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Abstract: Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion
people globally and increasing the risk of multi-organ morbidity and overall mortality. However,
the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular
vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance
intercellular communication, and contribute toward homeostasis under physiological conditions. A
multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and
after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments
of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP
treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated
from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after
12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by
flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial
cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis
for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability
and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-
omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA
(miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and
13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated
with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had
complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-
omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to
adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role
in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative
approach might be useful in understanding how exosomes function, their origin, and their potential
clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance.
Developing an integrated molecular classification should lead to improved diagnostic classification,
risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.

Keywords: OSA; exosomes; extracellular vesicles; lipids; proteomics; miRNAs; omics; multi-omics

1. Introduction

Obstructive sleep apnea (OSA) is a worldwide public health problem affecting nearly
one billion people [1–3]. OSA is characterized by recurring upper airway obstructive events
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during sleep that are contingent on their characteristics and duration, and result in in-
creased respiratory efforts, intermittent hypoxemia (IH), periods of elevated carbon dioxide
levels in blood, autonomic surges, and episodic arousals leading to sleep fragmentation
(SF) [4–7]. Such events then lead to activation of pathophysiological pathways that are
complex and multifactorial, with many yet unrecognized and poorly understood facets.
Indeed, OSA is now identified as an independent risk factor for cardiovascular morbidities
encompassing conditions such as systemic and pulmonary hypertension, arrhythmias,
coronary heart disease, stroke, heart failure, and cancer, as well as metabolic diseases such
as dyslipidemia and diabetes mellitus, in addition to neurocognitive impairments and
depression, collectively resulting in reduced quality of life and enhanced overall mortality
rates [6,8–14].

The high prevalence of undiagnosed and untreated OSA is also believed to be a major
contributor to the morbidity and mortality of various highly prevalent cardiovascular,
metabolic, and oncologic diseases [13,15–17]. The gold standard for diagnosing OSA is
an overnight polysomnographic (PSG) test, from which multiple indices of severity are
computed, with the Apnea-Hypopnea Index (AHI) currently serving as the most frequently
used index to classify OSA severity (AHI > 5 events/h of sleep being considered abnormal
and AHI > 30 events/h of sleep corresponding to severe OSA) [12]. Positive airway pressure
(PAP) therapy is the preferred treatment for most people suffering from OSA, although a
significant proportion of patients underuse it or reject it due to discomfort, insurance issues,
and perceived inefficacy. Although this treatment improves OSA comorbidities [17–21],
the mechanisms involved in such improved outcomes remain unknown. Endothelial
dysfunction is an early ubiquitous event preceding many of the clinical manifestations of
OSA [22]. Therefore, examining the molecular basis of OSA and its potential effects on
endothelial function can improve our understanding of the mechanistic underpinnings of
OSA-related adverse consequences.

In OSA patients, plasma-derived extracellular vesicles can induce endothelial dysfunc-
tion, suggesting that circulating extracellular vesicles are important messengers linking
OSA to end-organ dysfunction [23–28]. Extracellular vesicles (EVs) are heterogeneous
nanoparticles secreted and released from cells of all tissue types and carry cell- and body-
fluid-specific signatures [29,30]. Exosomes, one of the several EV sub-types, are critical
mediators of intercellular communication and regulation, capable of influencing the tran-
scriptional landscape of target cells through horizontal transmission of biological cargos
including proteins, lipids, and RNA species [28,30,31]. Thus, the study of exosomes and
their cargos could provide significant and valuable insights into the mechanisms behind
cell–cell communication and disease development and progression in OSA. Many studies
have focused on evaluation of exosome cargos using isolated transcriptomic, proteomic,
metabolomic, and lipidomic approaches [32,33]. However, although analysis of plasma
exosomes by multi-omic approaches may provide unparalleled insights into disease mech-
anisms aimed at personalized medicine [34], and even though such multi-omic approaches
have been successfully applied in other contextual settings [35], we are unaware of any
studies to date that have focused on exosomes in OSA.

Here, we implemented state-of-the-art multi-omic approaches on circulating exosomes
obtained from patients with moderate to severe OSA before and following long-term PAP-
adherent treatment to gain increased understanding of putative molecular mechanisms
underlying the disease, as well as to investigate some of the effects on naïve endothelial
cell functions [36–38].

2. Results
2.1. Subject Characteristics

A total of 12 adult male subjects were recruited in this study, completing the 12-month
adherent CPAP treatment after being diagnosed with severe OSA, as shown in Figure S1.
There were no significant differences in BMI before and after treatment. However, AHI
was markedly higher in OSA (70.13 ± 16.77 events/h of sleep) compared to during CPAP
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treatment (OSAT: 3.44 ± 2.171/events/h; p = 0.001). We also found that triglycerides
(TG), total cholesterol (TC), high-density lipoprotein (HDL), and glucose were significantly
decreased in OSAT compared to OSA, for example, the value for TG in OSA (222.14 ± 74.18)
vs. OSAT (148.15 ± 78.17), TC mg/dL (222.14 ± 74. 18 vs. 148.15 ± 78.17, p = 0.01), HDL
mg/dL (234.07 ± 20.14 vs. 212.28 ± 33.32, p = 0.02), and glucose ng/mL (101.12 ± 11.16
vs. 94.09 ± 14.28, p = 0.03), as shown in Table 1. In addition, significant differences
emerged in diastolic blood pressure (dBP) between OSA (82.31 ± 5.3 mmHg) and OSAT
(73.6 ± 10.23 mmHg; p = 0.01). The SpO2 during wake state was statistically significantly
lower in OSA (90.50 ± 2.87%) compared with OSAT (94.70 ± 1.60%; p = 0.03) Table 1.

Table 1. Demographic characteristics of OSA and OSAT subjects.

Term OSA OSAT

Age 41.11 ± 8.12 42.13 ± 6.0

BMI, kg/m2 30.21 ± 0.51 32.12 ± 3.22

AHI, events/hour 70.03 ± 16.08 * 2.71 ± 2.05 **

Triglycerides (mg/dL) 222.14 ± 74. 18 148.15 ± 78.17 **

Total cholesterol (mg/dL) 234.07 ± 20.14 212.28 ± 33.32 *

HDL cholesterol (mg/dL) 47.01 ± 10.06 42.12 ± 7.13 *

LDL cholesterol (mg/dL) 135.29 ± 13.18 151.16 ± 33.36

Glucose (mmol/L) 101.12 ± 11.16 94.09 ± 14.28 *

SysBP 126.17 ± 10.05 125.22 ± 15.15

DyBP 82.11 ± 8.13 73.16 ± 10.05 *

SpO2 during wake (%) 90.50 ± 2.87 94.21 ± 1.07 **
* Indicates p-value < 0.01, while ** p-value < 0.001.

2.2. Exosome Characterization and Cellular Internalization

Differential centrifugation followed by polymer-based precipitation and filtration were
used to isolate exosome-enriched OSA plasma samples prior to and following adherent
CPAP treatment for 1 year. Plasma exosome isolation, characterization, and quantification
are shown in Figure S2. Exosome concentrations were determined by Nanoparticle Tracking
Analysis (NTA), and exosomes from OSA and OSAT displayed similar size distributions,
with average range of 9.91 × 109 mL−1 in OSA, and 8.82 × 109 mL−1 in OSAT, respec-
tively (Figure S2a). Exosome size was confirmed by negative stain transmission electron
microscopy; their morphology showed the typical cup-shaped feature and ranged from 30
to 150 nm in diameter (Figure S2b), confirming published results [39].

We further confirmed the presence of typical tetraspanin exosome markers (CD63 and
CD81) using the ExoView R100 (System Biosciences, LLC, Palo Alto, CA, USA) platform
and the proprietary antibody array (Figure S2c). Flow cytometry of isolated exosomes from
OSA and OSAT groups revealed the presence of tetraspanin markers as anticipated from
highly purified (>98%) exosome fractions (Figure S2c). Next, we compared the cellular
internalization of autologous OSA- and OSAT-derived exosomes on naïve endothelial cells
using PKH67 as a reporter (Figure S3). Endothelial uptake of exosomes from OSA and OSAT
was similar for all subjects. The PKH67 signal was observed in the lipid cell membrane of
cells grown in medium supplemented with PKH67-labelled exosomes, whereas no signal
was observed in cells grown in medium supplemented without exosomes to which PKH67
was also added.

2.3. Endothelial Barrier Integrity and Wound Healing

Next, we tested the impact of OSA and OSAT exosomes on human endothelial cell
barrier integrity and changes in endothelial barrier impedance using ECIS. Exosomes from
OSA patients induced greater disruption of the endothelial monolayer barrier integrity
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compared with OSAT (Figure 1a,b). The normalized resistance change was higher in
OSA (−63 ± −6.81%) compared with OSAT (−35.83 ± −4.84%) (p = 0.001). We also used
TEER to confirm the integrity and permeability of the endothelial cell monolayer. We
found that the TEER values in trans-wells treated with exosomes derived from OSA were
6.1 ± 0.62 Ω·cm−2 compared with 3.73 ± 0.42 Ω·cm−2 for OSAT (p = 0.001). The TEER-
normalized values were 500.67 ± 48.25 for OSA and 200.82 ± 20.48 for OSAT (p-value
0.003) (Figure 1c).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 32 
 

 

2.3. Endothelial Barrier Integrity and Wound Healing 
Next, we tested the impact of OSA and OSAT exosomes on human endothelial cell 

barrier integrity and changes in endothelial barrier impedance using ECIS. Exosomes 
from OSA patients induced greater disruption of the endothelial monolayer barrier integ-
rity compared with OSAT (Figure 1a,b). The normalized resistance change was higher in 
OSA (−63 ±  −6.81%) compared with OSAT (−35.83 ±  −4.84%) (p = 0.001). We also used TEER 
to confirm the integrity and permeability of the endothelial cell monolayer. We found that 
the TEER values in trans-wells treated with exosomes derived from OSA were 6.1 ± 0.62 
Ω·cm−2 compared with 3.73 ± 0.42 Ω·cm−2 for OSAT (p = 0.001). The TEER-normalized val-
ues were 500.67 ± 48.25 for OSA and 200.82 ± 20.48 for OSAT (p-value 0.003) (Figure 1c). 

 
Figure 1. Exosomes derived from OSA subjects disrupt endothelial cell monolayer barrier integrity 
in vitro. (a) Ensemble-averaged curves of ECIS-measured endothelial cell barrier resistance changes 
over time after administration of exosomes from adult patients with OSA before treatment and after 
long-term-adherent CPAP (OSAT) therapy compared to endothelial cells incubated with plasma-
free media and empty exosomes (control; black line). (b) Evaluation of ECIS-measured endothelial 
cell barrier resistance changes after exosome administration. Endothelial cells were grown on trans-
well membranes to measure the integrity and permeability of the monolayer cells. (c) Continuous 
measurement of cell monolayer barrier function (TEER) using membrane inserts in multiple wells 
to measure the resistance across the trans-well membrane over time. TEER values for the average of 
each group: no exosomes, OSA ,and OSAT. ** p < 0.001. 

