance [92–96]

dCas9-KRAB, dSaCas9-KRAB Histone methylation and
deacetylation [90,93,97–101,105]

dCas9-KRAB-MeCP2 Represses transcription from
methylated promoters via binding [102]

ZIM3-dCas9 Histone methylation and
deacetylation [95,103]

dCas9-SALL1-SDS3 Histone deacetylation [104]

dCas9-SRDX Transcriptional repressor domain (in
plants) [106–108]

Transcription activation

dCas9-VP64 Transcriptional activator [109]

dCas9-SAM Multiple copies of transcriptional
activators [109]

dCas9-SunTag Multiple copies of transcriptional
activators [111,112]

dCas9-SPH Multiple copies of transcriptional
activators [113]

dCas9-VPR Combination of three transcriptional
activators [114,115]

Epigenetic repression

dCas9-LSD1 Histone demethylation [123,124]

dCas9-DNMT3A DNA methylation [128]

dCas9-SunTag-DNMT3A DNA methylation (multiple copies) [130]

CRISPRoff

DNA methylation, histone
methylation, and deacetylation

(contains ZNF10 KRAB, DNMT3A,
and DNMT3L protein domains)

[131]

Epigenetic activation
dCas9-p300 Histone acetylation [120]

dCas9-TET1CD DNA demethylation [125]

5.5. dCas9-Based Imaging Tools

In addition to epigenetic editing applications, catalytically inactive Cas9 fused to a
fluorescent marker such as green fluorescent protein (GFP) can be used to visualize genomic
loci in living cells in vitro as well as in vivo. To enhance the effect of fluorescent labeling
during the visualization of target loci in the dCas9-GFP system, guide RNAs with aptamers
that can attract specific RNA-binding proteins labeled with fluorescent proteins can be
used. Compared to techniques such as fluorescent in situ hybridization (FISH), CRISPR
imaging offers a unique method for determining chromatin dynamics in living cells [132].
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The CRISPR imaging system can be used to dynamically track repetitive and non-
repeated genomic loci, as well as to stain chromosomes in living cells. Visualization of a
specific genomic locus requires attracting multiple copies of labeled proteins to the selected
region. For example, chromosome-specific repeated loci can be efficiently visualized in
living cells using a single guide RNA that has multiple target sequences in close proximity.
Whereas a non-repetitive genomic locus can be tagged by the simultaneous delivery of
multiple guide RNAs that “overlap” the target locus completely. Chromosome staining
requires the delivery of hundreds of guide RNAs with target sites distributed throughout
the chromosome [133–136].

CRISPR imaging can be multicolored and allows simultaneous tracking of multiple
genomic loci in live cells and in vivo. One method uses orthologous dCas9s labeled with
different fluorescent proteins [137]. Alternatively, guide RNAs containing aptamers specific
to orthologous RNA-binding proteins with various fluorescent proteins (CRISPRainbow)
can be used [133]. The CRISPR-Sirius technology for imaging genomic loci allows modifi-
cation of guide RNAs with eight different aptamers, providing better stability and signal
amplification for imaging [138].

The Casilio system is another CRISPR/Cas9-based system for multiplexed genome
locus imaging. Casilio consists of catalytically inactive Cas9, sgRNA appended with
one or more PUF-binding site(s), and Pumilio RNA-binding protein with a conserved
Pumilio/FBF (PUF) RNA-binding domain that is programmable to bind a specific 8-mer
RNA sequence (PUF-binding site). The PUF domains of the Casilio system can be easily
programmed to recognize any 8-mer RNA motifs, so this greatly expands the potential
number of independent Casilio modules that can be simultaneously delivered into a cell,
and each can operate at their defined target sites with independent function. What is more,
extensive multimerization of PUF fusions on sgRNA containing PUF-binding site leads to
a localized concentration of effectors or protein tags (i.e., fluorescent proteins), which is
beneficial for fluorescent imaging [139].

The main advantage of CRISPR/Cas9-based imaging systems is that they can easily
be re-targeted to genomic loci of interest. CRISPR/Cas9-based imaging systems may
become a powerful tool for studying gene function and chromosome structure, significantly
improving the capacity to study the conformation and dynamics of native chromosomes in
living human cells [134,139].

5.6. dCas9-Based Methods for Isolation of Genomic Loci

The identification of molecules associated with a region of interest in the genome
in vivo is important for understanding the functions of the locus. Using dCas9, researchers
have improved chromatin immunoprecipitation (ChIP) technology to allow purification of
any genomic sequence targeted by guide RNA [140–142].

The enChIP technology (engineered DNA-binding molecule-mediated chromatin
immunoprecipitation) involves the use of catalytically inactive Cas9 to purify genomic
DNA associated with a guide RNA. The epitope tag(s) used for isolation may be fused
either with dCas9 or with the guide RNA. Various epitopes, including 3×FLAG, PA, and
biotin tags, can be used for enChIP. In addition, antibodies specific for Cas9 can be used to
isolate target genomic regions with dCas9. The dCas9-bound locus is isolated by affinity
purification according to the epitope used [140–145].

Once a target genomic locus has been isolated, all molecules associated with it can be
identified using mass spectrometry (used for identification of proteins), RNA sequencing
(used for identification of RNAs), and next-generation sequencing (used for identification
of DNAs) [142,146–148].

Compared to conventional methods used to isolate target genomic loci, CRISPR-based
purification methods are simpler and allow direct identification of molecules associated
with a genomic region of interest in vivo.
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6. Base Editors

Two classes of DNA base editors–cytosine base editors (CBEs) and adenine base
editors (ABEs)–can be used to introduce single-base changes to DNA without introducing
double-strand breaks [42–44,149–152].

CBEs are created by combining Cas9 nickase or catalytically inactive Cas9 with a
cytidine deaminase, such as APOBEC (apolipoprotein B mRNA editing enzyme, catalytic
polypeptide). CBEs target the desired DNA locus using a guide RNA and can convert
cytidine to uridine in a short distance near the PAM site. Subsequently, uridine is repaired
to thymidine by the base excision repair mechanism, creating a C to T substitution (or G to
A in the complementary strand) [45–47].

ABEs have been designed to convert adenosine to inosine, which is repaired by the
cell to guanosine, creating an A to G substitution (or T to C in the complementary strand).
Like cytosine base editors, the TadA (tRNA adenine deaminase) domain is combined with
the Cas9 protein to create the adenine base editor [48–51].

Both types of DNA base editors are available with several Cas9 variants, including
improved Cas9 variants and improved effector domain variants [51,153–156]. The tech-
nology has been improved by optimizing the expression of chimeric proteins, including
changes in the linker sequence between the Cas9 protein and the deaminase to customize
the editing region or by using chimeric proteins that increase product purity, such as a DNA
glycosylase inhibitor (UGI) or a bacteriophage-derived protein Mu (MuGAM) [157,158].

