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Abstract: Bronchial asthma is a heterogeneous disease characterized by persistent respiratory sys-
tem inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined
as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle
hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis
is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with
disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence
of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several
diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary
diseases characterized by disruption of normal lung architecture and functions, such as chronic
obstructive pulmonary disease. The search for instruments that can predict the development of
irreversible structural changes in the lungs, such as chronic components of airway remodeling and
fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed
toward the discovery and investigation of molecular characteristics and biomarkers capable of dis-
tinguishing between different types of asthma as well as between asthma and other pulmonary
disorders with similar structural characteristics. The main features of bronchial asthma etiology,
pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling
and lung fibrosis as successive stages of one process will be discussed in this review. The most
common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also
be covered. The molecular mechanisms and key cellular players of the asthmatic process described
and systematized in this review are intended to help in the search for new molecular markers and
promising therapeutic targets for asthma prediction and therapy.
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1. Introduction

Asthma is the most common chronic inflammatory disease of the respiratory tract,
characterized by leukocyte infiltration and tissue remodeling, with the latter generally
referring to epithelial hyperplasia and collagen deposition [1]. Clinically, asthma is accom-
panied by airway inflammation, hyperresponsiveness, and airflow limitation, which can
lead to respiratory symptoms such as coughing, wheezing, and shortness of breath [2].
The pathogenesis of asthma is complex and involves various genetic, environmental, and
immunological factors [3,4].

One of the central features of asthma is airway remodeling, defined as changes in
airway wall structure, including extensive epithelial damage, airway smooth muscle hyper-
trophy and hyperplasia, collagen deposition, subepithelial basement membrane thickening,
and fibrosis [5]. Excessive proliferation of smooth muscle cells producing a wide range of
pro-inflammatory and pro-fibrotic mediators may lead to amplified airflow obstruction and
extracellular matrix (ECM) deposition, ultimately resulting in fibrosis in individuals affected
by asthma [6,7]. Subepithelial fibrosis observed in asthma is associated with enhanced
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differentiation of bronchial fibroblasts into myofibroblasts—fibroblast-to-myofibroblast
transition (FMT)—induced mainly by transforming growth factor-β (TGF-β) [8].

Fibrosis of alveolar structures is an important phenomenon, as it usually occurs in the
pathogenesis of fatal and long-term asthma and may be associated with disease severity
and resistance to therapy [9–11]. In asthma treatment, drugs targeting chronic inflammation
and bronchodilators control asthma but have a negligible effect on the structural changes
in the bronchi. Recent studies indicate that inflammation and remodeling of asthmatic
bronchi can be driven independently [8,12]. Therefore, lung fibrosis can be considered a
long-term and eventually irreversible consequence of asthma-induced airway inflammation
and remodeling.

In the present review, morphological features and molecular mechanisms of asthma-
associated airway remodeling and lung fibrosis, as well as the most common murine
models and promising biomarkers of asthma progression and post-asthmatic fibrosis, will
be discussed.

2. Bronchial Asthma as One of the Precursors of Lung Fibrosis: Etiology, Pathogenesis,
and Morphological Characteristics

Bronchial asthma is a heterogenic disease characterized by persistent inflammation
in the respiratory system, airway hyperreactivity, and reversible airflow obstruction, af-
fecting approximately 300 million people worldwide [13,14]. Trends in asthma prevalence
have fluctuated throughout the last decades; the overall number of asthma cases has re-
mained consistent, though asthma-related deaths have decreased in recent years, reflecting
improved therapeutic control. However, despite advances in modern healthcare, global
asthma damage remains high, with about 450,000 asthma-related overall deaths and an
economic burden that costs USD 50 billion annually [15,16]. In addition, it is one of the
most widespread chronic lung pathology among pediatric patients [17].

2.1. Asthma Endotypes and Phenotypes

At the present time, asthma is considered an “umbrella” diagnosis, unifying sev-
eral diseases with different clinical manifestations (phenotypes) and pathophysiological
mechanisms (endotypes) [18]. According to the Global Initiative for Asthma (GINA) defi-
nition, “asthma phenotypes” are recognizable clusters of demographic, clinical, and/or
pathophysiological characteristics [19], while the term “endotypes” describes a subset
of asthma with distinct molecular mechanisms and treatment response [20]. Today, the
best-researched type of asthma is eosinophilic asthma, the most common type of this
disease, also called T2-high endotype [21]. The T2-high endotype includes the following
phenotypes: early-onset atopic (responsive to steroids), late-onset non-atopic eosinophilic
(refractory to steroids), and aspirin-exacerbated respiratory disease (surgical treatment,
sensitive to leukotriene modifiers).

Early-onset atopic asthma is the archetypal asthma phenotype, with a well-defined
early onset indicated by blood or sputum eosinophil count, serum IgE, high FeNO, and
high total IgE, and is sensitive to inhaled corticosteroids (ICS) therapy. It is distinguished
from T2-high non-atopic asthma by positive skin prick tests and increased IgE [22].

Late-onset eosinophilic asthma is a subset of T2-high asthma manifesting in adulthood,
notable for its higher severity and steroid resistance. The majority of these patients also
have comorbid chronic rhinosinusitis with nasal polyps. Generally, this phenotype is
characterized by prominent blood and sputum eosinophilia refractory to ICS treatment and
normal or slightly elevated serum IgE levels. Additionally, it is believed that inflammation
in this phenotype is driven by the production of IL-5 and IL-13 by innate lymphoid cells.
Some patients also have sputum neutrophilia, indicating that Th2/Th17 interactions are
taking place [23].