The functional relevance of exosome transfer between HMVEC-d cells were investi-
gated using ECIS in a wound-healing assay (Figure 2a). ECIS has also been used as an 
electric wound-healing assay to monitor cell migration [40]. Indeed, exosomes derived 
from OSA applied to HMVEC-d cells exhibited significantly slower recovery (54.23% ± 
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respectively. A quick drop in barrier resistance is observed when the dead cells detach 

Figure 1. Exosomes derived from OSA subjects disrupt endothelial cell monolayer barrier integrity
in vitro. (a) Ensemble-averaged curves of ECIS-measured endothelial cell barrier resistance changes
over time after administration of exosomes from adult patients with OSA before treatment and after
long-term-adherent CPAP (OSAT) therapy compared to endothelial cells incubated with plasma-free
media and empty exosomes (control; black line). (b) Evaluation of ECIS-measured endothelial cell
barrier resistance changes after exosome administration. Endothelial cells were grown on trans-
well membranes to measure the integrity and permeability of the monolayer cells. (c) Continuous
measurement of cell monolayer barrier function (TEER) using membrane inserts in multiple wells to
measure the resistance across the trans-well membrane over time. TEER values for the average of
each group: no exosomes, OSA, and OSAT. ** p < 0.001.

The functional relevance of exosome transfer between HMVEC-d cells were investi-
gated using ECIS in a wound-healing assay (Figure 2a). ECIS has also been used as an
electric wound-healing assay to monitor cell migration [40]. Indeed, exosomes derived from
OSA applied to HMVEC-d cells exhibited significantly slower recovery (54.23% ± 6.12%)
when compared with OSAT (76.28% ± 8.21%; p = 0.001), as shown in Figure 2a,b, re-
spectively. A quick drop in barrier resistance is observed when the dead cells detach
from the electrode surface. Following this, cells migrate into the wounded area, and the
impedance gradually increases and reflects the healing process. This automated assay has
the advantage that the wound area is well defined and highly reproducible.
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Figure 2. Plasma-exosome-induced wound healing in human endothelial cells. Comparative analysis
of real-time endothelial barrier integrity following wounding on 8W10E arrays. Plasma-derived
exosomes from OSA and OSAT patients applied to human microvascular endothelial cells (HMVEC-
d) for wound healing using ECIS system in vitro. (a) Representative graphs of comparative analysis
of hMVEC-d cells treated with and without exosomes following wound healing. HMVEC-d cells
were seeded at 0 h at a density of 50,000 cells into ECIS system arrays (8W10E) for 24 h; cells were
wounded, then exosomes derived from OSA (n = 12) and OSAT were added and monitored for
another 48 h. (b) Histogram showing the effects of exosome cargos derived from OSA or OSAT, as
well as unwounded cells and wounded cells with no exosomes, on endothelial cell wound healing
and recovery of HMVEC-d cells. * Indicates p < 0.01, while ** p < 0.001.

2.4. Angiogenesis (Tube Formation Assay)

To determine the functional effects of exosomes on endothelial cell function, we
evaluated whether exosome internalization could induce endothelial tube formation. The
cells were seeded at 30,000 cells/mL/well in 96-well plates coated with Matrigel. Brightfield
images depicting tube formation are shown in Figure 3a. The tube formation was quantified
using the number of tubes and length per tube (Figure 3b). No significant differences in the
total area between endothelial cells treated with exosomes derived from OSA, OSAT, or
cells not exposed to exosomes emerged (Figure 3b). The total tube length (OSA vs. OSAT,
p = 0.004), longest tube (OSA vs. OSAT, p = 0.007), and shortest tube (OSA vs. OSAT,
p = 0.001) were significantly higher in OSA-untreated cells compared with those treated
with exosomes from OSAT subjects (Figure 3b,c). The largest tube formation was observed
in OSA after 20 h compared with OSAT or cells not treated with exosomes. Overall, these
results suggest that exosomes derived from OSA enhance migration and tube formation,
and foster capillary-like structures, as opposed to OSAT.

2.5. Exosome Cargos

To study exosome cargos derived from OSA and OSAT, we performed comprehensive
multi-omics analyses including delineation of their lipidomes using tandem mass spec-
troscopy (LC-MS/MS), miRNA content by next generation sequencing, and proteomics.

2.6. Lipidomic Analysis

We determined exosome lipid composition profiles in 12 OSA subjects before and
after 1-year adherent CPAP treatment. A total of 311 lipid compounds in OSA and OSAT
plasma exosomes were identified, and these lipids were classified into four classes, i.e., sph-
ingolipids (3.68% ± 0.14), glycerolipids (51.4% ± 1.15), phospholipids (38.41% ± 1.74), and
saccharolipids (6.51% ± 0.92). We then studied the lipids characteristic of OSA compared
to OSAT, based on the differential lipid abundance, using multivariate statistical analy-
sis. Figure 4 shows the orthogonal partial least square discriminant analysis (OPLS-DA)
for the separation of two groups, including total lipids (Figure 4a). The distributions of
differentially abundant lipids are also displayed in heatmap form for total and subclass
lipids (Figure 4b heatmap). Using volcano plots, we identified 72 lipid molecules that were
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statistically significant in total lipids (Figure 4c) with log2 fold changes and log10 p-value,
respectively (fold change > 2 or <0.05 in Figure 4c and Table 2).
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Figure 3. Plasma exosomes altered human endothelial cell tube formation (angiogenesis) in vitro. 
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Figure 3. Plasma exosomes altered human endothelial cell tube formation (angiogenesis) in vitro.
Plasma-derived exosomes from OSA or OSAT were applied on a 3-D matrix endothelial cell culture
system to assess angiogenesis, and tube lengths were quantified using ImageJ software 2.9.0. The
formation of tube-like structures was observed under bright field. (a) Representative of phase
contrast micrographs of the capillary-like tubular structures of OSA and OSAT and compared with
no exosomes for 24 h. Arrow indicates tube formation. (b) Line graphs showing total tube length,
(c) longest tube length, and (d) shortest tube length. Tube formation was quantified by counting the
number of branching points in the total photographed area. n = 12. Scale bar 100 µm.

Furthermore, we show OPLS-DS, heatmap and volcano plot for lipids subclasses
including sphingolipids, glycerolipids, phospholipids, and saccharolipids (Figures S4–S6),
respectively. The data for OPLS-DS sphingolipids are shown in Figure S4a, for glyc-
erolipids in Figure S4b, for phospholipids in Figure S4c, and for saccharolipids in Figure
S4d. Heatmaps for lipid subclasses are shown in Figure S5: sphingolipids (Figure S5a),
glycerolipids (Figure S5b), phospholipids (Figure S5c), and saccharolipids (Figure S5d).
Using volcano plots, we identifiy differentially expressed lipids (log2) of sphingolipids
(n = 5 lipids) in Figure S6a, glycerolipids (n = 39 lipids) in Figure S5b, phospholipids
(n = 5 lipids) in Figure S6c, and saccharolipids (n = 2 lipids) in Figure S6d.

To investigate whether these lipids could be used as biomarkers for the diagnosis of
OSA, we constructed a receiver operating characteristic (ROC) curve for the differential
expressed lipids and investigated the area under the curve (AUC), which ranged between
0.95 and 0.70 (Supplementary Table S1). We found the highest ROC values were for TG
8.0_9.0_38.4 and Cer 9.0 30/42; Supplementary Table S1. The ROC for glycerolipids is
shown in Supplementary Table S2, while the ROCs for phospholipids, saccharolipids, and
sphingolipids are shown in Supplementary Table S3. The highest AUCs for individual
glycerolipids were TG 8:0_9:0_38:4 (AUC = 0.94, p = 0.0002), and TG 54:4|TG 18:1_18:1_18:2
(AUC = 0.85, p = 0.002); for phospholipids: PS 41:4 (AUC = 0.83, p = 0.005), and LPC O-16:1
(AUC = 0.81, p = 0.008); for saccharolipids: SL 19:1;O/26:2;O (AUC = 0.85, p = 0.0008), SL
17:0;O/26:2;O (AUC = 0.82, p = 0.0007); and for sphingolipids: SM 32:6;2O (AUC = 0.82,
p = 0.82), and Cer 9:0;3O/42:0;(2OH) (AUC = 0.81, p = 0.003). Thus, if confirmed in larger
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studies, these lipids may be used to identify a circulating plasma lipidomic signature that
would allow the identification of subjects with OSA compared with OSAT or those with
specific phenotypes [41].
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Figure 4. Lipidomic analysis of OSA exosomes using LC-MS/MS. (a) Supervised OPLS-DA model
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Table 2. List of the total lipids that are differentially expressed between the OSAT and OSA groups.

Items FC log2 (FC) p-Value =−LOG10 (p-Value)

LPC O-16:1 0.06 −4.1391 0.003138 2.5034

TG 8:0_8:0_28:4 0.28 −1.8468 0.015079 1.8216

LDGTS 21:0 0.37 −1.4297 0.008058 2.0938

TG 8:0_12:0_38:9 0.48 −1.0739 0.018855 1.7246

TG 8:0_11:0_38:8 0.49 −1.0182 0.041437 1.3826

AHexCer (O-20:5)16:1;2O/14:0;O 0.51 −0.96081 0.019799 1.7034
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Table 2. Cont.