Although many base editors are designed to operate within a very narrow range in
the immediate vicinity of the PAM, some are capable of generating a wide range of single
nucleotide variants through the process of somatic hypermutation and over a wider editing
range, and therefore can be used for directed evolution [159].

Base editors, first reported in 2016 [43], are capable of efficient HIV-1 co-receptor
disruption in human T cells and hematopoietic stem progenitor cells [160]. What is
more, base editors offer an opportunity for spinal muscular atrophy genetic treatment
development [161,162] and for atherosclerotic cardiovascular disease treatment develop-
ment [163]. Four clinical trials of therapeutics based on CRISPR/Cas9 base editors are
mentioned on the CRISPR Medicine News website (https://crisprmedicinenews.com/
clinical-trials/ accessed on 5 September 2023): NCT05442346, NCT05456880, NCT05397184,
and NCT05398029.

NCT05442346 is a safety and efficacy evaluation study of γ-globin-reactivated au-
tologous hematopoietic stem cells manufactured using glycosylase base editors [164]
for the treatment of Thalassemia Major. The estimated study start date was 25 De-
cember 2023, but the recruitment was suspended due to the sponsors’ decision (https:
//classic.clinicaltrials.gov/ct2/show/NCT05442346, accessed on 5 September 2023).

NCT05456880 is a safety and efficacy evaluation of a single dose of autologous CD34+
base-edited hematopoietic stem cells (BEAM-101) to increase fetal hemoglobin (HbF) pro-
duction in patients with severe sickle cell disease (https://classic.clinicaltrials.gov/ct2
/show/NCT05456880, accessed on 5 September 2023). BEAM-101 (Beam Therapeutics
Inc., Cambridge, MA, USA) is manufactured using patient-derived hematopoietic stem
cells (HSC). HSCs are modified with specific gRNA and base-editor mRNA delivered by
electroporation. In preclinical studies, BEAM-101 has shown high levels of HSC editing
(over 90% of alleles edited), high and consistent levels of upregulation of HbF (over 60% of
total hemoglobin), and significant reductions in the disease-causing protein HbS (less than
40% of total hemoglobin)—levels that are similar to those of sickle cell trait carriers who do
not have sickle cell disease [165,166].

NCT05397184 is a phase 1 study of base-editing CAR7 T cells to treat T cell malignan-
cies. The actual study start date is 19 April 2022, and the estimated study completion date
is 28 February 2025 (https://classic.clinicaltrials.gov/ct2/show/NCT05397184, accessed
on 5 September 2023).

NCT05398029 is an open-label, Phase 1b, single-ascending dose and optional re-dosing
study to evaluate the safety of VERVE-101 administered to patients with heterozygous

https://crisprmedicinenews.com/clinical-trials/
https://crisprmedicinenews.com/clinical-trials/
https://classic.clinicaltrials.gov/ct2/show/NCT05442346
https://classic.clinicaltrials.gov/ct2/show/NCT05442346
https://classic.clinicaltrials.gov/ct2/show/NCT05456880
https://classic.clinicaltrials.gov/ct2/show/NCT05456880
https://classic.clinicaltrials.gov/ct2/show/NCT05397184
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familial hypercholesterolemia, atherosclerotic cardiovascular disease, and uncontrolled
hypercholesterolemia (https://classic.clinicaltrials.gov/ct2/show/NCT05398029, accessed
on 5 September 2023). VERVE-101 consists of an adenine base editor mRNA (licensed from
Beam Therapeutics Inc.) and an optimized guide RNA targeting the PCSK9 gene packaged
with engineered lipid nanoparticles. Inactivation of the PCSK9 gene has been shown to
up-regulate LDL receptor expression, which leads to lower LDL-C levels, thereby reducing
the risk of a life-threatening genetic subtype of atherosclerotic cardiovascular disease [167].

Despite their youth, base editors are widely used by both academic laboratories
and therapeutic-based companies. Of course, base editors have their limitations, but
improvements were made to overcome them. Base editors are already used as therapeutics,
and their potential has not yet been exhausted.

7. Prime Editors

In October 2019, Andrew Anzalone et al. presented a new genome editing technology
called prime editing [52]. Prime editing is a method that allows one to accurately intro-
duce small targeted insertions into the edited DNA sequence to remove and replace bases.
Prime editing allows for the introduction of changes into DNA without double-strand
breaks. Insertion of target sequences is achieved through the use of donor DNA templates.
In addition, prime editing expands the limited range of current DNA base editor capa-
bilities [54]. Instead of Cas9, this method uses the Cas9 nickase combined with reverse
transcriptase [52,168].

Currently, there are three main variants of chimeric proteins used for prime editing.
The first version of the chimeric protein had low editing efficiency; the second chimeric
protein was thermostable and contained additional modifications that led to improved
binding to target DNA. Recent versions of chimeric proteins for prime editing have the
ability to correct errors that arise during the editing process [52].

The guide RNA used in the prime editing (also known as the pegRNA) is significantly
larger than the standard, typically used guide RNAs. This RNA is a guide RNA containing
a primer binding site (PBS) and a donor template with the desired sequence added at the
3′ end of the RNA [52]. Currently, such guide RNAs are produced using plasmid DNA and
the in vitro transcription method.

During prime editing, a complex of chimeric Cas9 nickase and guide RNA binds to
the target DNA and forms a single-strand break. After this, PBS, homologous to the target
DNA and located on the guide RNA, binds to a fragment of the target DNA while the
donor RNA template is reverse transcribed (reverse transcriptase is a part of the chimeric
protein for prime editing) [52]. The target DNA is repaired by new reverse-transcribed
DNA, while the original DNA segment is removed by a cellular endonuclease. As a result,
one DNA strand is edited.

Third-generation chimeric proteins can correct the unedited DNA strand in the pres-
ence of an additional standard guide RNA. In this case, the Cas9 nickase introduces a break
into the unedited DNA strand, which is then repaired using the edited DNA strand as a
template for nick restoration, thereby completing the editing process [52].

Many different strategies were used for improvement of the prime editing system,
including optimization of pegRNA, optimization of the effector proteins, collaborative
optimization of prime editors with multiple strategies, an optimization strategy based
on inhibiting DNA mismatch repair, and so on [169–173]. In 2022, a novel prime editor
was published—Cas9 ortholog-based prime editor. FnCas9(H969A)-RT showed a precise,
expanded range of prime editing and versatile editing properties [174].

Prime editing was successfully applied to microorganisms, animal cells, embryos,
plants, and human cells [169]. Prime editing expands the genome editing toolkit and can
be used for therapeutic development. At the very beginning, prime editing was used to
model and then correct sickle cell disease and Tay-Sachs disease [52].