Aspirin-exacerbated respiratory disease (AERD) is a subset of late-onset eosinophilic
asthma, characterized by dysregulated arachidonic acid metabolism, cysteinyl leukotrienes
production, elevated eosinophils in the blood and sputum, high severity from the onset,
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and frequent exacerbations. Aspirin is a potent cyclooxygenase inhibitor, and it shifts
arachidonic acid metabolism from the cyclooxygenase to the 5-lipooxygenase pathway. This
leads to the overproduction of cysteinyl leukotrienes, which are potent bronchoconstrictors
responsible for the clinical symptoms and resistance to conventional therapy for AERD [24].

Non-eosinophilic asthma, also known as T2-low or non-T2, is a less understood
endotype of asthma and is typically defined by the absence of T2-high asthma signs,
such as eosinophilia and elevated IgE, the presence of neutrophilic or paucigranulocytic
inflammation, and resistance to ICS. Mechanisms underlying the manifestation of T2-low
asthma and the maintenance of neutrophilic inflammation are currently unknown, but
they have been associated with chronic infection, obesity, smoking, and smooth muscle
abnormalities [25]. Therapeutic options are quite limited and consist of tiotropium and
macrolides [26].

2.2. Etiology and Pathogenesis of Bronchial Asthma

The etiology of bronchial asthma is currently unknown; however, there are plenty of
risk factors, including genetic and environmental conditions [27]. Genetic factors include
changes in the expression of several genes responsible for protein folding in the endo-
plasmic reticulum [27], epithelial [28], and eosinophil dysfunction [29]. Allergic airway
diseases (such as allergic rhinitis) are also associated with an increased risk of asthma
development [30]. Environmental factors include smoking (both active and passive) [31],
air pollution (including automobile associated, such as black carbon and NO2) [32], obe-
sity [33], and professional risk factors, such as flour dust, animal and plant enzymes, tree
resins, tobacco, polyisocyanate, acids, anhydrides, and metals [34,35].

Allergic asthma is considered one of the most widespread asthma types, developing
due to sensitization to environmental allergens, mostly house dust, plant pollen, and
mushroom spores [36]. After sensitization, asthma symptoms usually develop during
second contact with the allergen [37]. Allergic reactions, activating the IgE dependent
pathways, are the most common mechanism underlying asthma.

IgE is the main effector of type 1 hypersensitivity, underlying the development of
asthmatic inflammation [38]. Its synthesis occurs either by direct class-switch recombination
from IgM in germinal centers or through a “sequential” switch from IgM to IgG1 and then
from IgG1 to IgE outside of germinal centers. The high-affinity receptor of IgE (FcεRI) is
expressed on mast cells and basophils as a tetramer and on monocytes and dendritic cells
as a trimer.

During the sensitization step of asthma development, IgE focuses the allergen on
the cell surface through FcεRI, leading to the procession of the antigen-IgE complex and
presentation through the major histocompatibility complex class II molecules, lowering the
threshold for T-cell activation during the allergen challenge [39]. During the next contact
with the allergen, inflammation is initiated when the antigen contacts IgE, presenting on
all mast cells and basophiles. After contact, cells degranulate, releasing such mediators as
histamine, heparin, proteases, and pro-inflammatory cytokines, which are responsible for
the chemotaxis of inflammatory cells.

In addition to classic IgE, there is a cytokinergic IgE that facilitates asthmatic inflam-
mation in the absence of allergens, making allergen avoidance an ineffective therapeutic
strategy [40].

CD4+ lymphocytes also take part in the development of allergic asthma. After contact
with antigen, T helpers type 2 (Th2) secrete pro-inflammatory cytokines, such as IL-4, IL-5,
IL-9, and IL-13, which stimulate IgE production and inflammatory cell migration [41–45].
In turn, T helpers type 1 (Th1) start to secrete IL-2 and IFN-γ, activating macrophages
and enhancing the cell immune response. T-cell immune response is additionally con-
trolled by IL-1, IL-4, IL-12, and IL-18, secreted by dendritic cells [46]. The cascade of the
aforementioned reactions leads to persisting inflammation in the lungs.

About one-third of bronchial asthma patients are believed to have non-allergic asthma,
mediated by non-Th2 cytokines, including IL-17 and TNF-α, and characterized by the
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absence of allergen reactions in the skin prick tests and a decreased or unaffected amount
of IgE, contrary to allergic asthma [47,48]. The mechanisms of non-allergic asthma develop-
ment are currently unknown, but it is supposed that there are two parts to its pathogenesis:
dysregulation of the neutrophilic immune response due to lung inflammation [49], and de-
fects in IL-17 mediated signaling pathway [50], leading to the persisting inflammation [51].

Another group of cells that play a significant role in asthma and post-asthmatic fibrosis
development are innate lymphoid cells (ILCs). It is a group of loosely related lymphocytes,
characterized into five subgroups based on functions, origins, transcription factors, and
cytokine expression patterns: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid
tissue-inducer cells [52]. They are abundantly present in the tissue of organs performing
barrier functions such as intestines, lungs, and skin. For quite some time, ILC2s have
been established as crucial mediators of lung allergy, airway inflammation, and fibrosis,
thus affecting the pathogenesis and clinical course of many respiratory diseases, like, for
instance, asthma, cystic fibrosis, and chronic rhinosinusitis [53]. More specifically, ILC2s are
activated by the alarmin cytokines IL-22 and IL-33, produced by the lung epithelium after
contact with allergens, infections, and other injurious stimuli. After activation, ILC2s start
producing IL-5, IL-13, and amphiregulin, which in turn recruit and stimulate eosinophils to
release profibrotic cytokines such as TGF-β, PDGF, and IL-13, promoting the fibroblast-to-
myofibroblast transition [54].

