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Abstract: The automatic detection of cells in microscopy image sequences is a significant task in
biomedical research. However, routine microscopy images with cells, which are taken during the
process whereby constant division and differentiation occur, are notoriously difficult to detect due
to changes in their appearance and number. Recently, convolutional neural network (CNN)-based
methods have made significant progress in cell detection and tracking. However, these approaches
require many manually annotated data for fully supervised training, which is time-consuming and
often requires professional researchers. To alleviate such tiresome and labor-intensive costs, we
propose a novel weakly supervised learning cell detection and tracking framework that trains the
deep neural network using incomplete initial labels. Our approach uses incomplete cell markers
obtained from fluorescent images for initial training on the Induced Pluripotent Stem (iPS) cell dataset,
which is rarely studied for cell detection and tracking. During training, the incomplete initial labels
were updated iteratively by combining detection and tracking results to obtain a model with better
robustness. Our method was evaluated using two fields of the iPS cell dataset, along with the cell
detection accuracy (DET) evaluation metric from the Cell Tracking Challenge (CTC) initiative, and it
achieved 0.862 and 0.924 DET, respectively. The transferability of the developed model was tested
using the public dataset FluoN2DH-GOWT1, which was taken from CTC; this contains two datasets
with reference annotations. We randomly removed parts of the annotations in each labeled data to
simulate the initial annotations on the public dataset. After training the model on the two datasets,
with labels that comprise 10% cell markers, the DET improved from 0.130 to 0.903 and 0.116 to 0.877.
When trained with labels that comprise 60% cell markers, the performance was better than the model
trained using the supervised learning method. This outcome indicates that the model’s performance
improved as the quality of the labels used for training increased.

Keywords: cell detection; cell tracking; deep learning; weakly supervised learning; iPS cell
reprogramming; brightfield microscopy

1. Introduction
1.1. Background

Time-lapse microscopy is essential for studying cell proliferation, migration, and other
dynamic cellular processes. It helps to understand fundamental biological mechanisms,
such as tissue formation and repair, wound healing, and tumor therapy [1]. Detecting and
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tracking cellular behavior is crucial when studying the biological characteristics of many
cells, especially during the early embryonic stages [2]. However, it is difficult to extract and
locate the iPS progenitor cells, namely, iPS-forming cells, during the early reprogramming
stage; this is because no known biomarkers are available to map iPS progenitor cells [3].
However, after six days of induction, iPS cells can be tested with fluorescent probes, and
the proportion of iPS progenitor cells in the early stage of reprogramming is less than 5%.
This indicates that the number of iPS cells available during the experimental determination
stage is deficient.

Different imaging modalities, including magnetic resonance imaging, mammography,
breast sonography, and magnetic resonance tomography, have found extensive applications
in medical diagnostics, particularly in histopathology studies [4]. Mammograms, which are
valued for their cost-effective high sensitivity, are the preferred method for early detection;
they excel in detecting masses and microcalcifications, while maintaining reliability through
reduced radiation exposure, thereby contributing significantly to histopathology studies [5].
Recently, a novel framework utilizing neural network concepts and reduced feature vectors,
combined with ensemble learning, was introduced, achieving superior accuracy in classify-
ing mitotic and non-mitotic cells in breast cancer histology images, thereby contributing to
enhanced cancer diagnoses [6]. Moreover, Labrada and Barkana introduced a breast cancer
diagnosis methodology using histopathology images, achieving robust classification via
three feature sets and four machine learning (ML) algorithms [7]. Chowanda investigated
optimal deep learning (DL) parameters for breast cancer classifications; they introduced a
modified architecture and evaluated ML algorithms using mammogram images [8].