Items FC log2 (FC) p-Value =−LOG10 (p-Value)

PC 9:0_42:6 0.53 −0.91807 0.043307 1.3634

DGGA 27:0_17:1 0.56 −0.8414 0.015464 1.8107

TG 8:0_12:0_38:7 0.56 −0.83895 0.034252 1.4653

TG 8:0_10:0_38:7 0.57 −0.81719 0.015201 1.8181

TG 8:0_9:0_36:4 0.6 −0.74876 0.007062 2.1511

TG 8:0_10:0_38:5 0.61 −0.70639 0.017472 1.7577

TG 8:0_8:0_38:4 0.63 −0.65961 0.004549 2.342

TG 8:0_8:0_38:5 0.63 −0.6593 0.014651 1.8341

TG 54:4|TG 18:1_18:1_18:2 0.64 −0.6345 0.000793 3.1007

TG 8:0_8:0_38:6 0.64 −0.65175 0.024064 1.6186

TG 8:0_9:0_38:4 0.65 −0.61458 0.000224 3.6501

PS 41:4 0.66 −0.59339 0.009325 2.0303

DGGA 17:0_27:0 0.66 −0.60012 0.024245 1.6154

TG 8:0_12:0_38:6 0.67 −0.57631 0.039363 1.4049

SM 32:6;2O 0.7 −0.51904 0.010348 1.9851

TG 8:0_8:0_36:3 0.72 −0.47121 0.045847 1.3387

TG 8:0_9:0_28:2 1.41 0.49281 0.034692 1.4598

PC 84:7 1.44 0.52454 0.029241 1.534

TG 17:1_18:1_18:2 1.44 0.52957 0.043477 1.3617

TG 15:0_15:0_17:2 1.47 0.55505 0.032567 1.4872

SL 21:0;O/26:2;O 1.47 0.55466 0.049341 1.3068

SL 21:0;O/26:0;O 1.48 0.56277 0.047757 1.321

TG 47:2|TG 14:0_15:0_18:2 1.49 0.57647 0.029857 1.525

TG 51:0|TG 16:0_17:0_18:0 1.51 0.59701 0.032805 1.4841

TG 48:2|TG 14:0_16:0_18:2 1.53 0.61758 0.046616 1.3315

TG 46:3|TG 10:0_17:1_19:2 1.54 0.62159 0.032146 1.4929

TG O-16:1_18:0_18:0 1.54 0.62365 0.036821 1.4339

TG 45:1|TG 12:0_15:0_18:1 1.56 0.64287 0.030752 1.5121

TG 10:0_18:2_18:2 1.57 0.65003 0.037827 1.4222

TG 49:0|TG 16:0_16:0_17:0 1.58 0.65533 0.006496 2.1874

TG 13:0_13:0_18:2 1.59 0.6695 0.040482 1.3927

TG 46:2|TG 12:0_16:0_18:2.1 1.59 0.66815 0.041077 1.3864

TG 46:2|TG 12:0_16:0_18:2 1.6 0.67826 0.035556 1.4491

TG 42:0|TG 12:0_14:0_16:0 1.6 0.67606 0.035651 1.4479

TG 42:1|TG 10:0_16:0_16:1 1.6 0.67972 0.044905 1.3477

TG 8:0_9:0_26:1 1.61 0.68498 0.01263 1.8986

TG 8:0_8:0_26:2 1.65 0.7221 0.020791 1.6821

TG 48:0|TG 14:0_16:0_18:0 1.65 0.72383 0.039058 1.4083

TG 8:0_9:0_28:1 1.66 0.72772 0.031111 1.5071

TG 48:0|TG 16:0_16:0_16:0 1.66 0.73223 0.035803 1.4461

TG 42:2|TG 8:0_16:0_18:2 1.67 0.7407 0.017513 1.7566
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Table 2. Cont.

Items FC log2 (FC) p-Value =−LOG10 (p-Value)

SM 39:2;3O 1.67 0.7361 0.042669 1.3699

TG 8:0_9:0_28:3 1.69 0.75753 0.002915 2.5354

TG 44:0|TG 12:0_14:0_18:0 1.69 0.75964 0.047626 1.3222

TG 12:0_14:0_18:1 1.69 0.75294 0.04945 1.3058

TG 46:1|TG 12:0_16:0_18:1 1.69 0.7595 0.049784 1.3029

SL 21:1;O/26:2;O 1.7 0.76579 0.045348 1.3434

TG 8:0_9:0_30:3 1.72 0.77893 0.033386 1.4764

DGCC 40:0_44:8.1 1.77 0.82628 0.026113 1.5831

TG 8:0_8:0_26:1 1.79 0.84235 0.021518 1.6672

TG 44:2|TG 10:0_16:0_18:2 1.8 0.84756 0.024438 1.6119

TG 43:1|TG 9:0_16:0_18:1 1.8 0.84461 0.037674 1.424

PC 80:2 1.87 0.90004 0.031744 1.4983

DGCC 42:0_44:6 1.94 0.95621 0.034975 1.4562

TG 40:1|TG 8:0_16:0_16:1 1.96 0.97235 0.016498 1.7826

SL 17:0;O/26:2;O 1.98 0.98487 0.004897 2.3101

Cer 9:0;3O/26:2;(2OH) 2.02 1.0143 0.010273 1.9883

DGCC 40:0_44:8 2.05 1.0387 0.014613 1.8353

SL 19:1;O/26:2;O 2.09 1.065 0.005659 2.2473

PS 41:3 2.17 1.1178 0.013763 1.8613

DGCC 40:0_44:7 2.2 1.1372 0.002424 2.6154

DGCC 42:0_44:10 2.24 1.1666 0.010602 1.9746

Cer 9:0;3O/42:0;(2OH) 2.4 1.263 0.001415 2.8492

DG 34:2 2.52 1.3321 0.002642 2.5781

DGCC 38:0_44:5 2.98 1.5758 0.008464 2.0724

HexCer 19:3;3O/26:2;(2OH) 4.06 2.0217 0.006126 2.2128

To correlate lipids with metabolic function, we performed PatternHunter [42] using
the differentially expressed lipids based on their component identification number (CID)
and found that glycerolipid metabolism, metabolic pathways, thermogenesis, regulation of
lipolysis in adipocytes, insulin resistance, fat digestion and absorption, vitamin digestion
and absorption, cholesterol metabolism, and lipid and atherosclerosis were differentially
affected following CPAP treatment.

2.7. Exosome Proteomic Analysis

To explore potential differences in the protein cargo among exosomes released into
the plasma of OSA subjects before and after 1-year treatment, we subjected the isolated
exosomes to liquid LC-MS/MS-based proteomics. In total, 190 proteins were identified, and
20 proteins showed statistically significant differences between OSA and OSAT samples.
Accordingly, proteins with 1.2-fold change and p < 0.05 were determined as differentially
expressed proteins (DEPs). To understand the potential functional impacts of proteins
enriched in OSAT vs. OSA exosomes, we used OPLS-DA (Figure 5a), heatmap analysis
(Figure 5b), and volcano plots (Figure 5c) of the differentially expressed proteins (DEPs)
with log2 fold changed above 1.2 and log10-p-value as shown in Figure 5c). The data
in volcano plots revealed that 16 highly significant proteins were detected and that 11
were down-regulated and 5 were up-regulated (Figure 5c). The down-regulated proteins
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and their log2 fold changes (FC) are HSP7C (FC = −2.59, p = 0.0002), ITA2B (FC = −2.32,
p = 0.001), TBA1B (FC = −2.23, p = 0.016), IF5AL (FC = −1.93, p = 0.0016), PEDF (FC = −1.94,
p = 0.015), PCYOX (FC = −1.65, p = 0.021), K2C8 (FC = −1.61, p = 0.005), ATPB (FC = −1.46,
p = 0.001), H33 (FC = −1.19, p = 0.04), ENOA (FC = −1.16, p = 0.03), and THRB (FC = −0.82,
p = 0.021). The up-regulated proteins and their log2 fold changes are APOE (FC = 1.41,
p = 0.006), HV551 (FC = 1.51, p = 0.022), ITIH2 (FC = 1.63, p = 0.006), K1C10 (FC = 1.69,
p = 0.032), and IGLC3 (FC = 4.36, p = 0.005).
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Figure 5. Proteomic analysis of OSA and OSAT using in situ digestion on LC-MS. (a) Orthogonal 
partial least square discriminant analysis (OPLS-DA) for the separation of two groups, (b) heatmap 
analysis, (c) volcano plots and (d) protein–protein network for differentially expressed proteins. The 
red color indicates up-regulation, and the blue color indicates down-regulation. n = 12/group. 

Figure 5. Proteomic analysis of OSA and OSAT using in situ digestion on LC-MS. (a) Orthogonal partial
least square discriminant analysis (OPLS-DA) for the separation of two groups, (b) heatmap analysis,
(c) volcano plots and (d) protein–protein network for differentially expressed proteins. The red color
indicates up-regulation, and the blue color indicates down-regulation. n = 12/group. Temporal changes
of gene ontology and KEGG pathways for exosome proteomics analysis for OSA and OSAT subjects.
The differentially expressed proteins (DEPs) were subjected to KEGG, GO, and disease description.
(e) Top terms from GO functional enrichment analyses based on DEPs of biological processes (BP), cellu-
lar components (CC) and molecular functions. (f) Top KEGG pathways based on pathway enrichment
analysis KEGG) of DEPs pathways, and (g) disease description. All proteins associated with disease
tissue networks were identified according to the DISEASES database.
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The differentially expressed proteins were further analyzed using the STRING database
for enrichment gene ontology (GO) and pathway analysis [43] to predict the protein–protein
interaction (PPI) and to identify hub genes of the DEPs. The top highly significant path-
ways were cholesterol metabolism (p = 0.00001), complement and coagulation cascades
(p =3.55 × 10−19), neuroactive ligand–receptor interaction (p = 0.001), pathways in can-
cer (p = 0.005), regulation of actin cytoskeleton (p = 0.007) hypertrophic cardiomyopathy
(p = 0.004), dilated cardiomyopathy (p = 0.003), and hemostasis (p = 2.21 × 10−4), as shown
in Figure 5d. We analyzed these proteins using GO enrichment analysis and selected the
top 10 genes for biological process (PB), cellular component (CC), and functional process,
as shown in Figure 5e. We found that exosome proteins are enriched in the extracellu-
lar region (45%), extracellular space (39%), organelle (39%), membrane (30%), cytoplasm
(28%), extracellular exosome (27%), and cell surface (12%) (Figure 5e). In biological process,
cellular processes (50%) and metabolic processes (40%) accounted for the majority, while
for molecular functions, we found signaling receptor binding (9%), lipid binding (9%),
and antigen binding (6%) as the leading processes (Figure 5e). To further understand the
functions of the DEPs, KEGG analysis was performed. The significant KEGG pathway
analyses are shown in Figure 5f. Here, we highlight some of the pathways with potential
biological significance in OSA, such as cholesterol metabolism (p = 1.2 × 10−5), complement
and coagulation cascades (p = 3.4 × 10−19), hemostasis (p = 1.7 × 10−15), and the immune
system (p = 7.3 × 10−15) (Figure 5f).

Of the DEPs identified, several seem to be involved in known diseases, including
coronary artery disease (PLAT, APOB, APOA1, APOE, PCSK9, LPA, FDR 0.00000001),
lipid metabolism disorder (APOC3, APOB, APOA1, APOE, LCAT, PCSK9, LDLR, FDR
0.00000002), vascular disease (PLAT, SERPINE1, APOB, APOA1, APOE, PCSK9, LPA, FDR,
0.000007), atherosclerosis (APOB, APOA1, APOE, LPA, FDR, 0.000007), and neurodegenera-
tive disease (APOE, SORL1, APP, BACE1, MAPT, TREM2, VLDLR, FDR, 0.0004) (Figure 5g).
We also found DEPs involved in different organs and tissues, including bone marrow
cells, digestive glands, plasma cells, and the skeletal system, liver, respiratory system,
hematopoietic system, and cardiovascular system (Figure 5g).