As with all new technological advances, more research is needed to optimize the
technology of prime editing. Moreover, it is important to determine whether prime editing

https://classic.clinicaltrials.gov/ct2/show/NCT05398029
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can be used in different cell types (especially therapeutically relevant cell types such as
primary and stem cells). Also, the long-term effects (if any) and the number of off-target
effects of editing need to be investigated.

8. Cas-CLOVER

Cas-CLOVER is an RNA-guided endonuclease consisting of the nuclease domain
from a Clostridium Clo051 type IIs restriction endonuclease fused with catalytically inactive
Cas9. Cas-CLOVER activity is based on dimerization of the Clo051 nuclease domain,
enabled by RNA-guided recognition of two adjacent 20-nt target sequences. Monomeric
Cas-CLOVER does not introduce a nick or a double-strand break. Cas-CLOVER is a high-
fidelity site-specific nuclease with low off-target activity that is efficient for genome editing
in resting T cells [55], bananas [56] and so on. Cas-CLOVER is also suitable for cell line
development [57].

Cas-CLOVER is a proprietary gene editing platform owned by Poseida Therapeutics,
Inc. Two clinical trials are mentioned on the CRISPR Medicine News website (https:
//crisprmedicinenews.com/clinical-trials/, accessed on 5 September 2023).

The first clinical trial (NCT05239143, https://classic.clinicaltrials.gov/ct2/show/
NCT05239143, accessed on 5 September 2023) is a phase 1, open label, dose escalation, and
expanded cohort study of Allogeneic CAR-T Cells developed using the Cas-CLOVER plat-
form (P-MUC1C-ALLO1) in adult subjects with advanced or metastatic epithelial-derived
solid tumors, such as Breast Cancer, Ovarian Cancer, Non-Small Cell Lung Cancer, Col-
orectal Cancer, Pancreatic Cancer, Renal Cell Carcinoma, Nasopharyngeal Cancer, Head
and Neck Squamous Cell Carcinoma and Gastric Cancer. P-MUC1C-ALLO1 targets the
MUC1-C epitope and is manufactured using piggyBac® DNA Delivery System, which
results in a highly enriched T stem cell memory (TSCM) product. It contains 3 transgenes:
an anti-MUC1-C humanized scFv-based CAR, a DHFR drug selection gene to improve
product homogeneity, and an iCasp9-based safety switch gene to allow for rapid ablation
of the CAR-T if required. Cas-CLOVER™ Site-Specific Gene Editing System is used to
eliminate expression of endogenous T cell receptors in all cells via knockout of the T cell
receptor beta chain 1 gene and expression of MHC class I to prevent and attenuate the
graft-versus-host (GvH) response [175].

The second trial (NCT04960579, https://clinicaltrials.gov/study/NCT04960579, ac-
cessed on 5 September 2023) is a phase 1, open-label, dose escalation, and multiple co-
horts’ study of allogeneic T stem cell memory (TSCM) CAR-T cells in subjects with re-
lapsed/refractory Multiple Myeloma. P-BCMA-ALLO1 targets B-cell Maturation Antigen
(BCMA) and is manufactured the same way as P-MUC1C-ALLO1 [176].

Among other genome editing technologies, Cas-CLOVER is a relatively young
technology—the first time it was mentioned on 14 April 2020. To date, this high-precision
gene editing technology has been successfully validated in mammalian cells as a genome
editing tool with zero detected off-target activity. Two clinical trials of allogeneic CAR-T
cells developed using the Cas-CLOVER platform were initiated in 2021 and 2022.

9. Cas-FokI

Cas-FokI is a dimeric RNA-guided FokI nuclease, also known as RFNs (RNA-guided
FokI Nucleases), that can recognize extended sequences and edit genes with high efficien-
cies in human cells. Cas-FokI target size is about 38–40 bp plus spacer length (i.e., length
between two targets, 16–18 bp or 26 bp, depending on variant used) [61]. Like Cas-CLOVER,
the activity of Cas-FokI is based on dimerization of the FokI nuclease domain, which de-
pends strictly on the binding of two guide RNAs to DNA [41]. RFN monomers can also
introduce undesired point mutations at their target sites, although at a frequency lower
than that for Cas9 nickases [41]. Point mutation rates induced by Cas9 nickases are up to
10-fold higher than the point mutation rates of monomeric RFNs [58].

Cas-FokI provides a versatile genome-editing tool with improved specificity and
catalytic activity for precise engineering of mammalian genomes [59–61]. For example,

https://crisprmedicinenews.com/clinical-trials/
https://crisprmedicinenews.com/clinical-trials/
https://classic.clinicaltrials.gov/ct2/show/NCT05239143
https://classic.clinicaltrials.gov/ct2/show/NCT05239143
https://clinicaltrials.gov/study/NCT04960579


Int. J. Mol. Sci. 2023, 24, 16077 15 of 40

RFNs were successfully used in multiple studies with model animals [61] and cell-line
models (Phenylketonuria [177] and chronic myeloid leukemia [62]).

Cas9-derived proteins, e.g., base editors, prime editors, Cas-CLOVER, and Cas-FokI
differ from regular SpCas9 (see Table 3 below) and allow (i) to introduce single base changes
to DNA, (ii) to introduce small targeted insertions into DNA, remove and replace bases, and
(iii) precisely edit DNA with undetectable off-target effects. All the editing tools mentioned
are popular among scientists to varying degrees and can be used for therapeutic approach
development in the near future.

Table 3. Comparison of Cas9-derived proteins with regular SpCas9.

CRISPR/Cas9 Base Editors Prime Editors Cas-CLOVER Cas-FokI

DNA catalytic
domain

RuvC and HNH
(nuclease)

Cytidine
deaminase or

adenine deaminase

Cas9 H840A
nickase, reverse

transcriptase, and
cellular

endonuclease

Nuclease domain
from Clostridium

Clo051
FokI

DNA recognition
sgRNA (crRNA in

complex with
tracrRNA)

sgRNA (crRNA in
complex with

tracrRNA)

pegRNA
(containing a

primer binding site
and a donor

template)

Left and right
sgRNA

Left and right
sgRNA

Mechanism

Double-strand
breaks in edited

DNA (repaired by
non-homologous

end joining, NHEJ,
or homology-

directed repair,
HDR)

Single-base
changes (C to T
and A to G) in
edited DNA

without
introducing

double-strand
breaks

Accurately
introduces small

targeted insertions
into the edited
DNA sequence

and removes and
replaces bases

High-fidelity
site-specific

nuclease that
introduces

double-strand
breaks in edited

DNA with
undetectable

off-target activity

High-fidelity
site-specific

nuclease, that
introduces

double-strand
break in edited

DNA with
undetectable

off-target activity

Specificity Tolerates
mismatches

Tolerates
mismatches

Tolerates
mismatches

Enhanced
specificity

Enhanced
specificity

Ease of delivery
Easily delivered
using multiple

techniques

Harder to deliver
due to the

increased size

Harder to deliver
due to the

increased size

Harder to deliver
due to the

increased size

Harder to deliver
due to the

increased size

Limitations
Possible off-target
effects (especially

for SpCas9)