Recently, several studies on iPS cell identification during the early stages of reprogram-
ming focused on the analysis of tracking and detection results, as well as the characteristics
of cell migration trajectories, so that researchers can understand the characteristics of iPS
cells [9,10]. However, modern imaging techniques have created large volumes of data that
cannot be analyzed manually. Additionally, it is challenging for specialized personnel to de-
tect low-resolution objects. Traditional cell detection and tracking methods need to design
feature extraction operators to capture the unique pattern of each cell type, which usually
requires professional knowledge and complex adjustment processes [11]. As presented in
natural image tracking benchmarks, traditional methods have dominated cell detection
and tracking due to the need for more high-quality annotations [12,13].

Cell detection methods can be classified into three major categories. The first category
consists of thresholding methods that separate the cell’s foreground and background in
different pixel value ranges [14]. The second category consists of feature extraction methods
based on extraction operators, such as the scale-invariant feature transform, followed by a
self-labeling algorithm, and two clustering steps to detect unstained cells [15]. The third
category consists of edge detection methods that use watersheds to detect cell edges based
on gradient changes and corresponding connected regions [16]. A review of cell detection
methods for label-free contrast microscopy is provided in Ref. [17].

The two most frequently used approaches for cell tracking are tracking via model
evolution and tracking via detection; each approach tackles some challenges more effi-
ciently than the other [18]. Tracking via model evolution method combines segmentation
and tracking; this is achieved by describing cell contours over time using an evolving
mathematical representation [19]. Despite the ability to produce more accurate contours
and individual cell tracks in some applications, these approaches require the initial seeding
of cell contours. They could be more computationally efficient for multicell tracking. As
examples, parametric models, including an active contour-based “snakes” model in two
dimensions [20], and a dynamic mesh or a deformable model in three dimensions [21], may
be used. Implicit methods such as the advanced level-set-based multicell segmentation and
tracking algorithm and the Chan–Vese Model, may also be used; these methods naturally
manage splits, and they merge the new appearances of the cells [22,23].

In tracking by detection, cells are first detected using image segmentation and then
tracked to establish correspondence between cells across all frames [19]. Segmentation pro-



Int. J. Mol. Sci. 2023, 24, 16028 3 of 28

cedures can be performed via gradient features, intensity features, wavelet decomposition,
and region-based or edge-based features [24]. Comparing cell tracking algorithms revealed
that most tracking approaches use nearest neighbors, graph-based linking, or multiple
hypotheses [13]. The Viterbi algorithm was proposed to link cell outlines generated by a
segmentation method into tracks [25]. In Ref. [26], a joint segmentation-tracking algorithm
was presented in which the model parameters are learned using Bayesian risk minimization.
A comprehensive review of computational methods utilized in cell tracking is provided
in Ref. [27].

Artificial intelligence (AI)-/DL-based detection and tracking approaches have made
significant progress in this area and have demonstrated better performance when compared
to traditional methods [28]. Despite the success of DL methods in tracking multiple
objects on natural images, researchers have developed only a few DL approaches for
tracking individual cells. Payer et al. [29] presented a method that simultaneously segments
and tracks cells using a pixel-wise metric embedding learning strategy combined with a
recurrent hourglass network. In Ref. [30], the authors combined a CNN-based observation
algorithm with a particle-filter-based method to track non-rigid and non-significant cells.

CNN-based models have demonstrated the ability to perform better in many computer
vision tasks without manual annotations [31]. They can work well with prior knowledge
on specific tasks to achieve almost the same performance as models trained with manually
labeled data [32]. Nishimura et al. proposed weakly supervised cell tracking, which uses
the detection results (i.e., the coordinates of cell positions) to train the CNN model without
association information, in which nuclear staining can be used to quickly determine cell
positions [33]. Similarly, a semi-automated cell tracker was developed using a CNN-based
ML algorithm to detect cell nuclei [34]. The detection results were linked at different time
points using a minimum-cost flow solver to form cell trajectories [35].