2.3. Pathomorphological Changes in the Lungs during Asthma Development

Pathomorphological changes in the bronchial asthma lungs can be divided into two
patterns: alterations in bronchial epithelium and smooth muscles, prominent signs of
asthma exacerbations, and subepithelial fibrosis, a characteristic of long-term asthma [55].
All these pathological changes lead to bronchial obstruction, which is reversible at the early
stages of the disease and irreversible at the later ones.

During acute asthma development, hyperplasia and metaplasia of the goblet and
epithelial cells of the bronchial epithelium, leading to mucus hyperproduction, thickening
of the airways, and bronchial obstruction, are observed [56]. Moreover, in severe asthma
exacerbations, large and small airways are often obstructed by mucus plugs with an
admixture of inflammatory cells (mostly eosinophils in the case of allergic asthma) [57]. An
additional factor leading to the formation of mucus plugs is the dysfunction of ciliated cells
due to airway inflammation, characterized by a decrease in the frequency of its fluctuations
as well as dyskinesia and disorientation of the cilia [58].

Spasm of the bronchial smooth musculature—bronchoconstriction—is another factor
leading to airway obstruction. Under physiological conditions, bronchial smooth muscles
provide mechanical stability to the airways without cartilage. However, hyperreactivity
of asthmatic airways decreases smooth muscle sensitivity threshold, following spasm
and reversible airway obstruction [59]. The accumulation of smooth muscle cells due to
their hypertrophy and hyperplasia is another component of asthma pathomorphological
changes, leading to airway thickening [60]. Moreover, it is believed that smooth muscle
cells may support airway remodeling through the secretion of pro-inflammatory mediators,
matrix and cell adhesion proteins, and other stimulatory molecules, affecting the further
migration and activity of inflammatory cells [61].

The major characteristic of chronic asthmatic inflammation is subepithelial airway and,
in some cases, lung fibrosis, consisting of connective tissue growth in the basal membrane
and submucosal area. However, changes in the airways, leading to lung fibrosis, are present
even in the earliest stages of asthma [55,62].

3. Morphological Characteristics and Molecular Mechanisms of Asthma-Associated
Airway Remodeling and Lung Fibrosis

The exaggerated chronic inflammation typical of chronic pulmonary diseases, includ-
ing lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease,
and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis
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bronchiectasis, can induce molecular reprogramming with subsequent self-sustaining aber-
rant and excessive pro-fibrotic tissue repair [63]. Persistent lung inflammation as a result
of a long course of bronchial asthma is one of the factors leading to airway remodeling
and fibrosis development [16]. Airway remodeling is present in all asthma phenotypes
independently of disease severity, and the extent of structural changes due to airway re-
modeling remains unchanged independently of symptoms control or medication use [64].
Lung fibrosis occurs generally in fatal asthma, and fibrotic changes are associated with
disease severity and resistance to therapy [9,65].

3.1. Airway Remodeling

Structural changes in the airways associated with the progression and chronization of
asthma and other chronic inflammatory diseases of the lungs are commonly referred to as
“airway remodeling”, characterized by cellular and extracellular changes in large and small
airways. These changes consist of a decrease in epithelial barrier integrity leading to goblet
cell hyperplasia and mucus hypersecretion [66–68], smooth muscle cell proliferation [69,70],
increased angiogenesis [71,72], and fibroblast/myofibroblast accumulation with deposition
of ECM components in the lung tissue resulting in subepithelial fibrosis [73–75] (Figure 1).
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Figure 1. Principal pathophysiological components of airway remodeling emergence in allergic
asthma. After contact with allergens, alveolar epithelial cells (AECs) initiate several processes
through TGF-β, Sonic hedgehog (Shh), and Wnt pathways, such as airway smooth muscle cell
proliferation, goblet cell hyperplasia, and fibroblast-to-myofibroblast transition. Together, these
biological processes lead to the production and deposition of extracellular matrix (ECM) components,
which, alongside ECM degradation products, lead to the emergence of subepithelial fibrosis and
airway remodeling.
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Epithelial alterations in asthmatic lungs include breakdown in epithelial tight junction
integrity, shedding of the epithelium, loss of ciliated cells, and goblet cell hyperplasia [71].
Mucus hypersecretion is usually found in large and medium airways in asthmatic patients.
MUC5AC and MUC5B were identified as key mucins in mucus hypersecretion in asthma;
their levels increased around the airways of asthmatic patients and in experimental models
of chronic asthma in mice [76]. A key driver in increased production of mucus is goblet
cell hyperplasia, found in mild/severe asthma and regulated by Th2 cytokines (IL-4, IL-5,
and IL-13) as well as IL-1b, TNF-a, COX-2, and their associated intracellular signaling
pathways [77]. Overall, goblet cell hyperplasia and excessive mucus production can lead to
mucus plugging in the airways and subsequent airway obstruction.

Airway smooth muscle (ASM) cells constitute the main structural cells within the
bronchi, and the remodeling of ASM cells, represented by their proliferation (hyperplasia)
and increased cell size (hypertrophy), is considered to be the primary cause of airway
obstruction [71]. Moreover, ASM cells participate in the inflammatory and airway remod-
eling processes through the expression of integrins, cellular adhesion molecules (CAMs),
pro-inflammatory cytokines (TNF-a, IL-1b), and chemokines (RANTES, eotaxin, and IL-
8) [65,78].

Angiogenesis is the process of new blood vessel formation from preexisting endothelial-
lined vessels. An abnormal increase in the number and size of microvessels within bronchial
tissue in asthmatic airways is observed mainly in the bronchial smooth muscle layer as well
as through the capillary network in the lamina propria [71,79]. Hypoxia-inducible factor
(HIF) and vascular endothelial growth factor (VEGF), key players in angiogenesis, increase
the permeability of these abnormal blood vessels, resulting in vessel dilation and edema,
which contribute to airway narrowing [79]. In addition, remodeled vessels in the airways
of patients with asthma may promote the extravasation of inflammatory cells, the release
of plasma-derived inflammatory mediators and cytokines, and abnormal cell growth and
proliferation leading to asthma pathology [72].