As with proteomic differences, ROC curves and AUCs were constructed for 17 DEPs
for OSA diagnosis, and their ROCs ranged from 0.90 to 0.60 (Figure S7). Of the 17 proteins,
HSP7C had the highest AUC value (0.90, 95% confidence interval (CI): 0.767–0.98), with
a sensitivity of 80% and specificity of 80%. The second-highest AUC value was for ATPB
(0.85, 95% CI: 0.64–0.998), with a sensitivity of 100% and specificity of 70%, followed by
IF5ALS (0.85, 95% CI: 0.64–0.99), with a sensitivity of 80% and specificity of 80.0%.

2.8. Exosomal miRNA Profile

A total of 2529 human mature miRNAs were identified, and of these, 81 differentially
expressed miRNAs were detected in all exosome samples. Heatmap analysis (OPLS-DA)
revealed consistent and significant differences in miRNA expression profiles for exosomes
from OSAT vs. OSA (Figure 6a,b). The score plot for OSA and OSAT using OPLS-DS
plot is shown in Figure 6a, while the heatmap for the 13 most differentially expressed
miRNAs is also shown (Figure 6b) and volcano plots (Figure 6c). Of those 13 miRNAs,
there were 4 up-regulated and 9 down-regulated (Figure 6c). The up-regulated miRNAs
were the following: hsa-miR-933 (fold = 0.79, p = 0.017), hsa-miR-6765-3p (fold = 1.16,
p = 0.023), hsa-miR-4725-5p (fold = 1.19, p = 0.004), and hsa-miR-6848-3p (fold = −1.68,
p = 0.012), while the down-regulated miRNAs were hsa-miR-8069 (fold = −1.95, p = 0.013),
hsa-miR-6125 (fold = −1.75, p = 0.035), hsa-miR-6803-5p (fold = −1.70, p = 0.035), hsa-miR-
3656 (fold = −1.21, p = 0.0025), hsa-miR-3960 (old = −1.037, p = 0.009), hsa-miR-6869-5p
(fold = −1.09, p = 0.007), hsa-miR-6088 (fold = −0.79, p = 0.046), hsa-miR-6089 (fold = −0.74,
p = 0.0005), and hsa-miR-6087 (fold = −0.56, p = 0.020). We used several computational
databases for the target predictions of these 13 miRNAs and identified 2529 individual
gene targets.
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Figure 6. Plasma-derived exosome miRNA profiling for OSA and OSAT. (a) Orthogonal partial
least square discriminant analysis (OPLS-DA); (b) Heatmap illustrating miRNA expression patterns
in exosomes (dark red: increased miRNA expression; light blue: reduced miRNA expression).
The dendrograms show hierarchical clustering representing the similarities and dissimilarities in
expression profiles among individuals and miRNAs; and (c) volcano plots. Gene Ontology (GO) for
the target prediction of differentially expressed miRNAs (miRNAs) in exosomes derived from OSA
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and OSAT subjects. GO analysis for (d) cellular components, (e) biological processes, and (f) molecular
functions, and (g) KEGG pathways identified in target predication genes found in differentially
expressed miRNAs in OSAT vs. OSA. Network visualization of the differentially expressed exosomal
miRNAs derived from OSA and OSAT. (h) Network for 13 miRNAs, and (i) list of the miRNAs and
their associated target predication genes. n = 12.

Next, GO of predicted mRNA targets were clustered to reveal the enriched molec-
ular functions of target genes. Those genes were involved in many biological processes
(BPs), including cell adhesion (p = 2.3 × 10−14), positive regulation of cellular processes
(p = 2.3 × 10−10), positive regulation of metabolic processes (p = 6.4 × 10−8), and regu-
lation of metabolic processes (p = 1.9 × 10−6) (Figure 6d–f), respectively. The miRNAs
were also involved in many CC activities, including the intercellular organelle, plasma
membrane, and cell projection (Figure 6f). The miRNAs were involved in many aspects of
MFs, including lipid binding, heterocyclic compound binding, protein binding, and ion
binding (Figure 6f). Canonical KEGG pathway analyses indicated that the differentially
expressed miRNAs were involved in MAPK signaling (p = 3.03 × 10−5), insulin secretion
(p = 3.7 × 10−4), the PI3K-Akt signaling pathway (p = 8.9 × 10−4), adrenergic signaling
in cardiomyocytes (p = 0.005), choline metabolism in cancer (p = 0.004), neurotrophin
signaling (p = 0.005), gastric cancer (p = 0.005), melanoma (p = 0.01) and non-small cell
lung cancer (p = 0.01) (Figure 6g). To evaluate the probability of diagnosis with OSA, ROC
curves were constructed and AUCs were calculated. The AUCs were: hsa-miR-6089 (0.87),
hsa-miR-3960 (0.83), hsa-miR-3656 (0.81), and hsa-miR-6088 was (0.70) Figure S8. The AUC,
p-value, and fold change for all miRNAs from 0.87–0.70 are presented in Figure S8.

We further validated four of the differentially expressed miRNAs (2 up-regulated and
2 down-regulated) using qRT-PCR. For up-regulated miRNAs, hsa-miR-6848 (1.72 ± 0.18-fold
change (FC); p = 0.002), hsa-miR-4725 (1.21 ± 0.15 FC; p = 0.001) confirmed the findings, while
down-regulated miRNAs were hsa-miR-6089 (−1.93 ± 0.19 FC; p = 0.003) and hsa-miR-3656
(−1.74 ± 0.19 FC; p = 0.01). Validated miRNAs showed similar expression differences to those
identified in the array experiments. Next, we used miRNet [44], a web-based tool designed
for creation, customization, visual exploration, and functional interpretation of miRNA–target
interaction networks. The network for the 13 miRNAs and their associated genes is shown
in Figure 6h, while the list of these miRNAs and their target prediction genes is shown
in Figure 6i. This miRNet allows navigation of the complex landscape of miRNA–target
interactions.

2.9. Multi-Omic Data Integration

Using multi-block analysis, we identified variables from each block that are involved
in discrimination according to the OSA treatment. The similarities between OSA and OSAT
subjects were assessed by several graphical block outputs with 10 clinical features (age,
BMI, Chol, TG, HDL, LDL, AHI, glucose, and systolic and diastolic blood pressure), 72 lipid
features, 16 proteomic features, and 13 miRNA features based on volcano plots (Figure S9).
Among the 12 subjects of OSA and OSAT, 7 subjects had complete comprehensive exosome
cargo information including lipids, proteins, and miRNAs (Figure S9). The interpretation
of multi-block data requires several graphical outputs. Some of them are presented in
Figure S9 for the sparse version. The sample plots for each dataset including clinical data,
lipids, proteins, and miRNAs are shown in Figure 7a. Using the results of the sparse
version of the multi-block analysis, we identify variables from each block that are mainly
involved in discrimination according to the OSA condition. For instance, variables located
within the outer circle are most important and contribute more in terms of differentiating
between all omics datasets for the samples of OSA and OSAT (Figure 7a). The correlation
circle plot shows the contribution of each variable to each component (x and y). The
variables that are closer to the outer circle are more important than those that fall in the
inner circle. For example, in Figure 7a, clinical variable AHI has a negative contribution
on component x, and Systolic BP clinical variable has negative contribution on component
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y. The clinical variable AHI, miRNA variables hsa-miR-6869-5p and hsa-miR-4725-5p,
and lipid variables HSP7C and IF5AL are very important and contribute highly towards
discriminating the OSA and OSAT samples on component X. The clinical variable Systolic
BP contributes highly towards discriminating the OSA and OSAT samples on component
y. All the variables located between the two circles contribute towards discriminating
the samples to some lesser or greater degree. The individual variables for each omics
dataset can also be seen in Figure S9, and the loading weights can be visualized in the
contribution plot (Figure S10), where most of these differentiating features can be seen at
the bottom of the plot. In an integrative study, all blocks acquired for each sample can be
analyzed together through a multi-block analysis, and a Circos plot can be generated to help
interpret the results of this multi-block approach (Figure 7b). The Circos plot represents
the correlations greater than 0.8 between lipid, clinical, proteomic and miRNA variables.
The internal connecting lines show the positive (red) and negative (blue) correlations. The
outer lines show the expression levels of each variable in each sample group (OSA and
OSAT). The variables are sorted first according to their block and then depending on their
importance in discrimination. The relationships are positive and concern a few variables
from each block. The selection of variables is valuable information for the biologist in that
it allows to focus on this smaller selection for validation and draw biological conclusions
from it. Relevance networks can also be viewed as an initial step in modelling since they
mimic biological networks and provide clues to address inference network issues through
further dedicated experiments. Another way to display the results is presented in Figure 7c.
The heatmap shows the multi-omic molecular signature expression for each sample. It
represents samples in rows (indicated by their group on the left-hand side of the plot) and
variables in columns (indicated by their data type at the top of the plot). The variables have
strong contributions are highlighted at the bottom, along with their labels. Clinical variables
are highlighted in yellow, lipid variables in blue, miRNA in purple, and proteomics in
green. The heatmap highlights the profiles of selected variables for each of the OSA and
OSAT samples and omics data types, with both positive and negative relationships plotted
in Figure S11.
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Figure 7. Graphical representation of a multi-block analysis performed on OSA and OSAT. (a) Var-
iable plot highlighting the contributions for OSA clinical data, exosome cargo including lipids, pro-
teins, and miRNAs. Markers in the outer circle are more significant and contribute more to separat-
ing the two conditions. Those in the inner circle are less significant than ones in outer circle. (b) 
Circos plot depicting the strongest correlation biomarkers in the multi-omic biomarker panel in OSA 
and OSAT. Circos plot of clinical, lipids, proteins, and miRNAs showing Spearman’s correlation 
analysis (p < 0.05) between OSA and OSAT multi-omics, classified based on the superclass. (c) 
Heatmap clustering of the variables (clinical data, lipids, proteins, and miRNAs) to represent the 
muti-omic profiles for the 7 samples. Red indicates a positive correlation, and blue indicates a neg-
ative correlation. The variables were selected by applying DIABLO to cellular frequency, gene, and 
metabolite module datasets depicted using a Circos plot. The variables indicated in the ideogram 
are connected with either red or blue to other variables if the correlation is either positive or nega-
tive. Only correlation above a certain threshold is depicted (r = 0.8). The lines around the ideogram 
are drawn by connecting the average expression value of a given variable for a certain phenotypic 
group. 
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Figure 7. Graphical representation of a multi-block analysis performed on OSA and OSAT. (a) Var-
iable plot highlighting the contributions for OSA clinical data, exosome cargo including lipids, pro-
teins, and miRNAs. Markers in the outer circle are more significant and contribute more to separat-
ing the two conditions. Those in the inner circle are less significant than ones in outer circle. (b) 
Circos plot depicting the strongest correlation biomarkers in the multi-omic biomarker panel in OSA 
and OSAT. Circos plot of clinical, lipids, proteins, and miRNAs showing Spearman’s correlation 
analysis (p < 0.05) between OSA and OSAT multi-omics, classified based on the superclass. (c) 
Heatmap clustering of the variables (clinical data, lipids, proteins, and miRNAs) to represent the 
muti-omic profiles for the 7 samples. Red indicates a positive correlation, and blue indicates a neg-
ative correlation. The variables were selected by applying DIABLO to cellular frequency, gene, and 
metabolite module datasets depicted using a Circos plot. The variables indicated in the ideogram 
are connected with either red or blue to other variables if the correlation is either positive or nega-
tive. Only correlation above a certain threshold is depicted (r = 0.8). The lines around the ideogram 
are drawn by connecting the average expression value of a given variable for a certain phenotypic 
group. 