Moreover, a DL technique called cross-modality inference or transformation accu-
rately predicted fluorescent labels from transmitted-light microscopy images of unlabeled
biological samples using the training data composed of a pair of images from different
imaging modalities [36]. The authors in Ref. [37] revealed that the training dataset formed
by a couple of brightfield and fluorescence image modalities of the same cells could be
used to train the robust network. This network can learn to predict fluorescent labels
from electron microscope images and alleviate the need to acquire the corresponding
fluorescence images [37]. In addition, this capability is especially suitable for long-term
live-cell imaging, where low phototoxicity acquisitions offer significant benefits. The same
method performed better using a small dataset of around 30 to 40 images [28] and could
differentiate cell type and subcellular structures [38].

However, state-of-the-art traditional and DL cell tracking methods still rely on the
supervision of manual annotations, which is a time-consuming task requiring qualified
professional experimenters’ participation [39]. In particular, cell detection and tracking
require further development for low signal-to-noise ratio and three-dimensional data [13].
Moreover, the cells may adhere to each other due to persistent cell migration, making
it challenging to determine cell boundaries. Similarly, cell division and differentiation
processes may lead to continuous changes in appearance, making it difficult to label the
cells precisely. Since iPS cells are cultured in a nutrient solution, there are complex texture
features in the background of the cell image and the phototoxicity of fluorescence, which
can lead to a significant decline in imaging performance. Furthermore, brightfield images
are sometimes taken at high magnification, which causes some impurities and bubbles in
the images and consequently causes difficulties in cell labeling because experimenters are
required to correct repeated errors.

To address these issues, we propose a novel weakly supervised learning method
utilizing incomplete initial annotations for automated cell detection and tracking on the
iPS cell dataset including brightfield and fluorescence images in the early reprogramming
stage. Specifically, we aim to investigate whether this approach can successfully handle
the complexities posed by dynamic changes in cell morphology, shape, and thickness
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during processes such as cell division and differentiation, ultimately achieving perfor-
mance comparable to or exceeding traditional fully supervised methods. By integrating
morphological shape and thickness analysis into the training process, the proposed method
demonstrated robust performance, even with incomplete initial annotations, and outper-
formed traditional fully supervised methods that rely on extensive manual annotations.
Inspired by automated curriculum learning [40], the training process starts with incom-
plete initial annotations generated from paired red fluorescent images taken under the
point light. This is similar to beginning training with simple samples in the early stages
of curriculum learning. Although all cells cannot be labeled at this stage, we train the
model iteratively, where the analysis of cell tracking results is used to update optimized
labels in the subsequent training process. Similar to the continuous addition of complex
samples in curriculum learning, the updated results are used to continue the training
process in our method. Therefore, we updated and improved the incomplete initial labels
using the tracking-by-detection algorithm to develop a robust cell detector. This study
contributes to advancing the automated microscopy image analysis field, with potential
implications for a wide range of biomedical research applications. The code and data for
our work, along with more technical details, can be found by visiting the following link:
https://github.com/jovialniyo93/cell-detection-and-tracking (accessed on 21 June 2023).

The contributions and novelties of this paper can be summarized as follows:

• To the best of our knowledge, this pioneering study successfully utilizes incomplete
initial annotations to develop a robust and universal weakly supervised learning
method for automated cell detection and tracking on a brand-new iPS cell repro-
gramming dataset. The experimental results demonstrate that this study’s developed
method achieves a justifiable performance (0.862 and 0.924 DET on two fields of iPS)
comparable to the state-of-the-art supervised learning approaches.

• We propose a procedure to obtain incomplete initial labels by removing the possible
point light interference from paired red fluorescent images. On other microscopy
image datasets, incomplete initial annotations can be obtained using different unsuper-
vised cell detectors such as the Gaussian filter, Cellbow magnification, and automatic
thresholding methods provided in ImageJ (version 2.1.0, open source software avail-
able at https://github.com/imagej/imagej (accessed on 21 June 2023)), and bilateral
filter with prior knowledge of cell shape.

• We demonstrate that our method achieves competitive detection and tracking per-
formance on the public dataset FluoN2DH-GOWT1 from CTC, which contains two
datasets with reference annotations. To simulate the incomplete initial annotations,
we randomly removed 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the cell
markers to train the model. The prediction performance on all metrics using partial
point annotation is comparable to the model trained using the conventional supervised
learning method.