Narrow range of
editing in the

immediate vicinity
of the PAM,

potential off-target
effects

Overall complexity
of the system

Difficult to deliver
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10. CRISPR/Cas9 Delivery Methods

The success of genome editing depends on the specificity and efficiency of the Cas9
protein, the design of the guide RNA, and the efficiency of the delivery of elements of
the CRISPR/Cas system into the target cell. CRISPR/Cas9 elements can be delivered
using different methods, i.e., physical methods, viral and non-viral vector delivery, etc.
Physical methods of delivery imply short-term disruption of the target cell membrane and
include electroporation, sonoporation, nano-injection, micro-injection, and hydrodynamic
injection [178]. Viral vectors are the earliest molecular tools for gene transfer to human
cells; they transfer nucleic acids encoding CRISPR/Cas9 components to target cells in
the envelope of a virus, for example, an adenovirus, adeno-associated virus, retrovirus,
lentivirus, Epstein–Barr virus, herpes simplex virus, and bacteriophages [179,180]. In
addition, alternative (non-viral) methods of CRISPR/Cas9 delivery, for example, by using
lipid nanoparticles, polymer and hydrogel nanoparticles, hybrid gold, graphene oxide,
metal-organic frameworks, black phosphorus nanomaterials, etc., were reported [181].

Cas9 and guide RNA can be delivered to a cell via three different modes: (i) as a
set of plasmid DNAs; (ii) as a combination of Cas9 mRNA and guide RNA; and (iii) as
pre-assembled ribonucleoprotein complexes (RNPs) (Table 4).

Table 4. CRISPR/Cas9 delivery strategies.

Delivery Approach
Mode of Cas9 and Guide RNA Delivery

DNA mRNA RNP

Electroporation + + +

Viral vectors + + −
Lipofection + + +

Lipid nanoparticles − + +

Polymer nanoparticles − − +

Hydrogel nanoparticles − − +

Gold nanoparticles − − +

Graphene oxide − − +

Metal−organic frameworks − − +

Black phosphorus nanosheets − − +

Cell-penetrating peptides − − +

DNA nanostructures − − +

To date, many strategies are available for CRISPR/Cas9 RNP delivery based on phys-
ical approaches and synthetic carriers. CRISPR/Cas9 RNPs were successfully delivered
to target cells using microinjection [182], biolistics [183,184], electroporation [185–189],
microfluidics [190,191], filtroporation [192], nanotube [193], osmocytosis [194], synthetic
lipid nanoparticles [195], cell penetrating peptides (CPPs) [196], lipopeptides [197], den-
drimers [198], chitosan nanoparticles [199], nanogels [200], gold nanoparticles [201], metal-
organic frameworks [202], graphene oxide [203], black phosphorus nanosheets [204], cal-
cium phosphate nanoparticles [205], and many more [206]. It should be mentioned that
CRISPR/Cas9-based therapeutics predominantly use electroporation of RNPs into target
cells as a delivery method (Figure 3).

Delivery of CRISPR/Cas in the form of RNPs is believed to have several advantages,
including high editing efficiency, low nonspecific activity, editing beginning immediately
after delivery to the cell, the ability to quickly screen the effectiveness of guide RNAs
in vitro, and decreased immunogenicity due to the transient presence of CRISPR/Cas
elements in the target cell. Thus, RNPs offer promising opportunities for CRISPR/Cas9-
based genome editing. However, RNP delivery is rather difficult due to the high molecular
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weight of Cas9 protein (~160 kDa) and the additional requirement for optimization of RNP
loading with sgRNA. Moreover, several limitations are associated with RNP delivery due
to the charge properties of the complex. There are a lot of methods for RNP delivery, but
some of them seem to be expensive and cannot be scaled up; others carry an intellectual
property burden. More investigations and optimizations are required to overcome the
existing problems of Cas9 RNP delivery.
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Figure 3. Delivery approaches for CRISPR/Cas9 therapeutics in clinical trials are mentioned on
the CRISPR Medicine News website (https://crisprmedicinenews.com/clinical-trials/, accessed on
5 September 2023).

11. CRISPR/Cas9-Based Diagnostics

Since 2017, CRISPR/Cas proteins with collateral cleavage activity–Cas12 and Cas13,
have been used in the field of molecular diagnostics [207–210]. The main feature of such
diagnostics is that CRISPR/Cas complexes “recognize” target sequences with excellent
specificity and subsequently cleave labeled reporter molecules. The Cas9 protein, the best-
known representative of the Cas protein family, is also used for diagnostics, but the mode
of action is different: the labeled CRISPR/Cas complexes “recognize” target sequences.

In 2016, CRISPR/Cas9 was for the first time mentioned as a part of a paper-based
sensor to detect clinically relevant concentrations of Zika virus and to discriminate between
closely related viral strains with single-base resolution. The assay was called NASBACC
(from NASBA, Nucleic Acid Sequence-Based Amplification, and CRISPR Cleavage), had
a colorimetric readout, and an LOD (limit of detection) = 6 × 105 copies/ml [211]. Also,
Vilhelm Müller et al. described an analysis based on optical DNA mapping of individual
plasmids carrying antibiotic resistance genes of bacterial isolates in nanofluidic channels,
which provides detailed information about these plasmids, including the presence/absence
of antibiotic resistance genes. The described assay allowed the identification of antibiotic
resistance genes using CRISPR/Cas9 and antibiotic resistance gene-specific guide RNAs
(blaCTX-M group 1, blaCTX-M group 9, blaNDM, and blaKPC). During the analysis, the
CRISPR/Cas9 ribonucleoprotein complex linearizes circular plasmids in the region of the
antibiotic resistance gene, and the resulting linear DNA molecules are identified using
optical DNA mapping [212].

Later, CRISDA [213], CAS-EXPAR [214], CRISPR-Chip [215], and FLASH-NGS [216]
technologies were developed. CRISDA combines the strand-displacement amplification
technique with the Cas9-mediated target enrichment approach and exhibits sub-attomolar
sensitivity with an LOD = 1.5 × 102 copies/ml [213]. The CAS-EXPAR technique has com-
parable sensitivity (LOD = 4.9 × 102 copies/ml) and does not require exogenous primers
(primers are first generated by Cas9/sgRNA-directed site-specific cleavage of the target
and accumulated during the reaction) [214]. CRISPR-Chip represents ribonucleoprotein

https://crisprmedicinenews.com/clinical-trials/
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complexes formed by catalytically inactive Cas9 and target-specific sgRNAs immobilized
on the surface of the graphene layer. When RNPs bind target DNAs, it causes a change in
electrical current, which makes for a simple signal readout. CRISPR-Chip allows detection
of femtomolar amounts of DNA without the need for target preamplification [215]. In
2019, FLASH-NGS was introduced as a unique technology for sub-attomolar detection of
low-abundance pathogen sequences. In FLASH-NGS, Cas9 is used to enrich (up to 5 orders
of magnitude) the sample with a programmed set of sequences [216].