3.2. Subepitelial Fibrosis as Irreversible Component of Airway Remodeling

Chronic inflammatory airway diseases such as chronic severe asthma and chronic
obstructive pulmonary disease (COPD) lead to bronchial subepithelial fibrosis, fixed airway
obstruction, and in some cases irreversible structural changes in the respiratory tract and
lung tissue [80]. Fibrosis is the major contributor to the pathology of chronic respiratory
diseases, and the accumulation of fibrotic tissue is associated with more severe disease
and a potential loss of sensitivity to therapy [81]. In the case of bronchial asthma, lung
fibrosis develops after recurrent asthma attacks and leads to a progressive decline in lung
function [82].

As a key component of asthmatic remodeling, subepithelial fibrosis, a distinct type
of asthmatic lesion, involves the deposition of ECM proteins such as collagen types I,
III, and V, fibronectin, hyaluronan, laminin α2/β2, tenascin, periostin, versican, decorin,
lumican, and various proteoglycans within the lamina reticularis of the airways, resulting
in thickening of the basement membrane [72,83]. Increased deposition of ECM components,
including fragmented and disorganized fibrillar collagen, has also been demonstrated in
the lamina propria of large and small airways in patients with asthma [74]. The degree
of subepithelial fibrosis is often linked to asthma severity; the amount of collagen in the
airways is usually higher in patients with moderate and severe asthma compared to patients
with mild disease, and the degree of subepithelial fibrosis is inversely correlated with forced
expiratory volume in the first second (FEV1), indicative of pulmonary functions [84].

Fibroblasts, the main connective tissue cells, are large, flat stellate cells that reside
in close proximity to the basal epithelium [71]. In an inflammatory environment such as
asthmatic airways, fibroblasts are activated or differentiated into myofibroblasts, which
secrete pro-inflammatory mediators and ECM proteins, leading to the accumulation of
collagen fibers around large and small bronchi, and the degree of fibrosis correlates with
an increased number of fibroblasts and myofibroblasts in asthmatic lungs [85,86]. Persis-
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tent inflammation in asthmatic airways leads to a decrease in epithelial barrier integrity,
stimulating the production of ECM components by airway epithelial cells and smooth
muscle cells, which in turn stimulate the production of collagen, fibronectin, and other ECM
components by lung fibroblasts and myofibroblasts [67]. Additionally, products of ECM
degradation, referred to as “matrikines”, modulate the production of ECM components,
forming a closed positive-feedback loop of asthmatic airway remodeling [87]. So, the main
cause of subepithelial fibrosis is the imbalance of ECM synthesis and degradation, lead-
ing to excessive scarring and reducing compliance and dilator responsiveness in fibrotic
airways [88]. In total, these processes lead to the thickening of asthmatic airway walls,
occlusion, and later complete obliteration of large and small airways [73].

Basement membrane thickening and the formation of fibrotic foci below the basement
membrane due to excessive deposition of ECM proteins is an early and universal feature of
airway wall remodeling in asthma [89]. The standard detection of structural alterations
in asthmatic lungs with fibrosis is through direct histological analyses of airway tissues
obtained post mortem, surgically, or by flexible bronchoscopy [90]. The noninvasive
assessment of lung structure using both computed tomography (CT) and ultrashort or
zero echo time magnetic resonance imaging (MRI) techniques remains the gold standard
for structural lung imaging in many clinical indications, including bronchial asthma and
COPD [91]. Hyperpolarized (HP) gas MRI with inhaled 3He and 129Xe, a novel method
for functional and microstructural imaging of the lungs, has great potential as a clinical
tool for early detection and improved understanding of pathophysiology in patients with a
wide range of pulmonary disorders and is increasingly of interest today for both clinicians
and scientists [91].

3.3. Molecular Mechanisms of Asthma-Associated Lung Fibrosis

As described above, airway remodeling in asthma consists of subepithelial fibrosis,
deposition of ECM components, goblet cell hyperplasia and mucus overproduction, pro-
liferation of smooth muscle cells, and disrupted integrity of the airway epithelial barrier.
Several pro-inflammatory pathways regulate all these features and are thought to contribute
to asthma development. These pathways include TGF-β, STAT-3, and NF-κB pathways,
the peroxisome proliferator-activated receptors (PPARs) pathway, the protease-activated
receptor-2 (PAR-2) pathway, and the fibroblast-to-myofibroblast transition (FMT).

3.3.1. TGF-β

Transforming growth factor β (TGF-β) superfamily of ligands are multifunctional
regulators involved in various biological processes in the lungs, such as alveolarization,
epithelial barrier functioning, cell differentiation, and proliferation [92]. In normal airways,
TGF-β exerts its anti-apoptotic effect through the Smad2/3 pathway during normal healing
processes. However, in asthmatic airways, TGF-β induces a pro-apoptotic effect in airway
epithelial cells. When airway epithelial cells are under continuous stress exposure to
allergens, the p38 mitogen-activated protein kinase (MAPK) pathway is activated, and TGF-
β initiates apoptosis, which leads to the loss of epithelial barrier integrity [93]. Additionally,
TGF-β plays a role in the development of subepithelial fibrosis, promoting differentiation
of fibroblasts into myofibroblasts and stimulating the release of connective tissue growth
factor (CTGF), which enhances the adhesion and migration of mesenchymal cells [94].