• Since there are few relevant evaluation indicators in cell detection and tracking, we
referred to CTC to select the appropriate evaluation metrics to assess the proposed
method’s prediction performance.

1.2. Literature Review

The precise detection and tracking of cells in microscopy images play a crucial role in
various biological tasks [39]. Multiple techniques have been introduced for cell detection
and tracking. Recently, the prevailing methods follow a two-step approach: Firstly, they
detect cells within each frame, and subsequently, they establish connections between the
detected cells across consecutive frames [19]. Various methods have been suggested for de-
tecting cell regions within individual frames, including graph cuts and deep learning [41,42].
The process of associating cells is tackled through linear programming optimization [43].
Alternatively, graph-based optimization techniques have been introduced, wherein an
entire sequence of images is represented as a graph, with cells as nodes and association
hypotheses as edges, thereby solving for comprehensive solutions [44]. However, these
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methods rely on the proximity of cell positions for association scores, rendering them
ineffective at low frame rates when cells exhibit significant movement.

Recent advancements involve data-driven approaches that employ deep neural net-
works to estimate cell motion or optical flow. He et al. [30] evaluated motion attributes
such as cell motion direction, enlargement, and shape alteration. Nonetheless, this method
falters when dealing with densely populated cell scenarios, as it is designed for single-object
tracking. Various CNN-based methods for estimating optical flow, like FlowNet [45], have
been introduced. Yet, challenges persist in establishing accurate ground-truth data for flow
in cell images, and even when estimated, the application of flow in tracking multiple cells
within dense environments remains unclear.

The application of AI and DL techniques has shown remarkable progress across
various medical domains. Ryu et al. presented SegR-Net, a DL model that combines
multiscale feature fusion, deep feature magnification, and precise interference for reti-
nal vessel segmentation [46]. Their framework outperforms existing models in accuracy
and sensitivity, and it holds promise for enhancing retinal disease diagnosis and clinical
decision-making. Introducing an efficient DL technique, Mangj et al. [47] utilized a mul-
tiscale DCNN to detect brain tumors, with a remarkable 97% accuracy on MRI scans of
meningioma and glioma cases, demonstrating superiority over prior ML and DL models for
tumor classification.

In Ref. [48], the authors introduced RAAGR2-Net, an encoder–decoder-based brain
tumor segmentation network leveraging a residual spatial pyramid pooling module and
attention gate module to enhance accuracy on multimodal MRI images, surpassing existing
methods on the BraTS benchmark. Attallah and Zaghlool [49] introduced a pioneering
AI-based pipeline that merges textural analysis and DL to enhance the precision of catego-
rizing pediatric medulloblastoma subtypes from histopathological images. This innovative
approach holds significant promise for advancing individualized therapeutic strategies
and risk assessment in pediatric brain tumors, underscoring the transformative potential of
AI in medical diagnosis and treatment [49].

Recently, U-Net and its variants have become well known, particularly for medical
imaging, revolutionizing the way we diagnose and treat. Their innovative architecture
empowers precise analysis, aiding doctors’ expertise. With exceptional detection and
segmentation capabilities, they unravel intricate details, enhancing our understanding
of conditions. A novel modified U-Net architecture was introduced for the accurate and
automatic segmentation of dermoscopic skin lesions, incorporating feature map dimension
modifications and increased kernels for precise nodule extraction [50].

Similarly, a modified U-Net was introduced to precisely segment diabetic retinopathy
lesions, utilizing residual networks and sub-pixel convolution [51]. Rehman et al. [52] pro-
posed BrainSeg-Net, an encoder–decoder model with a feature enhancer block, enhancing
spatial detail retention for accurate MR brain tumor segmentation. A UAV-based weed
density evaluation method utilizing a modified U-Net is presented, facilitating precise
field management [53]. Furthermore, a modified U-Net architecture known as BU-Net was
introduced, enhancing accurate brain tumor segmentation through residual extended skip
and wide context modifications, along with a customized loss function, thereby improving
feature diversity and contextual information and enhancing segmentation performance [54].