  

Figure 7. Graphical representation of a multi-block analysis performed on OSA and OSAT.
(a) Variable plot highlighting the contributions for OSA clinical data, exosome cargo including
lipids, proteins, and miRNAs. Markers in the outer circle are more significant and contribute more
to separating the two conditions. Those in the inner circle are less significant than ones in outer
circle. (b) Circos plot depicting the strongest correlation biomarkers in the multi-omic biomarker
panel in OSA and OSAT. Circos plot of clinical, lipids, proteins, and miRNAs showing Spearman’s
correlation analysis (p < 0.05) between OSA and OSAT multi-omics, classified based on the superclass.
(c) Heatmap clustering of the variables (clinical data, lipids, proteins, and miRNAs) to represent
the muti-omic profiles for the 7 samples. Red indicates a positive correlation, and blue indicates a
negative correlation. The variables were selected by applying DIABLO to cellular frequency, gene,
and metabolite module datasets depicted using a Circos plot. The variables indicated in the ideogram
are connected with either red or blue to other variables if the correlation is either positive or negative.
Only correlation above a certain threshold is depicted (r = 0.8). The lines around the ideogram are
drawn by connecting the average expression value of a given variable for a certain phenotypic group.

3. Discussion

In this study, we conducted a multi-omic exploration of circulating exosomal cargo
by integrating lipidomics, proteomics, and small RNAs (miRNAs) from exosomes derived
from OSA patients at the time of their diagnosis and then following long-term adherent
CPAP treatment. Our aims were twofold: (a) to study the effects of exosomes on endothelial
barrier integrity, wound healing, and tube formation, and (b) to determine differentially
expressed exosome cargos, including lipids, proteins, and miRNAs. These two parallel
aims enabled the creation of a network-based model for a better understanding of the
biochemical alterations caused by OSA and how they connect with each other from a
systems biology perspective. Multi-omic analyses further enabled the identification of
substantial interactions between specific phenotypic clinical characteristics and the three
omic-based explorative approaches implemented herein. For example, we found that the
cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients.
Furthermore, our data suggest that a multi-omic integrative approach might be useful in
understanding how exosomes function, their origin, and their potential clinical relevance,
all of which merit future exploration in the context of relevant phenotypic variance. Thus,
exosome profiling may reveal pathological events occurring at the cellular and systemic
levels in OSA patients, pinpointing deregulated molecular pathways and possibly thera-
peutic targets. In fact, the current unavailability of disease-modifying therapies for OSA is a
constant reminder of the need to better understand its molecular mechanisms. Developing
more effective/etiology-driven treatments may be possible by understanding the molecular
changes in OSA. Comprehensive analysis of multi-omic data should provide useful insights
for discovery of new biomarkers and identification of therapeutic targets.
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OSA is a highly prevalent disease that imposes a myriad of adverse consequences,
among which cardiovascular morbidity is particularly prominent [45]. Chronic OSA is
becoming increasingly prevalent due to factors such as its potential links to metabolic
syndrome or an increased awareness of OSA patients, resulting in more diagnoses [46,47].
More than 900 million adults have been affected by OSA globally, with about two-fifths in
the moderate to severe category [1]. In general, OSA prevalence ranges from 9% to 38%,
with males (13% to 33%) more likely to be affected than females (6% to 19%) [46]. OSA can
adversely affect the hypoxia-reoxygenation system and sleep cycle, increasing inflamma-
tion, oxidative stress, endothelial dysfunction, and sympathetic activity. As a result, adverse
cardiovascular events are more likely to occur [48]. Studies have shown that OSA can result
in systemic and local inflammation, and this inflammation can trigger the impairment of
vascular endothelial cells and further modify the structure and function of vessels, leading
to endothelial dysfunction [49]. Endothelial dysfunction is a key factor in the development
of various end-organ morbidities, such as CVD and metabolic dysfunction [49,50]. Poor ad-
herence to CPAP treatment by adults with OSA is a common issue [51], and a recent study
suggested that CPAP treatment does not substantially improve metabolic derangements in
an unselected OSA population, but the effect may be higher in specific subgroups of OSA
patients [52]. We present for the first time a comprehensive study that incorporates clinical
phenotype, bioinformatics, multidimensional network analysis, and state-of-the-art sys-
tems biology in an effort to integrate the circulating exosome cargo in OSA patients before
and after treatment into a cogent and evidence-based guide of potential pathophysiological
mechanisms driving this chronic condition. This work provides an important new basis
for hypothesis generation and mechanistic insights into OSA pathobiology and allows for
the identification of novel diagnostic and pharmacological targets for early diagnosis and
treatment of OSA. Several studies have suggested that OSA-induced repeated hypoxia may
play a role in the pathophysiology of cardiovascular diseases by inducing inflammatory
responses through increasing cytokine and adhesion molecule levels [53,54]. Together,
our multi-omic assessment of OSA-derived exosomes provides several new insights. For
example, alterations of exosome lipidomic, proteomic, and miRNA profiles in OSA are
associated with a combination of temporal changes that may not only enable specific dis-
ease phenotype detection but may also drive recognition of mechanisms leading to specific
end-organ morbidity.

Exosomes are abundantly found in all bodily fluids, and their cargo is continuously
influenced by ongoing physiological and pathological events, making them outstanding
diagnostic markers. In addition, exosome cargo can provide unique information regarding
mechanisms underlying the disease, as well as enabling prediction of clinical outcomes in
a large number of disorders [55–57]. Most studies to date have focused on characterizing
plasma exosomes with the aim of exploring their role in various pathogenic processes
at the transcriptomic, proteomic, metabolomic, lipidomic, and genomic levels. However,
integrative multi-omic studies of exosomes have been relatively scarce, and yet they have
afforded uniquely valuable insights into the mechanisms underlying disease and into
some of the biological roles played by different kinds of exosome cargo in the context
of disease diagnosis and prognosis. Using the latter multi-omic approach, the current
study detected potential alterations in several biological systems (e.g., hemostasis, immune
system, metabolism, etc.) that provided confirmatory network cross-correlations across
the various Omics utilized herein. We surmise that exosomes provide an additional level
of biological complexity, as they play a key role in cellular communication and mediate
specific signals to cells and tissues, thereby reflecting not only specific processes within
affected cells, but further conveying unique cellular responses to both neighboring and
distant cellular systems. We therefore postulated that analysis of plasma exosomes by multi-
omic approaches may provide unparalleled insights into the involvement of concurrent
pathogenetic mechanisms that, by virtue of their inter-individual differences, may facilitate
a more personalized and precise approach to each patient. Thus, even if the functional
properties of exosomes from each OSA patient led to dysfunction of naïve endothelial
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cells, the conglomerate of exosome elements potentially contributing to such common
functional-deficit end results will differ and facilitate improved understanding of the
specific contributors to morbidity (e.g., endothelial dysfunction) in each patient.

3.1. Functional Effects of Circulating Exosomes on Naïve Endothelial Cells

Vascular endothelial dysfunction, characterized by imbalanced vasoconstrictive and
vasodilatory molecules, is the earliest sign of vessel lesions preceding clinically obvious
cardiovascular complications in OSA [18,58,59]. Circulating exosomes are constantly in
contact with endothelial cells, and they regulate endothelial cell proliferation, apoptosis,
and migration, thus regulating vascular function [60]. Exosomes are produced by all
cells, and endothelium is a rich source of exosomes that have access to the main circu-
lation, thereby potentially impacting local and distant tissue function [61]. We showed
that plasma-derived exosomes from OSA patients impair endothelial adhesiveness and
permeability [24,62,63], which may directly or indirectly trigger or exacerbate cellular en-
dothelial injury, possibly via oxidative stress-related pathways. Furthermore, we previously
showed that circulating exosomes contribute to the senescence of endothelium in OSA,
and are amenable to improvements, at least in part, after treatment of OSA with adherent
CPAP [39]. In obese children or in children suffering from OSA who manifest evidence of
endothelial dysfunction, plasma exosomes induce marked in vitro and in vivo functional
and structural alterations in naïve endothelium that are mediated by selective components
of the exosomal miRNA cargo [63]. Of note, such effects are not present when similar
experiments are conducted among children with obesity or OSA but without evidence
of endothelial dysfunction. Plasma-derived exosomes in otherwise healthy subjects ex-
posed to 4 days of intermittent hypoxia mimicking OSA are constitutively altered in their
miRNA cargo and exhibit the ability to induce endothelial dysfunction in vitro [64]. We
further demonstrated that such properties are reversed upon normoxic recovery [24]. In
patients suffering from the obstructive hypoventilation syndrome (OHS), the most severe
form of sleep-disordered-breathing, we found that circulating exosomes contributed to the
induction and propagation of OSA/OHS-related endothelial dysfunction (i.e., increased
permeability and disruption of tight junctions along with increased adhesion molecule
expression and reduced endothelial nitric oxide synthase expression) and promoted in-
creased monocyte adherence [65]. Our current findings expand on these previous studies
and illustrate an expanded repertoire of adverse functional consequences imposed on naïve
endothelial cells when subjected to exosomes from OSA patients.

3.2. Multi-Omic Analysis
3.2.1. Lipid Cargo of Exosomes

Lipids represent one of the most important components of exosomes, with important
structural and regulatory functions during exosome biogenesis, release, targeting, and
cellular uptake [66]. For example, lipids are essential elements that have been found in
all cell types and are abundantly distributed in exosomes. The lipid profiles of exosomes
have been reported for several cell lines and biological fluids, including urine, plasma, and
serum [67]. The lipidomic characteristics of OSA patients have been previously reported,
and widespread alterations across the spectrum of lipid classes were detected in patients
with OSA when compared with controls [68,69], with some of these findings potentially
pointing to identification of the biochemical mechanisms affecting lipid metabolism in
OSA, or to the discovery of novel biomarkers, and further to the evaluation of treatment
efficacy [70]. In this study, we found that exosomes derived from OSA subjects are en-
riched in multiple lipid classes, including glycerolipids (51.4% ± 1.15), phospholipids
(38.41% ± 1.74), saccharolipids (6.51% ± 0.92), and sphingolipids (3.68% ± 0.14). We
identified several lipid classes in exosomes which may play regulatory functions. For
example, ceramide is a sphingolipid which is one of the most important lipids in exosome
biogenesis because of its apparent capacity to trigger ESCRT-independent processes and
induce spontaneous membrane invagination [71]. Ceramide is synthesized from SM after
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the removal of a phosphocholine moiety by sphingomyelinases, and the spontaneous
budding of ceramide-containing membranes is attributed to its cone-shaped structure,
which facilitates the negative curvature of the membrane [72]. In addition, phospholipids
that appear to play important regulatory functions during exosome biogenesis include
phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-biphosphate, which seem
to regulate the exosome formation, release, and cargo sorting [66].