SARS-CoV-2 pandemic gave rise to CRISPR/Cas9-based methods named FELUDA [217],
CASLFA [218], VIGILANT [219], “Biotin-dCas9-LFA” [220], LEOPARD [221], and Bio-
SCAN [222].

FELUDA (FnCas9 Editor-Linked Uniform Detection Assay) is a semi-quantitative
assay utilizing direct catalytically inactive FnCas9-based detection of PCR-amplified se-
quences. Target sequence in FELUDA is labeled with biotin and RNP–with FAM/FITC,
which allows detection of results with lateral flow readout. FELUDA can detect nucleic
acids with high sensitivity/specificity, and its LOD is 10 copies per reaction [217].

CASLFA (Cas9-mediated lateral flow nucleic acid assay) can be performed in two dif-
ferent ways. The first option includes biotinylated amplicons, target-specific Cas9/sgRNA
complexes, and AuNP-DNA probes, which are hybridized with the single-strand region
of the amplicon released by Cas9/sgRNA-mediated unwinding. The second option in-
cludes sgRNA with a universal sequence in the stem-loop region for AuNP-DNA probe
hybridization, biotinylated amplicon, and a target-specific Cas9/sgRNA complex. CASLFA
can detect 200 copies per reaction [218].

VIGILANT (VirD2-dCas9-guided and LFA-coupled nucleic acid test) is a nucleic acid
detection technology based on the use of a fusion of catalytically inactive SpyCas9 and
VirD2 relaxase. Target sequence is amplified using biotinylated oligos and is specifically
bound by dCas9, while VirD2 covalently binds to a FAM-tagged oligonucleotide. After-
wards, the biotin label and FAM tag are detected by any available LFA with a limit of
detection of 2.5 copies/µL [219].

The Biotin-dCas9-LFA assay includes FAM-labelled amplicon, biotinylated target-
specific dCas9/sgRNA complex (bdCas9), and a competing PAM-rich soak double-stranded
oligonucleotide to prevent non-specific bdCas9/mismatched sgRNA binding. It should be
noted that the biotin-dCas9-LFA limit of detection (LOD) is similar to that of qRT-PCR [220].

Chunlei Jiao et al. found that RNA guides from Cas9-RNA complexes from Campy-
lobacter jejuni can also originate from cellular RNAs unassociated with viral defense. This
fact led to the reprogramming of tracrRNAs so that they could link the presence of any
RNA of interest to DNA targeting with different Cas9 orthologs (CjeCas9, SpyCas9, and
Sth1Cas9). This work gave rise to a multiplexable, ultrasensitive diagnostic platform
named LEOPARD (leveraging engineered tracrRNAs and on-target DNAs for parallel RNA
detection) [221].

Bio-SCAN (biotin-coupled specific CRISPR-based assay for nucleic acid detection) is
a simple, rapid, specific, and sensitive pathogen detection platform that does not require
sophisticated equipment or technical expertise. Within 1 h of sample collection, Bio-SCAN
can detect a clinically relevant level (4 copies/µL) of the SARS-CoV-2 RNA genome. Bio-
SCAN consists of FAM-tagged oligonucleotides, biotinylated catalytically inactive SpyCas9,
and AuNP-anti-FAM antibodies. The target nucleic acid sequence is amplified in 15 min
via RPA and then detected on commercially available lateral flow strips [222].

CRISPR/Cas9 offers an opportunity for the development of a wide variety of point-of-
care diagnostics (more than 10 diagnostic platforms have been published to date), but it still
remains an investigational rather than practical approach. CRISPR/Cas9-based pathogen
detection platforms are rather simple, possess excellent specificity, are very sensitive (and
even ultrasensitive), and are able to detect clinically relevant levels of pathogen-specific
nucleic acids. Some CRISPR/Cas9-based nucleic acid detection platforms may become the
basis for express point-of-care laboratory and home tests.
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12. CRISPR/Cas9-Based Therapeutics

Nowadays, CRISPR/Cas is used to study and develop therapeutic approaches for the
treatment of a wide variety of human diseases [2,223–227].

Genome editing using CRISPR/Cas systems is used to develop antiviral therapy to
treat infectious diseases. The therapeutic effect is to be achieved either by altering host
genes important for the viral life cycle or by targeting viral genes required for replica-
tion [228]. Today, several approaches to HIV therapy development are based on genome
editing technology.

CRISPR/Cas9 has been used to induce site-specific genome modification in human
cells in vitro and in vivo using mouse models of HIV infection [229–233]. Numerous aca-
demic laboratories have successfully performed CD4+ T cell CCR5 receptor knockouts
using CRISPR/Cas9. This approach was shown to inhibit HIV-1 infection without signifi-
cant side effects [232]. CCR5 editing in both the hematopoietic stem cell (HSC) population
and the CD4+ T lymphocyte population is a promising strategy for creating HIV-resistant
cells. However, this approach is ineffective against CXCR4 (C-X-C chemokine receptor
type 4)-tropic HIV strains. It has been shown that CRISPR/Cas9 can be used to edit the
gene encoding CXCR4 with high precision and efficiency. Knockout of the HIV co-receptor
CXCR4 is accompanied by minor off-target effects and provides resistance to HIV infection
caused by CXCR4-tropic HIV strains [230,234–236]. This approach could be used to gener-
ate experimental and therapeutic primary human CD4+ T cells, providing an alternative
treatment for HIV-1 X4 infection. At the same time, simultaneous knockout of both HIV
co-receptors Chemokine C-C-Motif Receptor 5 (CCR5) and CXCR4 leads to a decrease in
the expression of CCR5 and CXCR4, which makes the modified cells resistant to infection
with R5 and X4 tropic viruses, even when using double tropic viruses [230].

In recent years, CRISPR technology has been successfully used to reduce or eliminate
persistent viral infections in vitro and in animal models in vivo, raising the prospect of its
application in the treatment of latent and chronic viral infections [237].