3.3.2. STAT-3

The signal transducer and activator of transcription (STAT) family consists of seven
transcription factors participating in cell activation. There is evidence that STAT-6 takes
part in the initiation of Th2-mediated lung inflammation in bronchial asthma, with the IL-
4/IL-13/STAT-6 pathway being a key modulator of asthmatic inflammation [95]. However,
the involvement of another member of the STAT family, STAT-3, in the development of
bronchial asthma is still unclear. Recently, it has been shown that STAT-3 is crucial for
the polarization of Th17 cells, taking part in the neutrophil-mediated inflammation in
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bronchial asthma and in the Th2-mediated immune response in general. Additionally,
STAT-3 is involved in the polarization of alternatively activated M2 macrophages and
fibroblasts, leading to the elevated production of ECM components and the development
of fibrosis [96].

3.3.3. NF-κB

Nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is a transcrip-
tion factor composed of several regulatory molecules activated by TNF-α and IL-1β cy-
tokines, controlling the expression of a multitude of inflammatory genes and biological
effects such as proliferation, differentiation, apoptosis, and tissue remodeling [97]. Several
studies have demonstrated that NF-κB is activated in the ovalbumin (OVA) allergic asthma
model predominantly in airway epithelial cells, together with enhanced expression of
MIP-2 and eotaxin mRNAs—NF-κB-regulated chemokines [98]. Consequently, there have
been several attempts at regulating the NF-κB pathway as a potential approach for asthma
treatment [99].

3.3.4. Peroxisome Proliferator-Activated Receptors (PPARs)

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors
consisting of three subunits: PPARα, PPARβ/δ, and PPARγ. They were initially recognized
as regulators of lipid and glucose metabolism [100]. They also play a certain role in the
regulation of biological processes such as differentiation, proliferation, survival, apoptosis,
motility, inflammation, and immune response. Immune cells in the inflamed airways, such
as dendritic cells, eosinophils, macrophages, mast cells, monocytes, and neutrophils, have
been found to express PPARs [101]. In general, the expression and activities of PPARs
are associated with protection against asthma or a reduction in asthma severity, whereas
impairment of PPAR functions and expression exacerbates the disease. For example, PPARα
and PPARγ down-regulate the expression of matrix metalloproteinases and, as a result,
ECM degradation, and PPARβ/δ and PPARγ suppress the proliferation of lung fibroblasts
and their differentiation into myofibroblasts, reducing the overall collagen production
and ECM component deposition. PPARγ also inhibits epithelial and smooth muscle cell
hyperplasia and blocks mucus overproduction [102].

3.3.5. Protease-Activated Receptor-2 (PAR-2)

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors with
four members, PAR-1, PAR-2, PAR-3, and PAR-4, activated by serine proteases secreted
by inflammatory cells or microorganisms [103]. Among PARs, PAR-2 has a wide expres-
sion pattern and has been linked to allergic airway inflammation [104]. PAR-2-mediated
activation of airway epithelial cells has been reported to release a number of factors and
inflammatory mediators, including metalloproteinases, IL-8, IL-6, GM-CSF, and various
chemokines such as eotaxin and CCL-2, that play an important role in asthma pathogenesis
via polarizing the immune response toward the Th2 phenotype and attracting innate and
adaptive immune cells to the airways [103].

3.3.6. Fibroblast-to-Myofibroblast Transition (FMT)

Fibroblast-to-myofibroblast transition (FMT) is a phenomenon that occurs both under
physiological and pathological conditions. A vast amount of myofibroblasts in connective
tissue due to increased transition from fibroblasts and disrupted apoptosis is related to the
pathologic processes of wound healing and chronic inflammation. As for bronchial asthma,
FMT has been reported in airway remodeling and subepithelial fibrosis development [105].
FMT consists of two main steps: fibroblasts develop a translational phenotype, known as
proto-myofibroblasts, and then differentiate into mature myofibroblasts. FMT is facilitated
by mechanical tension in the altered tissue and is accompanied by the secretion of several
cytokines [106]. In asthma, there are two groups of factors stimulating FMT: humoral agents,
such as growth factors, cytokines, and chemokines, and mechanical factors, including
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intercellular and cell–ECM interactions. Due to the complicated pathogenesis of asthma
and a wide variety of endo- and phenotypes, many FMT stimuli may interact with each
other, leading to FMT induction [107].

4. Murine Models of Asthma and Asthma-Associated Lung Fibrosis

Murine models are frequently used in all fields of biological research due to their rela-
tively close similarity to humans as well as their efficient and simple breeding and housing.
In the last few years, the number and diversity of available mouse models of different
human pathologies have increased exponentially. Asthma is a complex, multifactorial
disease that requires a thorough investigation in the context of a whole organism. Although
in vitro and in silico methods help elucidate certain mechanistic pathways, mouse models
of asthma remain the most physiological replication of the different parts of asthma patho-
genesis [108]. Despite differences in anatomical structures as well as cellular and functional
distinctions between mouse and human lungs, mouse models are indispensable tools in
the investigation of asthma and other complex diseases.

Today, the majority of in vivo murine studies of asthma use one of the two models:
either the asthma model induced by chicken egg white ovalbumin (OVA) or by extracts
of different allergens, the most common being the extract of household dust mite (HDM)
(Table 1).
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Table 1. Overview of murine models of asthma.