To assess the potential of exosomal lipid signatures in OSA, we performed ROC
analysis of OSAT vs. OSA for multiple lipid classes. Our data suggests multiple lipid
profiles for each of the sub-classes identified under the AUC. As an illustrative example,
the highest AUCs for glycerolipids were TG 8:0_9:0_38:4 and TG 54:4|TG 18:1_18:1_18:2,
with additional biomarkers emerging for phospholipids, saccharolipids, and sphingolipids.
We suggest these specific lipid subsets may serve to identify a circulating plasma lipidomic
signature that may be further refined to demarcate between relevant OSA clinical phe-
notypes. Since the extant research focused on exosomal lipids in the context of vascular
dysfunction is limited, further extrapolation of our findings to parallel studies is precluded.
However, serum lipidomic profiling revealed dysfunction of phospholipid metabolism in
subclinical coronary artery disease [73]. There was also a trend of higher levels of LPC(18:0)
and LPC(22:6) and lower levels of LPC(16:0), LPC(16:1), LPC(18:1), LPC(18:2), LPC(20:3),
and LPC(20:4) in severe coronary calcification. These results were supported by similar
findings that showed lower levels of LPC (16:0), LPC(18:2), and LPC(20:4) associated with
CVD [74,75]. Thus, changes in lipid composition apparently increase the exosomes’ ability
to fuse with neighboring cells [76]. Many proteins and pathways have been linked to
exosome export, including the ceramide pathway. For example, ceramide has been shown
to facilitate the formation of endosomal vesicles, and the export of specific miRNAs to
exosomes [72,77]. Understanding lipid heterogeneity within exosomes could prove crit-
ical toward understanding internalization mechanisms and signaling events which may
not be captured by more commonly used proteomic and nucleic acid characterization
techniques [78,79]. Indeed, the main role of lipid components in exosomes is to regulate
exosomal sorting of miRNAs and proteins [80]. Lipid dysmetabolism in OSA reflects alter-
ations in phospholipid biosynthesis, steroidogenesis, and fatty acids. This may influence
cell membrane formation, augmenting lipid uptake, atherogenesis and inflammation [81].
The use of metabolomic and lipidomic strategies for selecting potential biomarkers for OSA
was explored [68,82].

3.2.2. Exosome Proteins

We performed an extensive investigation of the exosome protein cargo via quantitative
proteomic approaches in patients with OSA before and following adherent long-term
therapy. Previous studies have used proteomics of different exosomes subtypes to begin to
evaluate the specificity of protein markers classically used to define exosomes and other
exosome subtypes [83,84], since plasma- and serum-derived exosomes are considered
liquid biopsies for disease-associated changes because exosomes are shed into the blood
from the tissue of origin. OSA and OSAT have different abundance levels for a selected
number of proteins. These altered proteins were distinctive between OSA and OSAT
based on hierarchical clustering, PCA, and Pearson Correlation Analysis (PCA). To further
delineate the functional relevance of the altered proteins, we conducted GO and pathway
analysis (KEGG and Reactome) and summarized four sub-categories of GO BP terms and
KEGG/Reactome pathways based on the enrichment results. We analyzed these proteins
using GO enrichment analysis, and we selected the top 10 genes for biological process (PB),
cellular component (CC), and functional process. Many of the enriched biological processes
found for OSA exosome proteins are involved with biological processes, immune response,
and cellular processes. Some of the proteins that were identified have been implicated in
well-established morbidities associated with OSA, such as coronary artery disease (PLAT,
APOB, APOA1, APOE, PCSK9, LPA), lipid metabolism disorder (APOC3, APOB, APOA1,
APOE, LCAT, PCSK9, LDLR), vascular disease (PLAT, SERPINE1, APOB, APOA1, APOE,
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PCSK9, LPA), atherosclerosis (APOB, APOA1, APOE, LPA), and neurodegenerative disease
(APOE, SORL1, APP, BACE1, MAPT, TREM2, VLDLR). In addition, we evaluated the
diagnostic probability of OSA and the ROC for each of the 17 differentially expressed
proteins ranging from 0.6 to 0.9. Of these 17 proteins, we highlighted only the highest
proteins with AUC values. For example, HSP7C was the highest, followed by ATPB and
IF5ALS, based on 80% specificity and sensitivity values. Thus, proteomic analyses have
provided information regarding cholesterol transfer activity, enzyme regulator activity,
and phospholipid binding that are relevant to the pathophysiology of deleterious effects
induced by the presence of OSA. Proteomic analyses of circulating exosomes derived
from OSA represent a promising approach to the elucidation of cell–cell communication
and the discovery of putative biomarker candidates for OSA diagnosis and treatment. A
proteomic approach has been performed to detect protein profiles of serum extracellular
microvescicle proteins in an intermittent hypoxia (IH) rodent model [85]. Furthermore,
proteomic analysis using high-resolution and high-throughput mass spectrometry has been
reported with OSA [86–88].

3.2.3. Exosome miRNAs

MiRNAs play a key role in exosomes due to their ability to protect against degrada-
tion and increase stability. Since one miRNA can target and regulate hundreds of genes
(mRNAs), miRNAs have also gained considerable attention as biomarkers or putative
indicators of mechanistic pathways in disease states. Furthermore, differential plasma
miRNA profiles have been described for many diseases, including fatty liver [89] and
atherosclerosis [90,91]. Dysregulation or altered miRNA expression/function has been
implicated in diabetes [92] and cardiovascular disease [93,94]. Furthermore, the role of
miRNAs in cholesterol homeostasis and lipid metabolism has been the focus of multiple
studies [95,96]. We have previously identified a cluster of exosomal miRNAs diverging
in normal dipping blood pressure (NDBP) and reverse dipping blood pressure (RDBP) in
the context of OSA [62], i.e., underlying different clinical phenotypes despite similar OSA
severity based on polysomnographic criteria. Of note, 10 of the miRNAs in that study were
the same as in the current study, namely hsa-miR-6089, hsa-miR-933, hsa-miR-4725-5p,
hsa-miR-33b-3p, hsa-miR-6508-5p, hsa-miR-1238-3p, hsa-miR-1228-3p, hsa-miR-6797-3p,
hsa-miR-6069, and hsa-miR-4665-3p. Such striking similarities further buttress the con-
gruence of the pathophysiological pathways likely involved in downstream effects at the
organ and cellular level. Indeed, miRNAs, messenger RNAs, and proteins contained in
exosomes can influence the development of atherosclerosis or angiogenesis in the context
of peripartum cardiomyopathy [97]. Furthermore, several miRNAs have been implicated
in OSA pathophysiology, including miR-664a-3p, miR-92a, and miR-1254 [98–100]. In
addition, miR-210 concentration was higher in patients with OSA than in matched control
subjects, and the AHI of OSA subjects was positively correlated with miR-210 concentration
among individuals with OSA, thus suggesting a critical role of miR-210 in OSA patho-
physiology [101]. OSA was also associated with dysregulation of several novel non-coding
RNAs, including lncRNA MRPL20-AS1, miRNA-1254, and miR-320e [102,103].

3.3. Data Integration

In the various paragraphs above, we have discussed each of the omics findings sep-
arately. However, the unique value of multi-omics resides in the ability to effectively
generate biologically relevant data integration approaches that can identify novel biomark-
ers and gain profound insights into biological mechanisms from different experimental
sources [104]. Exosome cargos are primarily composed of proteins, lipids, and miRNAs
and play multiple simultaneous roles throughout the human body [105]. Exosomal car-
gos that jointly explore miRNAs, proteins, and lipids have been reported as promising
biomarkers in pancreatic cancer [106], prostate cancer [107], and stroke [108]. Here, we
have identified a panel of constitutive elements within exosome cargos and correspond-
ing downstream molecular pathways that exhibit strong associations with OSA clinical
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outcomes. To achieve such goals, we used correlation network analysis to identify and
visualize relationships between key features from omics datasets. Thus, this study aims to
introduce exosomes in a multi-omics context and to provide a perspective on their potential
landscape applicability to a disease such as OSA. Similar approaches have recently been
applied to Alzheimer’s disease, whereby investigators detected unique biomarkers by inte-
grated analysis of 1000 proteins, 594 lipids, and 105 miRNAs derived from microglia [109].
Multidimensional cargo carried by exosomes in circulating blood may therefore reflect
pathophysiological processes occurring within their source cells and tissues. The clinical
variable AHI, miRNA variables hsa-miR-6869-5p and hsa-miR-4725-5p, and lipid variables
HSP7C and IF5AL are very important and contribute highly towards discriminating the
OSA and OSAT samples on component X, and the clinical variable Systolic BP contributes
highly towards discriminating the OSA and OSAT samples on component y (Figure 7a).
There are several advantages to studying exosome cargo, and in particular miRNA, in
circulating exosomes rather than total miRNAs in plasma: (1) Exosomes provide relevant
information on patient status and may offer prognostic information on a broad range of
diseases [110]. (2) Through the use of circulating exosomes, real-time data can be gathered
from the different cells involved in the pathological process (e.g., injured cells, immune
cells, and metastatic cells) [111]. (3) miRNAs are more stable in exosomes, and their ac-
cessibility through biological fluids makes them an attractive alternative as a minimally
invasive diagnostic test, a liquid biopsy [112]. (4) Exosomes transfer miRNAs from donor to
recipient cells, regulating gene expression locally and distantly during both physiological
and pathological processes. Due to this transfer capability, exosome-associated miRNAs
can serve as diagnostic and prognostic biomarkers and therapeutic agents [28,30,113].