CRISPR/Cas technologies have been used to combat HIV infection in vitro in various
cell lines. At the same time, it was possible to achieve not only suppression of HIV gene
expression in infected T cells and microglial cells but also to remove HIV proviral DNA
from many other cell lines, including neuronal progenitor cells, which represent latent
reservoirs of HIV infection [238–240]. CRISPR/Cas systems have also been shown to be
effective in combating HIV infection in vivo. Thus, HIV proviral DNA was eliminated
from the spleen, lungs, heart, colon, and brain of animals in a humanized model of chronic
HIV infection [240]. In addition, using CRISPR/Cas technology, HIV proviral DNA was
removed from infected human peripheral blood mononuclear cells using a transgenic
mouse model [241].

In 2017, the CRISPR/Cas9 system was used to remove a full-length fragment of
hepatitis B virus (HBV) DNA that was chromosomally integrated and episomally localized
as cccDNA in chronically infected cells. This approach allowed complete eradication of
HBV in a stable infected cell line in vitro. This suggests that the CRISPR/Cas9 system
is a potentially powerful tool for eradicating chronic HBV infection and curing HBV
completely [242,243].

In addition, the CRISPR/Cas system has been successfully used to combat herpesvirus
infections in vitro. It was shown that the simultaneous use of several guide RNAs made it
possible to significantly reduce the replication of herpes simplex virus 1 in cells [244,245].
Using CRISPR/Cas, it was also possible to eliminate up to 95% of the DNA of the Epstein-
Barr virus and cytomegalovirus within 11 days, after which mutant forms of the virus
appeared, resistant to the action of CRISPR/Cas [244]. CRISPR/Cas systems have also
been shown to eliminate other viral pathogens in vitro, such as the John Cunningham virus
and the human papillomavirus HPV-16 and HPV-18 [246,247].

CRISPR/Cas9 was used to develop therapeutic approaches for the treatment of
monogenic diseases such as cystic fibrosis [248–251], sickle cell disease [30,252–254], tha-
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lassemia [255–258], Huntington’s disease [259–263], Duchenne muscular dystrophy [264–270],
hemophilia [271–275], diabetes [276–280] and cardiovascular diseases [281–285].

What is more, novel therapeutic approaches for cancer treatment are based on CRISPR/
Cas9. CRISPR/Cas9 was used for the development of CAR-T cells (T cells with a chimeric
antigen receptor) that have high antitumor activity, including “universal” CAR-T allogeneic
T cells on which endogenous T-cell receptor (TCR) and Human Leukocyte Antigen (HLA)
are eliminated [286–298]. Also, CRISPR/Cas9 was used to produce CAR-T cells in which
a CAR or TCR cassette was introduced into the endogenous TCR gene locus to mitigate
graft-versus-host disease, preventing random integration of the cassettes and ensuring
uniform CAR (chimeric antigen receptor) expression [299–302].

To date, 64 CRISPR/Cas9-, 4 CRISPR/Cas9 base editors-, and 2 Cas-CLOVER-based
therapeutics are in clinical trials, according to the CRISPR Medicine News website (https:
//crisprmedicinenews.com/clinical-trials/, accessed on 5 September 2023). The vast
majority of CRISPR/Cas9-based therapeutics are directed against hematologic malig-
nancies (~38%), inherited blood disorders (~29%), and solid tumors (~19%) (Figure 4,
Supplementary Table S1).
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Figure 4. The number of CRISPR/Cas9 clinical trials mentioned on the CRISPR Medicine News
website (https://crisprmedicinenews.com/clinical-trials/, accessed on 5 September 2023).

Recently, encouraging news has emerged: some patients are functionally cured of
sickle cell disease or beta thalassemia, and the edited cells reside in the bone marrow,
indicating the potential for long-term treatment. Cancer immunotherapy trials are in
the early stages, but the safety and tolerability of the treatments look promising moving
forward with newer versions of the editing technology, off-the-shelf products, moving
toward new cancer targets, and even developing new cell types for immunotherapy.

All treatment methods mentioned above are relatively new. Positive results still require
long-term follow-up to see whether the treatment remains effective, whether patients suffer
unwanted changes, and whether patients have immune responses against Cas proteins.

13. Pre-Existing Immunity against CRISPR/Cas9 Proteins

The most widely used Cas9 orthologs are derived from Staphylococcus aureus (SaCas9)
and Streptococcus pyogenes (SpyCas9) [303], which are common human commensals. There
is still no accurate data on pre-existing antibodies (i.e., humoral immunity) against SaCas9
and SpCas9. The prevalence of anti-SaCas9 antibodies ranges from 4.8% to 100% (10% [304],
78% [305], 95% [306], 4.8% [307], and 100% [308]). At the same time, the prevalence of
anti-SpCas9 antibodies ranges from 0% to 100% (2.5% [304], 58% [305], 5% [227], 0% [296],
95% [306], and 100% [308]).
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Data on pre-existing cellular immunity against SaCas9 and SpCas9 have a much
smaller spread of values. Namely, pre-existing cellular immunity against Staphylococcus
aureus Cas9—78% [305], 100% [309], 88–96% [306], and 70% [307]. While pre-existing
cellular immunity against Streptococcus pyogenes Cas9—67% [305], 95% [309], 83% [227],
66.7% [296], and 92–96% [306].

To overcome the pre-existing humoral immunity, Cas9 proteins were subjected to
protein engineering. It was shown that the SaCas9 variant bearing an R338G substitution
reduces B cell immunogenicity and retains its gene-editing function [307]. Also, engineering
Cas9 epitopes recognized by circulating cytotoxic CD8+ T cells can diminish pre-existing
cellular immunity [227]. Alternatively, Cas systems isolated from bacteria to which humans
have not been exposed can be used to solve the problem of pre-existing immunity [310].
If necessary, multiple immunosuppressive drug treatments, including T cell-depleting
regimens (approved for AAV-based therapies), are available [311–315]. However, some
data indicate that pre-existing immunity does not impair the engraftment of CRISPR/Cas9-
edited cells in pre-conditioned busulfan or radiation organisms [316].

Pre-existing humoral and cell-mediated adaptive immune responses to Cas9 in humans
should be taken into account when CRISPR/Cas9-based therapeutics enter clinical trials.

14. CRISPR/Cas9 Activity Modulators

CRISPR/Cas systems are bacterial anti-viral systems, and bacterial viruses (bacterio-
phages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can
also fine-tune the activity of CRISPR-based genome-editing tools.

More than 50 verified Acrs (~90% anti-CRISPR Cas9 type II-A, ~10% anti-CRISPR
Cas9 type II-C) are mentioned in the Anti-CRISPRdb database (http://guolab.whu.edu.
cn/anti-CRISPRdb/, accessed on 5 September 2023, Supplementary Table S2) [317,318].
These Acrs belong to the AcrIIC1-AcrIIC5, AcrIIA1-AcrIIA22, and AcrIIA24-AcrIIA32
families and can inhibit NmeCas9 (Neisseria meningitidis), SpyCas9 (Streptococcus pyogenes),
HpaCas9 (Haemophilus parainfluenzae), SmuCas9 (Simonsiella muelleri), St1Cas9 (Streptococcus
thermophilus), SauCas9 (Staphylococcus aureus), SinCas9 (Streptococcus iniae), and St3Cas9
(Streptococcus thermophilus) to different extents [73–75,319–327].