Model Histological Characteristics Modeling Object Advantages and Disadvantages References

Ovalbumin (OVA)-induced asthma
Inducing agent:
Sensitization–OVA/aluminum
hydroxide intraperitoneal injection;
Challenge–OVA inhalation (short
duration in acute asthma, long
duration in chronic asthma)

Acute asthma:

3 Peribronchial inflammatory
infiltration

3 Goblet cells proliferation and
increased mucus secretion

Chronic asthma:

3 Decline of inflammatory
infiltration intensity compared
to acute asthma

3 Proliferation of smooth muscle
cells

3 Peribronchial and perivascular
subepithelial fibrosis

Acute asthma:
Airways inflammation, typical for
early stages and exacerbations of
asthma
Chronic asthma:
Irreversible changes in the lungs,
typical for long-term, chronic
asthma

Acute asthma:
+Simplicity
+Reproducibility
+Short experiment duration
−No airways remodeling
−High variability of other asthma parameters
(airways hypersensitivity/hyperreactivity,
inflammation intensity)
Chronic asthma:
+Reflection of some key asthma
characteristics in humans (goblet cells
hyperplasia/metaplasia, local smooth muscle
cells proliferation; peribronchial and
perivascular fibrosis)
−Long induction time
−Relevancy of inducing agent regarding
human asthma

Acute asthma: [109–113]
Chronic asthma: [14,114]

Household dust mite
(HDM)-induced asthma
Inducing agent:
Sensitization–HDM extract
intratracheal instillation;
Challenge–HDM extract intranasal
instillation

3 Eosinophilic and neutrophilic
infiltration of airways and
lung tissue

3 Goblet cells proliferation and
increased mucus secretion

Airways inflammation
characterizing mild asthma

+Clinical relevancy
+Simplicity
+Presence of airways hyperresponsiveness
−Dependence on activity and concentration
of HDM extract leading to reproducibility
issues

[114–116]

House dust mite, ragweed, and
Aspergillus fumigatus extracts
mixture (DRA)-induced chronic
asthma
Inducing agent:
Sensitization and
challenge–intranasal instillation of
DRA solution

3 Persistent peribronchial
eosinophilic infiltration

3 Airways hyperresponsiveness
3 Smooth muscle cells

proliferation
3 Peribronchial collagen

deposition

Chronic asthmatic inflammation,
resistant to therapy with cytokine
antibodies, thus closely mimicking
human chronic asthma

+Presence of human chronic asthma
characteristics, such as airway
hyperresponsiveness and resistance to
cytokine antibodies therapy
+Lack of developed tolerance to the inducing
allergens
−Long duration of the model
−Dependence on the purity and
concentration of extracts mixture, result in
reproducibility issues

[117,118]

+ indicates the advantages of the model; − indicates the disadvantages of the model.
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4.1. Ovalbumin (OVA)-Induced Asthma

Among mouse models of acute and chronic asthma, asthma induced by ovalbumin
(OVA), the primary component of eggs’ white, is the most common model of asthma-like
symptoms in mice [109] (Table 1). The classical model of acute asthma is induced by
sensitization to OVA through intraperitoneal injection of an OVA/aluminum hydroxide
mixture, followed by cyclic inhalations of OVA aerosol [109,110]. Since OVA lacks inherent
allergenic activity, during the sensitization step of the induction, it is usually injected
together with an adjuvant compound to boost allergenic reactions in the airways, the most
common being aluminum hydroxide and potassium aluminum sulfate, although adjuvant-
less protocols also exist. During sensitization, airway dendritic cells encounter allergens,
process them, and present them to CD4+ T-cells, which, in turn, switch naïve B-cells to
OVA-specific B-cells. During cyclic inhalation of OVA, sensitized mast cells and basophils
undergo degranulation, leading to the release of mediators, chemokines, and cytokines,
hypersecretion of mucus, alteration of airway epithelial cells, and airway inflammation.
This model reflects the earliest stages of asthma development, primarily inflammation of
the respiratory tract [111]. A further increase in the number of OVA inhalation cycles leads
to the development of chronic inflammatory changes in the airways, characterized by the
reduction of inflammation and the emergence of reliable signs of airway remodeling as
well as fibrotic changes in the lung tissue [14,119] (Table 1).

The advantages of the OVA-induced asthma model are the wide availability of induc-
ing agents, robustness, and high reproducibility. The main disadvantage of this model is
long-standing concerns regarding the clinical relevance of OVA as an asthma etiological
factor in translating scientific findings from the murine models to patients.

This model has undergone several variations in an attempt to diversify it. For example,
to stimulate the immune response, adjuvant injections were replaced by NO2 in order
to more accurately reveal the role of air pollutants in asthma development [120]. To
support an association between helminth infection and allergic/autoimmune disorders,
co-administration of somatic antigens of Echinococcus granulosus simultaneously with
OVA administration was performed, and intensification of allergic airway inflammation
was detected in this case [121].

Doubts regarding OVA relevancy in human asthma development pushed investigators
to try another asthma inducing antigens, such as house dust mite [122] and aspergillus [123]
extracts, which are more common allergens in humans. Another challenge of this model
is chronic antigen influence. In mice, inflammatory changes are relatively acute, while
in humans, asthma is a long-term, chronic disease, exhibiting airway remodeling signs
in the late stages [124]. Unfortunately, long-term antigen exposure in some mouse lines,
such as Balb/C, led to tolerance development and a decrease in inflammation and airway
hyperreactivity [125], pointing limitations of this model.

4.2. House Dust Mite (HDM) and Other Allergenic Extract-Induced Asthma

House dust mites (HDMs) are small but extremely complex organisms, ranging from
20 to 50 µm in size and living in humid environments of human habitation. These micro-
scopic organisms are widely recognized as a primary source of indoor allergens, leading
to the emergence of allergic diseases, including allergic bronchial asthma [126], with ap-
proximately 50% of individuals with asthma having an allergic response to HDMs [127].
HDM sensitization is usually mediated by aerosolized mite feces or fragmented bodies
present in household dust. Additionally, household dust contains a large spectrum of envi-
ronmental factors, such as bacteria and fungi, which, in association with HDM allergens,
elicit activation of the immune system, thus being adjuvants to HDM sensitization.