In this study, we introduce an innovative, weakly supervised learning method de-
signed for detecting and tracking cells, leveraging incomplete initial annotations. This
approach adds to the current spectrum of AI models and directly confronts the labor-
intensive demands inherent in conventional, fully supervised training. Building upon
these advancements, our work extends the research frontier by presenting a novel strategy
that effectively harnesses the potential of incomplete initial labels for training purposes.
This strategic enhancement significantly alleviates the burden of extensive manual annota-
tions, thus enabling a more streamlined and efficient approach to developing accurate cell
detection and tracking models.
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2. Results
2.1. Results of Processing Fluorescent Images

In this study, we developed a unique method to generate incomplete initial labels of
brightfield images using paired red fluorescent images. The technique combines CLAHE
and bilateral filter to binarize the fluorescent images correctly (Figure 1b). We used this
approach because the fluorescent images were taken under the point light. Moreover, our
method was compared with the existing competitive benchmark approaches that can be
used on other microscopy image datasets when brightfield and red fluorescence images
are unavailable. As the pixel value in the middle area of the fluorescent image was more
significant than in the edge, the 16 automatic thresholding methods provided in ImageJ
software (version 2.1.0) were not able to correctly binarize the red fluorescence images in our
iPS cell dataset (Figure 1e). The pixel value distribution was determined by the distribution
of point light intensity, which was very close to the Gaussian distribution. Therefore, the
conventional Gaussian filter method was used to remove uneven illumination. However,
this method was unsuitable for our dataset’s fluorescent images (Figure 1c). To confirm
the effectiveness of our method, we applied a DL method known as “Cellbow” which
is commonly used to process any fluorescent image [55]. Still, the result after using this
method was unsatisfactory for our data (Figure 1d).
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Figure 1. Results of processing fluorescent images: (a) the red fluorescent image; (b) the result of
(a) after processing using our method: CLAHE + bilateral filter; (c) the result of (a) after processing
using the Gaussian filter; (d) the result of (a) after processing using Cellbow magnification; (e) the
result of (a) after processing using the 16 auto-threshold methods provided in ImageJ (version 2.1.0).
The red boxes and yellow circles show the cell masks around the boundary of the fluorescent image,
which can be processed correctly using our method only.

2.2. Improvement in Pseudo-Ground Truth in the Training Process

In the proposed method, the pseudo-ground truth processed from fluorescent images
was used for initialization to obtain a well-trained cell detector. Without manual annotation,
we trained model M1 on F1 and model M2 on F2 datasets. These two models were then
used to detect the cells on each other’s dataset. We took manually annotated data as GT
during the testing and initialized them as the baseline. All the metrics were calculated in
comparison to GT. To analyze the effect of tracking, we ran our methods on three iPS early
reprogramming period datasets. Specifically, we used weighted sum with and without
tracking analysis to update pseudo-ground truth for the next round of training. The pseudo-
ground-truth performance results, before and after training with our method, are shown in
Tables 1 and 2.
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Table 1. The improvement in the quality of labels on the F1 dataset after training with our method.
Performance results with and without tracking analysis are compared.

Label With
Track? Period DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

Initial
1 0.670761 0.667061 0.852820 0.684108 0.759204 25.4 9.5
2 0.737573 0.733189 0.829384 0.758094 0.792138 25.9 16.7
3 0.734766 0.729094 0.875594 0.750769 0.808391 38.7 16.6

Updated no
1 0.797005 0.791304 0.901262 0.812964 0.854839 14.8 7.1
2 0.816979 0.806617 0.872666 0.846190 0.859224 15.9 12.8
3 0.825262 0.813154 0.903727 0.854198 0.878265 21.8 13.6

Updated yes
1 0.855386 0.847222 0.893354 0.880216 0.886736 9.3 8.2
2 0.848170 0.836255 0.865533 0.885551 0.875427 11.7 14.1
3 0.875933 0.859624 0.936484 0.915652 0.925943 12.3 9.0

“Initial” means the initial labels obtained from red fluorescent images used to start the training. “Updated” means
the initial labels are updated after the whole training process with our method. The results highlighted in bold
represent better performance.