Several limitations in this study merit mention. Among them is the fact that only
male participants were included, and the sample size was small. The age range of the
patients was wide and therefore would not allow for differentiating between younger and
aging patients despite the differences in the risk of complications of the disease related to
age and sex differences [114]. Similarly, generalizability to other ethnic or racial groups
or to anthropometrically defined patient subsets would also be desirable. However, a
major strength of the study is that we used the same subjects before and after adherent
CPAP treatment for 1 year. Of note, the specific role played by each of the differentially
expressed elements in the context of the various omics implemented herein was not sought
and must await future focused studies. Our findings highlight the importance of exosomes
in mediating OSA disease and provide insights into the molecular pathophysiology of
OSA while suggesting avenues for the prevention of health-to-disease transitions. The
exosomes derived from OSA disrupt the endothelial barrier integrity and angiogenesis, as
opposed to OSAT, in vitro. Exosome cargos including specific proteins, miRNAs, and lipids
are linked to the pathophysiological functions of exosomes, may lead to the discovery of
biomarkers, and may also facilitate the unraveling of molecular mechanisms underlying
cargo-sorting and biogenesis of exosomes in a disease such as OSA. We provided a bio-
signature feature list containing lipids, proteins, and miRNAs, and clinical data which
discriminate between OSA and OSAT subjects. These multi-omic characteristics in the OSA
group are strongly associated with the known evidence on the pathogenesis of the disease.
Developing an integrated molecular classification should improve diagnostic classification,
risk stratification and assignment of molecular, disease-specific therapies to improve the
care of patients with OSA from a personalized medicine perspective.

4. Materials and Methods
4.1. Subject Characteristics

Human studies were conducted at the Sleep Clinic of the Hospital Universitario Miguel
Servet, a large teaching hospital in Zaragoza, Spain, as part of the EPIOSA study (NCT02131610)
as previously described [115]. This prospective study included 18–60 year-old patients with
polysomnographically-diagnosed OSA who went on to complete CPAP titration and sub-
sequent treatment following a validated protocol [115]. The initial 12 subjects with OSA
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at baseline (OSA) and after 12 months of adherent CPAP treatment (6.16 ± 0.88 h/night
throughout) (OSAT) were selected into the present study. Data from all sleep studies were
scored using American Academy of Sleep Medicine guidelines [116] by trained personnel
that were blinded to the aims or nature of the study. At baseline and at every follow-up
visit, smoking status was evaluated with co-oximetry and questionnaire. Blood samples
were drawn at baseline upon diagnosis of OSA and from the same subjects 12 months later
following adherent CPAP treatment (OSAT) using a 21-G butterfly needle into ethylene-
diaminetetraacetic acid (EDTA) (PreAnalytix, GmbH, Switzerland). Biochemical tests
were measured using serum glucose; triglycerides, total cholesterol, and high-density
lipoprotein cholesterol were measured by spectrophotometry (Chemical Analyzer ILAB
650, Instrumentation Laboratory). Plasma was separated by centrifugation and stored at
−80 ◦C.

4.2. Exosome Isolation and Characterization

Plasma exosomes were isolated and characterized as previously described [7,24,63].
The isolated exosomes were subsequently quantified and characterized following MI-
SEV2018 guidelines [117]. Transmission electron microscopy (TEM) was used to determine
exosome size as previously described [39,62,63]. Exosome quantifications were determined
using NanoSight, NS300, (Malvern Panalytical, Malvern, UK) equipped with a high sensi-
tivity sCMOS camera, 531 nm laser, and automatic syringe pump [26]. Exosome aliquots
were fixed in 2% paraformaldehyde; 5 µL of exosome suspension was then applied to each
formvar/carbon-coated 200 mesh nickel grid and allowed to adsorb for 2 min. Grids were
incubated with 30 µL drops of 2% uranyl acetate and examined by electron microscopy [64].
The samples were washed with distilled water seven times (2 min each), and then they
were viewed under a FEI Tecnai F30 Twin (Atlanta, GA, USA) transmission EM to measure
the size of the isolated EVs [64].

4.3. Exosome Markers Using Flow Cytometry

To analyze for selective sub-populations of exosome surface markers, exosomes were
incubated with Exo-Flow™ kits (System Biosciences, Mountain View, CA, USA) and then
subjected to FACS analysis (FACSCalibur, BD Biosciences, San Jose, CA, USA) as previously
described [64]. Exosomes were incubated with commercially available magnetic beads
of 9.1 nm diameter that incorporated different exosome markers, including tetraspanins
(#EXOFLOW150A-1, CD63, and CD81). In the FACS, 25,000 events were acquired and then
analyzed using FlowJo Software 2.9.0 (Tree Star, Inc., Ashland, OR, USA). Two negative
controls were also carried out, with negative #1 (all reagents without antibodies and no
EVs) and negative #2 (all the reagents and beads but without EVs). The average of MFI for
negative #1 was used to normalize the samples with and without exosomes.

4.4. Human Endothelial Cells and Exosome Uptake

Human microvascular endothelial cells, dermal (HMVEC-d), were purchased from
Lonza (catalog # CC-2543; Lonza, Alpharetta, GA, USA) [26,39]. Cells were grown in
endothelial growth medium (EGM-2-MV; Alpharetta, GA, USA) supplemented with 5%
fetal bovine serum, FBS, (Life Technologies, Grand Island, NY, USA), and further incubated
at 37 ◦C in a cell culture incubator. The cells were trypsinized and centrifuged at 250× g for
5 min, diluted, and re-plated at appropriate densities. All cells were used before passage
4. HMVEC-d-confluent cell monolayers were grown on 12 cover slips for 24 h in EGM-
2-MV medium containing 5% fetal bovine serum (FBS), after which cells were washed
with medium containing depleted FBS (System Biosciences, Mountain View, CA) Labeled
exosomes were added to cover slips, and cells were fixed with 4% (w/v) para-formaldehyde
in 1X PBS for 15 min at room temperature, then washed again with PBS. The cell membranes
were permeabilized by incubation with 0.25% (v/v) Triton-X-100 in PBS for 10 min.

Exosomes were labeled with a lipophilic fluorescent dye, PKH67 (Sigma, #PKH67-
GL-1KT, St. Louis, MO, USA) and unbound dye was removed using Vivaspin 20, 3 kDa
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MWCO centrifugal filters (Sigma, #Z629456), according to the manufacturer’s protocol.
The pellets were suspended in 1× PBS buffer and filtered, and the labeled EVs were placed
on confluent coverslips of HMVEC-d (Sigma-Aldrich, Millipore, CA, USA) (30 µg/mL)
for 24 h in a cell culture incubator at 37 ◦C. PKH67 colors were monitored for delivery
into target cells using a Leica SP5 Tandem Scanner Spectral 2-photon confocal microscope
(Leica Microsystems, Buffalo Grove, IL, USA) with a 63× oil-immersion lens. As negative
control, PKH67 were prepared and added to each cell with all reagents, but no exosomes,
to monitor unincorporated dyes. Cell nuclei were visualized by staining with DAPI
at a concentration of 1 µg/mL in PBS (Life Technologies, Carlsbad, CA, USA) at room
temperature for 5 min [118–120]. Images were captured with a Leica SP5 Tandem Scanner
Spectral 2-photon confocal microscope (Leica Microsystems, Inc., Buffalo Grove, IL, USA)
with a 63× oil-immersion lens.

4.5. Endothelial Cell Barrier Integrity

Real-time change in trans-endothelial monolayer electrical resistance was measured
using an ECIS system. The ECIS assays were conducted using 8-well ECIS arrays (PC;
8W10E) via the ECIS-Z station. The arrays (8W10E) were treated with 10 mM L-cysteine
(Sigma-Aldrich, Millipore, St. Louis, MO, USA) followed by coating with Collagen Type
II (Sigma-Aldrich, Millipore, St. Louis, MO, USA) as previously described [62]. A total of
50,000 cells were plated and grown to confluence into ECIS arrays as a single confluent
monolayer. ECIS assessments were performed using multiple frequency/time (MFT)
options to record continuous impedance changes over a broad spectrum of frequencies.
When impedance signals stabilized and therefore indicated that a confluent monolayer
and a functional barrier had formed, EVs were added in duplicated wells and placed into
the ECIS instrument for continuous monitoring for up to 24 h. As cultured cells adhered
and spread on the electrode surface, the impedance changed, and such changes over time
served as a measure of the disruption of the endothelial cellular junction. Control reference
values were established by using culture medium (500 µL/well) alone, and then compared
with the values recorded when electrodes were covered with a monolayer of cells in 500 µL
medium.

4.6. Wound-Healing Assay

ECIS was used to monitor the recovery of HMVEC-d cells in a real-time fashion after
wound healing [121,122]. HMVEC-d were seeded on 8W10E gold electrode arrays, and
cells were wounded by applying a burst of high-intensity electrical current while they were
maintained in a humidified 5% CO2 incubator at 37 ◦C. The arrays (8W10E) were treated
with l-cysteine and with Collagen Type II, as described above. ECIS was performed while
recording the multiple frequency/time (MFT) option to evaluate impedance changes over
a broad spectrum of frequencies. Before starting ECIS measurements, 300 µL medium
containing 5% depleted bovine albumin serum (BAS) was placed in each well and allowed
to stabilize for 30 min, after which 200 µL of cell suspension (5 × 105 cells per mL) was
added to each well. After cell inoculation, the wells were incubated for 24 h, and once they
reached confluence, wounding was carried out with the integrated electrical field module
(3500 µA, 20 s at 48 kHz) for a total time of 5 min. Exosomes (30 µg/mL) were applied to
the designated wells. The healing process was monitored continuously as cells migrated
and proliferated onto the electrode. Control reference values were established by using
culture medium (500 µL/well) alone, and then compared with the values recorded when
electrodes were covered with a monolayer of cells in 500 µL medium. Data were acquired
with a frequency of 4000 Hz. Resistance values were collected and normalized to each
well’s value at t = 0. The healing process was monitored continuously as cells migrated
and proliferated onto the electrode.
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4.7. Angiogenesis Tube Formation Assay

The Angiogenesis Tube Formation Assay was conducted according to the manu-
facturer’s instructions (# 3470-096-K, Trevigen, Gaithersburg, MD, USA). Briefly, 50 µL
Basement Membrane Extract (BME) (Cat#: 3433-005-01) were prepared on ice and further
were incubated at 37 ◦C for 1 h. HMVEC-d (10 × 103) cells were seeded and, immediately
following seeding, exosomes from OSA or OSAT (30 µg/mL) were added, supplemented
with endothelial cell growth medium-2 (EGM-2, Lonza) in depleted FBS, as previously
described [26]. Microscopic images were captured using a Nikon Eclipse Ti microscope
equipped with a 10× phase-contrast objective (Nikon Instruments, Melville, NY, USA).
Tube formation was monitored and imaged with a Nikon Ellipse Ti microscope (Nikon Inc.,
Melville, NY, USA). The relative vessel area, tube length, relative average vessel length, and
relative total number of junctions were counted by the Angiogenesis Analyzer plugin [123]
of ImageJ (version 1.53, Bethesda, MD, USA). The mean of the total tube length per total
area imaged (µm tube/mm2) was calculated for each well. The experimenter was blinded
to the experimental groups throughout the period of analysis. The tubular structures were
observed and monitored automatically every 30 min for 48 h using a real time cell recorder
microscope for cells not treated with exosomes, cells treated with OSA exosomes, and cells
treated with OSAT exosomes.