Out of approximately 30 groups of HDM allergens, only several exhibit proteolytic
activity and thus are the most clinically relevant groups. After inhalation, HDM allergens
react with airway epithelial and immune cells, leading to the degradation of epithelial bar-
rier integrity due to their proteolytic activity. HDM allergens stimulate protease-activated
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receptors in the bronchial epithelium, resulting in the release of adenosine triphosphate
(ATP), which is considered a damage-associated molecular pattern (DAMP), activating
ADAM10 and mediating reactive oxygen species (ROS) production, further damaging the
epithelial barrier. Furthermore, HDMs interaction with the airway epithelium leads to the
activation of Toll-like receptors (TLRs) and NOD-like receptors (NLRs), eliciting an innate
immune response and the development of an allergic reaction [128].

The advantages of this model are the presence of airway hyperresponsiveness (AHR),
one of the defining characteristics of asthma, and its high clinical relevance compared to
the OVA-induced asthma model [129]. The biggest disadvantage is the high variability of
HDM extracts, differing in composition and mice’s airway responses even in the same lot
from one manufacturer [130].

There are a lot of variations of this model in mice using extracts of different allergens,
such as cockroach extract [131], common ragweed extract [132], latex extract [133] (as of
today seldom used as an asthmatic model) and extracts from several Aspergillus species,
mainly fumigatus [134]. Additionally, a combination of HDMs, ragweed, and Aspergillus
fumigatus extracts called DRA is also used to induce chronic asthma in mice, closely
mimicking human asthma. The additional advantage of this model is that it overcomes
allergen tolerance through repeated exposures to the allergens in mice [117].

5. Molecular Markers of Asthma Progression and Post-Asthmatic Fibrosis Development

Successful therapy and management of asthma require the identification of key mark-
ers of asthma progression and chronization. Today, asthma clinical symptoms, such as
progressive dyspnea, chest tightening, coughing, and wheezing, as well as symptoms of
fatal asthma—previous episodes of severe asthma exacerbations, admission to the intensive
care unit (ICU), and an uncontrollable course of the asthma—are considered signs of an
unfavorable course of the disease [135]. Despite multiple studies, molecular markers of
asthma progression, uncoupled from clinical symptoms, are still in the early stages of re-
search. Currently, biomarkers related to Th2-high (allergic) asthma or Th2-low (non-allergic)
asthma are clearly established and researched separately.

Th2-high-related biomarkers are represented by sputum eosinophils, blood total
eosinophil count, serum IgE, fraction of exhaled nitric oxide (FeNO) in breath conden-
sate, serum periostin, and levels of IL-4, IL-5, and IL-13 in sputum and broncho-alveolar
lavage fluid (BALF) [136,137]. Another biomarker of Th2-high asthma is eosinophilic
cationic protein (ECP), one of the major cationic granule proteins released by activated
eosinophils [138]. Serum and sputum concentrations of ECP were shown to correlate with
asthma severity, sputum eosinophils, and FEV1 in treated asthmatics and are most useful
when distinguishing between mild and severe asthmatics [139].

Lipoxins are endogenously produced eicosanoids with potent anti-inflammatory
properties, playing an important role in chemotaxis and related signal transduction [140].
It was found that the expression of lipoxin A4 is decreased in the airways and peripheral
blood of patients with severe asthma when compared to mild cases due to persistent
activation of lymphoid cells and eosinophils [141]. The reasons for lipoxin concentration
decreases in severe asthma patients are not clear yet, but it is theorized that they could be
related to oxidative stress. Thus, increasing the generation of lipoxin A4 in the airways of
asthmatic patients could constitute a new therapeutic approach for patients with severe
asthma [142].

Th2-low asthma is currently less understood than Th2-high asthma, leading to fewer
biomarkers overall. Th2-low asthma biomarkers include sputum neutrophils, levels of
IL-17, TNF-α, IFN-γ, and IL-6 in sputum, BALF, and bronchial biopsies [136]. Addition-
ally, expression of airway mucosal CCL26 seems to be one of the best biomarkers for
differentiating between Th2-high and Th2-low asthma [143].

The latest available studies present miRNAs—small non-coding RNAs regulating
gene expression at the post-transcriptional level by binding to the target mRNA—as a
useful tool for predicting the effectiveness of therapy, early diagnosis of exacerbations,
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and assessing patient compliance for different groups of drugs used in asthma [144,145].
Several research studies have highlighted a correlation between the severity of asthma
responses and the concentration of individual miRNA molecules in the blood and their
direct impact on biological processes. miRNA-155-5p and miRNA-532-5p levels in blood
serum were shown to correlate with the response of asthma patients to inhaled glucocorti-
costeroids [144]. Serum miRNA-21 can be successfully used as a non-invasive diagnostic
marker of asthma, showing a positive correlation with blood and sputum eosinophilia and
IL-4 concentration [146]. As it has been reported, increased levels of miRNA-146a in the
airway epithelial cells and serum of adult patients indicate necessitating higher doses of
inhaled steroids [147]. miRNA-144-3p levels were increased in airway biopsies and serum
from severe asthmatics and associated with higher doses of corticosteroids. Moreover, its
presence correlates directly with blood eosinophilia and overexpression of genes involved
in asthma pathogenesis [148].