Table 2. The improvement in the quality of labels on the F2 dataset after training with our method.
The performance results with and without tracking analysis are compared.

Label With
Track? Period DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

Initial
1 0.650393 0.645579 0.852676 0.662388 0.745582 33.5 11.4
2 0.627827 0.624200 0.840979 0.639854 0.726758 52.9 17.8
3 0.538057 0.531580 0.872758 0.546432 0.672077 105.0 18.4

Updated no
1 0.854522 0.847030 0.926850 0.871536 0.898342 12.5 6.7
2 0.806824 0.801072 0.928571 0.819106 0.870410 26.0 9.1
3 0.661730 0.646834 0.923722 0.679573 0.783059 69.8 12.2

Updated yes
1 0.888517 0.881664 0.892712 0.910498 0.901517 8.7 10.6
2 0.888062 0.880135 0.905251 0.912114 0.908670 12.4 13.5
3 0.845088 0.823904 0.919397 0.896841 0.907979 21.4 16.3

The results highlighted in bold represent better performance.

Compared with the pseudo-ground-truth performance, the DET improved by 0.185,
0.111, and 0.141 for the model trained with tracks in the three periods of the F1 dataset.
Moreover, the performance results improved by 0.119, 0.079, and 0.091 when the model
was trained without tracks. In comparison with the effect of tracking analysis, the results
show that our method performed better when trained with tracks than when trained
without tracks in terms of DET. However, the reverse scenario was observed regarding
precision and Nfp/image. The reason is that tracking analysis removed FP errors when
updating labels for the next round of training. Therefore, the label noise was reduced,
enabling the model to learn from more correct features and predict more positives in the
next iteration. Due to the limitations of tracking analysis, not all FP errors were removed.
This resulted in poor performance in precision and Nfp/image metrics. Since tracking
analysis in our method helped the model to predict more positives, the Nfn/image was less.
While calculating the DET, different errors were assigned different weights by considering
the cost of correcting them. The weight of FP errors was 1, while the weight of FN errors
was 10, indicating that the DET achieved a better score for fewer FN errors. Although our
method with track performed worse on precision and Nfp/image, the performance of this
method was deemed better than that method trained without tracks.

We computed the TRA to assess the effectiveness of the tracking algorithm. Since our
method relied on analyzing the tracking results, the effectiveness of tracking determined
the accuracy of removing FP errors in detection results. Compared with the calculation
of DET, TRA considered three more errors: redundant edges to be deleted, with weight 1;
edges to be added, with weight 1.5; and edges with wrong semantics to be deleted, with
weight 1. Since the weights of these errors are small, the value of TRA is always smaller
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than DET. As the values of TRA in Table 1 are smaller than DET values, and the difference
is not significant, we considered the tracking algorithm based on the overlap as applicable.
The effectiveness of the tracking algorithm was assessed on the F2 dataset. From Table 2, it
can be inferred that the TRA has the same tendency as in Table 1. Therefore, our method
performed better when trained with tracks than without tracks on all evaluation metrics
except precision and Nfp/image.

Figure 2 presents the change in labels on F1 in each training iteration using our
method with tracking analysis, while Figure 3 shows the performance on F2. The initial
label is denoted as iteration 0, showing the changes from iteration 1 to 10. The data of
iteration 0 in Figures 2 and 3 are the same data of initial labels provided in Tables 1 and 2.
The improvement in the quality of labels is observed over the iterations. As shown in
Figure 2a,d,g, iteration 1 achieved a significant DET increase. The model’s performance
on DET and TRA changed a little after iteration 5, but the value of Nfn per image and
Nfp per image kept dropping in the subsequent few iterations. In iteration 1, the value
of Nfp per image increased because of the failure to determine and remove a moderate
amount of FP errors. After iteration 5, the value of Nfp per image was lower than the initial
value. Because of the difficulty of detecting iPS cells in the early reprogramming period, the
changing tendency of evaluation metrics over iterations was different but overall consistent.
Thus, the quality of labels at iterations did not show any degradation due to the combined
operation of weighted sum with pseudo-ground truth.
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results in period 2; (g–i) are the performance results in period 3.