4.8. Exosome Lipidomics

Lipids were isolated from 50 µg of exosomes from each OSA and OSAT sample, as
previously reported [124]. Briefly, 185 µL of chloroform (CHCl3) containing docosanol
(10.0 µg/mL) and 220 µL of methanol were added to 50 µL of the sample, vortexed for
1 min, and placed on an orbital shaker for 10 min. Then, 185 µL of CHCl3 with docosanol
and 200 µL of water were added to the mixture, vortexed for 1 min, and centrifuged at
3000× g for 15 min to separate into two layers. The lower CHCl3 layer was dried under
nitrogen gas. The dried lipids were re-suspended in 100 µL of CHCl3 and methanol (1:1,
v/v) and analyzed on a liquid chromatography–mass spectrometry (LC-MS, Bruker maXis
impact quadrupole-time-of-flight mass spectrometer coupled to a Waters ACQUITY UPLC
system). Separation of lipids was achieved on a Waters C18 column (2.1 × 150 mm, BEH
C18 column with 1.7-um particles) using a linear gradient and mobile phase A (water
containing 0.1% formic acid and 2 mM ammonium format) and B (Methanol containing
0.1% formic acid and 2 mM ammonium formate). The gradient condition for B increased
from 5% to 70% over 5 min, then to 95% over 3 min, held at 95% for 3 min, then returned
to 5% for equilibrium. The flow rate was 0.56 mL/min, with a column temperature of
60 ◦C. Full scan mass spectral data were collected from m/z 100 and 1500, and MS/MS
spectral data were acquired using auto MS/MS. Mass spectra were auto-calibrated using
sodium format after data acquisition. The data were processed with Bruker Metaboscape
software 4.0 to extract mass features and lipids identified by matching their MS/MS spectra
against in silico MS/MS spectra from LipidBlast [125]. All the data were normalized to
sum, log-transformed, and Pareto-scaled. All reported lipid identifications follow the
nomenclature of LIPID MAPS Lipid Classification System

4.9. Exosome Proteomics

Proteins were extracted from 12 OSA and OSAT exosome samples using a RIPA lysis
buffer with protease inhibitor cocktail (Sigma-Aldrich), and total protein content was
determined using a Pierce BCA protein assay kit (Thermofisher Scientific, Berkeley, MO,
USA) according to the manufacturer’s instructions. The protein concentration from OSA
and OSAT were determined using a QuickStart Bradford assay (BioRad, Hercules, CA,
USA). Briefly, 75 µg of exosome proteins from each sample were added to cold acetone
and kept overnight at −20 ◦C. Protein-exosome acetone pellets were washed with 80%
acetone in water and re-suspended in 25 µL urea buffers (6 M urea, 2 M thiourea, 100 mM
ammonium bicarbonate, pH 8.0). Proteins were digested for 4 h with 0.75 µg LysC. The
samples were diluted 10-fold for overnight 0.75 µg trypsin digestion. Peptides were purified



Int. J. Mol. Sci. 2023, 24, 16074 24 of 31

using Pierce 100 µL C18 tips and lyophilized. Lyophilized peptides were re-suspended in
25 µL of solvent (5% acetonitrile, 0.1% formic acid) to approximately 3 µg/µL and stored
in an autosampler at 7 ◦C. Peptides were analyzed as follows: 3 µL were injected onto
a C8 trap column (Thermo Fisher Scientific, Berkeley, MO, USA), µ-precolumn—300 µm
i.d. × 5 mm, C8 Pepmap 100, 5 µm, 100 Å) and separated on a 20 cm long × 75 µm
inner diameter pulled-needle analytical column packed with Waters BEH-C18, 1.7 µm
reversed phase resin. Peptides were separated and eluted from the analytical column
with a gradient of acetonitrile at 300 nL/min. The Bruker nanoElute system was attached
to a Bruker timsTOF-PRO mass spectrometer via a Bruker C2aptiveSpray source. Initial
gradient conditions were 2%B (A: 0.1% formic acid in water, B: 99.9% acetonitrile, 0.1%
formic acid), followed by a 20-min ramp to 17%B. PASEF 70 min LCMS data were acquired
on a Bruker timsTOF, and data searched against Uniprot-Human using PEAKS. A pair-wise
comparison was done using PEAKSQ. This quantitation is based on precursor (peptide)
intensity and is corrected for mass and retention time matching. Protein–protein interaction
networks were performed using String software (Version 12.0) [43].

4.10. Exosome miRNAs

Total RNAs, including miRNAs, were isolated from exosomes derived from 12 OSA
plasma samples and corresponding OSAT, using miRNeasy Serum/Plasma Mini Kit
columns following the manufacturer’s instructions (Qiagen, Valencia, CA, USA), as previ-
ously described [63]. Total RNAs were quantified on a Nanodrop 2000 (Ambion, Austin,
TX, USA), and RNA quality and integrity were determined using the Eukaryote Total RNA
Nano 6000 LabChip assay (Agilent Technologies, Santa Clara, CA, USA) on the Agilent
2100 Bioanalyzer. The quality of miRNAs was determined using an Agilent Small RNA
Kit [63]. The miRNA expression analyses were performed using human miRNA microarray
for one-color technique (Agilent Technologies, Santa Clara, CA, USA) consisting of 60-mer
DNA probes synthesized in situ that represent 2529 human mature miRNAs derived from
miRbase version 21:0, and 39 viral miRNAs.

Total RNA (100 ηg) was labeled and hybridized on a microarray (miRNA complete
labeling and hybridization kit) and afterwards scanned using DNA Microarray Scanner
(Agilent Technologies, Santa Clara, CA, USA) [63]. Total RNA, including enriched miRNA,
was dephosphorylated with calf intestine alkaline phosphatase (Agilent Technologies,
Santa Clara, CA, USA), denatured with dimethyl sulfoxide, and labeled with pCp-Cy3
using T4 RNA ligase (Agilent Technologies, Santa Clara, CA, USA). The labeled RNAs
were hybridized to custom 8 × 60 K human miRNA microarrays (Agilent Technologies,
Santa Clara, CA, USA). Following hybridization and washing, the arrays were scanned
with an Agilent microarray scanner using high dynamic range settings as specified by
the manufacturer (Agilent Technologies, Santa Clara, CA, USA). Microarray results were
extracted using Agilent Feature Extraction software (v12.0; Agilent Technologies, Santa
Clara, CA, USA). The total gene signal was normalized to the 75th percentile of the signal
intensity.

4.11. Target Predictions and Functional Annotation

Gene targets for differentially expressed miRNAs were initially computationally pre-
dicted using established miRWalk target-prediction software Version 2.0 [126]. Provided
gene targets were uploaded to the online Database for Annotation, Visualization, and
Integrated Discovery (DAVID 6.8) for functional annotation and clustering analysis. Genes
based on their associated gene ontology annotations, and the related terms, were clustered
into groups with enrichment scores calculated from their EASE Score and the modified
Fisher exact p value [127]. The web server hosts a continuously updated version of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database release 82.1, which provided
a relevant search module based on KEGG pathway descriptions. Molecular targets for each
miRNA were retrieved and the validated miRNA–target interaction network was obtained
from the CyTargetLinker plug-in in the Cytoscape environment 3.9.1 [128]. The network
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containing interactions between differentially expressed (DE) DE-miRNA and putative
targets was constructed and visualized using Cytoscape [129].

4.12. miRNA qRT-PCR

Validation of the top 4 differentially expressed miRNAs by qRT-PCR were conducted
on a QuantStudio™ 3 platform (Thermo Fisher Scientific, Skokie, IL, USA). miRNAs
were reverse transcribed with looped miRNA-specific reverse transcription (RT) primers
(Applied Biosystems, Waltham, MA, USA) using the TaqMan miRNA assays. RT reactions
were performed in a volume of 15 µL (10 ng of enriched miRNA), on a GeneAmpPCR
System 7500 (Applied Biosystems) in the following conditions: 16 ◦C for 30 min, 42 ◦C
for 30 min, 85 ◦C for 5 min, and 4 ◦C on hold. TaqMan assays were run in triplicate
using TaqMan Universal PCR Master Mix II without UNG (Applied Biosystems). qRT-PCR
cycling conditions were 95 ◦C for 10 min, followed by 50 cycles of 95 ◦C for 15 s and
60 ◦C for 1 min. The qRT-PCR results were normalized (internal control, U6 RNA (RNU6))
and expressed as fold changes. The Ct values were averaged, and the difference between
the average RNU6 and the gene of interest Ct (Ct-diff) was calculated using the 2−∆∆CT

method [130].

4.13. Multi-Omics and Multivariate Analyses

MixOmics R package [131] was used to perform multivariate analysis for biological
datasets, including 5 samples from different 5 types of omics: clinical (nFeature = 10), lipids
(nFeature = 312), microRNAs (nFeature = 81), mRNAs (nFeature = 2499) and proteomics
(nFeature = 190) data. Through the Multi-block discriminant analysis with DIABLO ap-
proach, it integrates different datasets simultaneously, so that the relationships between
heterogeneous omics datasets can be investigated. Firstly, we selected the significant fea-
tures with p-value under 0.05 and the value of log2 fold change greater than 1 except for
the clinical features. After that, the significant features from multi-omics data were input
into the Stacked Partial Least-Squares Discriminant Analysis (SPLSDA). The first four
components were analyzed, and a circus plot was generated to exhibit significant features
in different data types on a circle. The links between the omics represent the strong positive
or negative correlations with the correlation value set to r = 0.8. Additionally, a Circos
plot was generated with the circlize R package [132] with the correlation matrix calculated
by SPLSDA to highlight the strong correlation between only miRNAs and mRNAs. For
KEGG pathway mapping, miRDB [133] was used for the target prediction with a score
greater than 90 for miRNA features, and UniProt [134] was used to find the corresponding
protein-encoding genes for proteomic features. Then, the g:GOSt function of g:Profiler [135]
was used to find the corresponding KEGG pathways.

4.14. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). The two treatment groups,
i.e., OSA and OSAT, were compared by Mann–Whitney U test or paired Student’s t tests.
Multiple group comparisons were done by analysis of variance. All data were analyzed with
GraphPad Prism software (9.5.0). OPLS-DA (Orthogonal Projections to Latent Structures
Discriminant Analysis) was used to reduce the dimension and identify spectral features
driving group separation. Data transformation and multivariate analyses, volcano plots
and heatmaps, and orthogonal partial least squares discriminant analysis (OPLS-DA) were
carried out as previously described with MetaboAnalyst 5.0 [136]. Receiver Operating
Characteristic (ROC) curve analysis was performed to predict the diagnostic effectiveness
of biomarkers by MetaboAnalyst 5.0 [136]. The area under the ROC curve (AUC) value
was utilized to determine the diagnostic effectiveness in discriminating OSA from OSAT
samples. Significance was determined by p-values < 0.05 and represented as follows:
* p < 0.05, ** p < 0.01, *** p < 0.001, unless indicated otherwise.
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