The use of Acrs became a proven method for minimizing the off-target effects of
CRISPR/Cas tools in various hosts [328–330]. Artificially weakened anti-CRISPR (Acr)
proteins can be used to reduce CRISPR/Cas off-target effects. If Acr is co-expressed with
or directly fused to Cas9, it can fine-tune Cas9 activity toward selected levels to achieve
an effective kinetic insulation of on- and off-target editing events [331]. Moreover, several
chemically inducible Acrs were developed by comprising hybrids of Acr protein and the
4-hydroxytamoxifen-responsive intein. Such systems enabled post-translational control of
CRISPR/Cas9-mediated genome editing in human cells [327].

In addition to Acrs, small molecules are capable of modulating the activity of CRISPR/
Cas9 systems. Small molecules are used to arrest cells at G1/S, G2/M, or S phases, regulate
chromatin accessibility, inhibit NHEJ-mediated repair, and promote HDR [332].

After additional investigations, anti-CRISPR proteins and small molecules may be-
come promising ways for precisely controlling and enhancing CRISPR/Cas9 genome
editing efficacy and specificity.

15. Cas9 Orthologs

Cas9 proteins are relatively large, with an average length of 1252± 165.8 aa (mean ± SD,
range 961–1809 aa). More than 10,000 Cas9 orthologs are present among Bacillota, Bac-
teroidota, Pseudomonadota, and other phylums. Cas9 is most frequently found in microorgan-
isms belonging to the Streptococcus, Listeria, Staphylococcus, Bacteroides, and Neisseria genera
(Supplementary Table S3).

All Cas9 proteins can be roughly divided into two types: common-sized Cas9 proteins
and miniature Cas9 proteins. Miniature Cas9 proteins are more advantageous in terms
of delivery and belong to the Staphylococcaceae, Akkermansiaceae, Lactobacillaceae, Sphin-
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gomonadaceae, Corynebacteriaceae, Neisseriaceae, Bacillaceae, Pasteurellaceae, Comamonadaceae,
Helicobacteraceae, and Campylobacteraceae families (Supplementary Table S4).

Many Cas9 orthologs (e.g., ScCas9 [177], CjCas9 [333], NmeCas9 [334], FnCas9 [335], Smac-
Cas9 [336], SauriCas9 [337], St1Cas9 [338], St3Cas9 [339], FrCas9 [76], and so on [340–358]) have
been reported to be intrinsically high-fidelity [76,77], and some of them were engineered
with a broad PAM range, high fidelity, and/or both [359] (Supplementary Table S4).

CRISPR/Cas9 orthologs significantly expand the range of available molecular tools
for genome editing and can be chosen when it is important to overcome the problem
of pre-existing immunity and/or anti-CRISPR (Acr) proteins. Moreover, CRISPR/Cas9
orthologs can be used for proprietary genome editing approaches to overcome the burden
of intellectual property on the widely used CRISPR/Cas9 variants. However, additional
studies are needed to evaluate the off-target effects of the selected CRISPR/Cas9 orthologs.

16. Future Perspectives

If the diversity of the CRISPR/Cas9 toolbox is not enough, the researcher can easily
turn to other CRISPR/Cas proteins, such as Cas12, Cas13, and Cas14.

The gene, originally designated cpf 1, is present in a number of bacterial and archaeal
genomes, where it coexists with the cas1 and cas2 genes and the CRISPR array [360]. Cas12a
(Cpf1) is the prototype effector of type V multidomain Cas proteins. Cpf1 contains two
RuvC-like nuclease domains but lacks an HNH domain. Structural analysis of the Cas12a-
crRNA target DNA complex revealed a second nuclease domain (Nuc) with a unique struc-
ture, functionally similar to the HNH domain of Cas9 [361]. Cas12a is an RNA-dependent
DNA endonuclease that does not require tracrRNA, which is essential for Cas9 activ-
ity [135]. The protein also differs from Cas9 in its cleavage pattern and PAM range. More
than 30 Cas12 proteins are well characterized [362–368]. For example, AsCas12a (from Aci-
daminococcus sp.) is a differentiated CRISPR nuclease with higher specificity and efficiency
compared with Cas9 [369]. Two clinical trials of therapeutics based on CRISPR/Cas12
sponsored by Editas Medicine, Inc. are mentioned on the CRISPR Medicine News web-
site (https://crisprmedicinenews.com/clinical-trials/, accessed on 5 September 2023)–
NCT04853576 (Sickle Cell Disease, https://clinicaltrials.gov/study/NCT04853576, ac-
cessed on 5 September 2023) and NCT05444894 (Transfusion Dependent Beta-Thalassemia,
https://clinicaltrials.gov/study/NCT05444894, accessed on 5 September 2023). All trial
participants experienced early successful engraftment with no serious adverse events. The
safety profile of CRISPR/Cas12-based treatment was consistent with busulfan myeloabla-
tive conditioning and autologous hematopoietic stem cell transplantation. Importantly, no
patients experienced vaso-occlusive events following therapy.

The discovery of two distantly related class 2 effector proteins, Cas9 and Cas12a,
suggested that other variants of such systems may exist. Indeed, soon among class II
effectors, through a targeted search (bioinformatics analysis), the proteins Cas12b (type V),
Cas13a, and Cas13b (type VI), which differ from Cas9 and Cas12a, were discovered, and
their activity was confirmed [362]. Type V effectors, such as Cas9, use tracrRNA for targeted
activity. To date, most functionally characterized CRISPR/Cas systems have been reported
to target DNA, and only type IIIA and IIIB multicomponent systems can cleave RNA [370].
Type VI effectors Cas13a and Cas13b specifically target RNA, thereby mediating RNA
interference. Unlike type II and type V effectors, Cas13a and Cas13b do not have RuvC-like
nuclease domains and instead contain a pair of HEPN domains (higher eukaryotes and
prokaryotes nucleotide-binding domains) [371]. More than 49 Cas13 proteins are well
characterized [207,372–375].