Due to similar clinical symptoms, there are certain challenges in differential diagnostics
between asthma and chronic obstructive pulmonary disease (COPD), not to mention the
asthma-COPD overlap (ACO), a condition characterized by persistent airflow limitations
together with several distinguishing features of asthma. ACO is associated with a rapid
decline in lung function, frequent exacerbations, and higher mortality when compared to
either asthma or COPD alone [149]. Thus, there is an urgent need for molecular biomarkers
capable of distinguishing between asthma, COPD, and ACO at the earlier stages, when
clinical symptoms have not yet manifested. Bronchial biopsy is the gold standard of
airway remodeling diagnostics; however, it is an invasive procedure and not all patients
can undergo it, driving considerable efforts to identify potential biomarkers for long-term
structural changes of the airways in asthma patients. However, the data we found regarding
biomarkers of asthma-associated airway remodeling and potential post-asthmatic fibrosis
are very sparse. To the best of our knowledge, below is the most comprehensive summary:

• IL-8 (CXCL8) is an anti-inflammatory chemokine produced by a wide range of cell pop-
ulations, such as leukocytes, epithelial, and endothelial cells, together with fibroblasts.
It takes part in many human diseases, such as atherosclerosis, inflammatory bowel
disease, sepsis, acute lung injury, and asthma [150]. Vascular endothelial growth factor
A (VEGFA) is a member of the VEGF protein family. It is primarily a major regulator
of both physiological and pathological angiogenesis. However, VEGFA has many
additional functions, including monocyte chemoattraction, osteoclast-mediated bone
formation, and neuronal protection [151]. In asthma, it has been reported that IL-8
and VEGFA could be used in tandem as biomarkers to distinguish between asthma,
COPD, and ACO, since IL-8 was highly sensitive, while VEGFA was highly specific to
the difference between ACO and non-ACO patients [152];

• YKL-40, also known as the human cartilage glycoprotein-39, is a chitinase-like enzyme
detectable in serum and airways. It plays a diverse role in cell proliferation, differenti-
ation, survival, inflammation, and tissue remodeling [153,154]. Expression levels of
YKL-40 were found to correlate with the probability of severe asthma and irreversible
airway obstruction in asthmatic patients [155,156]. Moreover, it was reported that
YKL-40 expression increases during asthma exacerbations and could predict a decline
in lung function [157];

• Tissue inhibitor of metalloproteinases 1 (TIMP-1) is a protein with multiple functions,
with the primary being the preservation of tissue integrity through controlling matrix
metalloproteinases. Its other functions include, but are not limited to, the regulation
of wound healing [158], regulation of cell proliferation, and signal transduction [159].
In asthma pathogenesis, TIMP-1 enhances eosinophilic inflammation and promotes
macrophage polarization toward the M2 phenotype in the airways. It was also found
that high levels of serum TIMP-1 were negatively correlated with FEV1 values in
patients with severe asthma [160];

• Neutrophil gelatinase-associated lipocalin (NGAL), also known as oncogene 24p3
or lipocalin 2, is a member of the lipocalin family involved in the regulation of cell
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division, differentiation, cell-to-cell adhesion, and survival. Its small size, secreted
nature, and relative stability led to its investigation as a diagnostic and prognostic
biomarker in numerous diseases [161]. NGAL also functions as an innate antibacterial
factor in sputum. There are several reports that expression levels of NGAL can be a
distinguishing marker between asthma, COPD, and ACO [162,163];

• Hemopexin is a plasma glycoprotein with one of the highest binding affinities to heme,
functioning as a heme scavenger and a second line of defense against hemoglobin-
mediated oxidative damage during intravascular hemolysis, after haptoglobin. More-
over, it is an acute phase protein, expressing predominately in the liver, with its
synthesis increasing mainly during inflammation [164]. Additionally, the role of
hemopexin in the central and peripheral nervous systems is currently being investi-
gated [165]. A recent report has shown that among hemoplexin, ceruloplasmin, and
haptoglobin levels in the serum, hemopexin was the best-performing biomarker in
differentiating between COPD and asthmatic patients [166];

• Ncf1 protein, also known as p47phox, is a principal component of the NADPH oxi-
dase 2 complex, which mediates the induction of ROS in response to inflammatory
stimuli. It is confirmed, that Ncf1 is associated with a variety of chronic inflammatory
diseases both in animals and humans, such as rheumatoid arthritis and systemic lupus
erythematosus [167]. Regarding the role of Ncf1 in lung diseases, it was reported
that patients with primary non-small cell lung cancer achieve longer progression-free
survival with higher levels of Ncf1 [168]. In asthmatic diseases, Ncf1 regulates the
development of allergic inflammation through the induction of T-regulatory cells and
control of T-cell-mediated inflammation, while the deficit of the Ncf1 gene ameliorates
asthma development in the mice and is correlated with asthma severity, which points
to the possible role of Ncf1 as a prognostic asthma biomarker [169].

Thus, a number of diverse molecules that can help in the differentiation of chronic lung
pathologies, accompanied by structural changes in the airways as well as lung fibrosis, exist
today. However, the data presented above clearly demonstrate that there is still an urgent
need for more sensitive and specific biomarkers, since the present-day biomarkers are
relatively sparse and do not cover all of the diagnostic and prognostic challenges associated
with these diseases.

6. Conclusions

As of today, our understanding of asthma and asthma-associated pathologies is con-
stantly evolving. However, due to the heterogeneity of asthma, in the foreseeable future
there will always be a need for more specific and sensitive biomarkers, allowing physicians
to not only diagnose asthma correctly but also stratify the risks of asthma exacerbations
and long-term effects, including but not limited to such consequences of asthma as airway
remodeling and lung fibrosis. There is hope that future studies of pathological features
and key points of molecular mechanisms will allow us to develop personalized medicine
approaches for asthma diagnoses and treatment. Overview and systematization of modern
knowledge concerning the main stages of asthma development and progression, starting
from airway inflammation and ending with irreversible structural changes and fibrotic
transformation of the respiratory tract, and in some cases, lung parenchyma, as well as
underlying molecular mechanisms, can be implemented in the search for new molecular
markers and promising therapeutic targets of asthma and post-asthmatic fibrosis.
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