In 2018, a novel CRISPR/Cas cassette containing cas1, cas2, cas4, and a new gene, cas14,
was discovered. Cas14 encodes a miniature Cas protein (molecular weight 40–70 kDa),
which is half the size of other Cas proteins found in class 2 CRISPR/Cas systems [376].
There are 24 variants of the cas14 gene, which are grouped into 3 subgroups (cas14a-c). All
variants contain the predicted RuvC nuclease domain. Unlike other Cas enzymes, Cas14
has not been found in bacterial genomes but only in the genome of the archaeal group.

https://crisprmedicinenews.com/clinical-trials/
https://clinicaltrials.gov/study/NCT04853576
https://clinicaltrials.gov/study/NCT05444894
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Therefore, it is suggested that Cas14 may be a more primitive version of the larger and
more complex proteins Cas9 and Cas12. Cas14 (also known as Cas12f) can bind and cleave
the target single-stranded DNA sequence. Unlike Cas9, Cas14 does not require a PAM
sequence [376–378].

Like Cas12, Fanzor (Fz) proteins are believed to be putative descendants of the recently
discovered OMEGA effector TnpB (Transposase B, Transposon-associated protein) [379,380].
Fz proteins are RNA-guided endonucleases with relatively small sizes compared with
Cas9/12 [381]. Approximately 649 Fanzor proteins from various eukaryotic species form
two distinct large classes: Fz1 and Fz2. Fz1 proteins are found in fungi (in incertae sedis
species), but they can also be seen in protists, arthropods, plants, and eukaryotic viruses
(giant viruses). Fz2 is spread among fungi, molluscs, choanoflagellates, and eukaryotic
giant viruses [381]. Like CRISPR/Cas, Fanzor proteins can be reprogrammed for human
genome engineering applications, representing an attractive starting point for further
therapy development [381], but further investigations are needed.

The CRISPR/Cas9 toolbox itself is extremely diverse, and at the same time, there is a
huge variety of other closely related molecular tools for genome editing that can be used
for the same needs as CRISPR/Cas9 (see Table 5).

Table 5. Comparison of different CRISPR/Cas and Fanzor protein properties.

CRISPR/Cas9 CRISPR/Cas12 CRISPR/Cas13 CRISPR/Cas14 Fanzor Proteins

DNA catalytic
domain RuvC, HNH RuvC-like nuclease

domain, Nuc-domain HEPN domains RuvC RuvC-like nuclease
domain

Target Double-stranded
DNA Double-stranded DNA Single-stranded RNA Single-stranded DNA Double-stranded DNA

Collateral
activity No Yes Yes Yes No

DNA recognition
sgRNA (crRNA in

complex with
tracrRNA)

crRNA crRNA crRNA and tracrRNA fRNA orωRNA

PAM
requirements

NGG, NAG for
SpCas9, and other
PAM variants for

Cas9 orthologs (for
details, see Table S4)

TTTN, TTTV
(V = G, C, or A)

For AsCpf1 from
Acidaminococcus or

LbCpf1 from
Lachnospiraceae, and

other PAM variants for
Cas12 orthologs

[362–368]

Requires protospacer
flanking sequence–A,

U, or C
None

Target adjacent motif
preference is diverse,
with a GC preference
observed for the viral

Fanzor proteins and AT
preferences for the
eukaryotic Fanzor

proteins

Specificity

Regular SpCas9
tolerates mismatches,

but high-fidelity
variants exist

Cas12a has been
successfully used for
gene editing in vivo

without any deleterious
off-target effects

RNA-editor, no
damage to DNA may

occur

Cleaves ssDNA with
high fidelity-sensitive

to even a single
mismatch in the
target sequence

Needs further
investigations

Ease of delivery
Easily delivered
using multiple

techniques

Easily delivered using
multiple techniques

Easily delivered
using multiple

techniques

Easily delivered
using multiple

techniques

Needs further
investigations

Limitations

GC-rich DNA targets
Possible off-target

effects (especially for
SpCas9)

AT-rich DNA targets

Needs to be
constitutively
expressed to

maintain the editing
effect

Targets ssDNA Unknown

Multiplexing Easy Easy Easy Easy Possible

Active clinical
trials

Yes
(64/130)

Yes
(2/130) No No No
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Table 5. Cont.

CRISPR/Cas9 CRISPR/Cas12 CRISPR/Cas13 CRISPR/Cas14 Fanzor Proteins

Use in academic
laboratories

26,717 results in
PubMed®

(https://pubmed.
ncbi.nlm.nih.gov/,

accessed on 2
November 2023 with
search term “CRISPR

Cas9”

1684 results in
PubMed®

(https://pubmed.ncbi.
nlm.nih.gov/, accessed

on 2 November 2023
with search term

“CRISPR Cas12a or
Cpf1”

373 results in
PubMed®

(https://pubmed.
ncbi.nlm.nih.gov/,

accessed on 2
November 2023 with
search term “CRISPR

Cas13”

28 results in
PubMed®

(https://pubmed.
ncbi.nlm.nih.gov/,

accessed on 2
November 2023 with
search term “CRISPR

Cas14”

4 results in PubMed®

(https://pubmed.ncbi.
nlm.nih.gov/, accessed

on 2-November 2023
with search term

“Fanzor”

First time
mentioned 2011 2017 2017 2018 2013, 2023

17. Conclusions

CRISPR/Cas9 and its derivatives are unique molecular tools that can be easily used
in a wide variety of applications, such as genome engineering via different modes of
action (cut, nick, base edit, and prime edit); transcription regulation and screening via
CRISPRa and CRISPRi; epigenetic editing and using sgRNA libraries; genome loci of
interest visualization, purification, tagging, and so on. CRISPR/Cas9 is used as a diagnostic
tool and for the development of therapeutic approaches (more than 60 clinical trials are
being conducted at the moment). The CRISPR/Cas9 genome engineering toolbox includes
variants with improved efficacy and specificity. More than 100 CRISPR/Cas9 orthologs
with known PAM specificity are well characterized and can be used for all the applications
mentioned above.

Delivery of CRISPR/Cas9 to target cells still remains the biggest bottleneck for
widespread clinical use of CRISPR/Cas9 in human therapy. Many efforts are made to
develop efficient CRISPR/Cas delivery methods that will not affect the viability of the
target cell dramatically. A lot of methods and protocols for CRISPR/Cas9 delivery exist,
and electroporation and viral vectors remain the gold standard to date.

On the one hand, CRISPR/Cas9 is an indispensable molecular tool for studying
biological systems, signaling pathways, and their role in the pathogenesis of human dis-
eases. CRISPR genome-wide screening offers great promise for discovering important
disease-associated genes and revealing potential therapeutic targets. On the other hand,
CRISPR/Cas9 offers an option to overcome genetic diseases in the near future. Its ability to
precisely knock out specific genes without large-scale chromosomal rearrangements enables
multiple gene knockouts in human cells to generate more efficient and safer cell therapies.
The use of CRISPR/Cas9 gave rise to a novel type of immuno-oncology therapies—“off-
the-shelf” (allogeneic) universal CAR-T cells, which are widely used in clinical trials.

In summary, CRISPR/Cas9 has had a great impact on many fields of fundamental and
applied research and will continue to play an important role in the future.
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