2.3. Cross-Dataset Performance Evaluation on Our Data

We applied the models trained to detect iPS cells on F1 and F2 datasets. The model
trained on F1 was M1, while the model trained on F2 was M2. Model M1 was tested on
the F2 dataset, while model M2 was tested on F1. The models’ performances tested with
and without tracking were compared to study the effect of tracking analysis. Table 3 shows
the performance of model M1 tested with and without tracking, while Table 4 presents the
performance of model M2 tested with and without tracking.

Table 3. Comparison of the performance of M1 when testing on F2. The performance of the model
with and without tracking analysis is compared.

Model With
Track? Period DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

M1 no
1 0.849872 0.844170 0.802526 0.877614 0.838392 12.0 21.2
2 0.873369 0.868922 0.855620 0.894630 0.874690 15.2 21.8
3 0.799094 0.786991 0.865893 0.825839 0.845392 39.0 28.6

M1 yes
1 0.873171 0.864446 0.845831 0.902042 0.873033 9.4 15.8
2 0.885290 0.876665 0.883186 0.910496 0.896633 12.7 17.1
3 0.827788 0.810312 0.900545 0.864268 0.882034 29.4 20.6

The results highlighted in bold represent better performance.
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Table 4. The performance of M2 when testing on F1. The performance of the model with and without
tracking analysis is compared.

Model With
Track? Period DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

M2 no
1 0.906027 0.904693 0.749562 0.943057 0.835249 4.6 25.2
2 0.894712 0.889356 0.825507 0.926369 0.873035 7.8 20.8
3 0.858742 0.852928 0.850220 0.882034 0.865835 18.4 24.2

M2 yes
1 0.920833 0.917558 0.780920 0.955900 0.859596 3.5 21.3
2 0.926640 0.921108 0.849632 0.957574 0.900379 4.5 17.9
3 0.923739 0.917361 0.866850 0.950723 0.906851 7.6 22.6

The results highlighted in bold represent better performance.

As shown in Tables 3 and 4, with the results highlighted in bold, the model tested with
tracking achieved better scores than the model tested without tracking for all evaluation
metrics. The results indicate that tracking analysis in our method significantly improved
the model’s performance because, after removing the FP errors in labels with the help of
tracking analysis, the model was not affected by noise. As was expected, M2 performed
better and achieved the average DET value of 0.924 in the three periods because M2 was
trained with complex samples but tested with simple ones (as the cell density of F2 was
greater than that of F1). However, the scenario was the opposite for M1. Under this
circumstance, M1 still achieved the average DET value of 0.862 in the three periods.

To analyze the changes in model performance during the testing process, we checked
the model’s performance after each iteration. The performance results of the model tested
with tracking analysis are summarized in Figures 4 and 5, respectively. The results of
iteration 10 in these two figures are the same data provided in Tables 3 and 4, respectively.
Figure 4 shows the performance changes in M1, while Figure 5 shows the changes in M2
during the testing process.

In Figure 4, the trend of rising volatility of evaluation metrics can be observed. This
is partly related to the model being tested on complex samples. Moreover, we controlled
the number of times the network updates the parameters in each iteration by less than
100 to reduce the noise during the training process. This also reduced the ability of the
model to learn from the labels in the current iteration. Therefore, the model’s performance
decreased even when the labels were improved compared with the last iteration. As shown
in Figure 4, the performance results fluctuated, but the evaluation metrics showed a trend
of improved model performance.

Because M2 was tested on simple samples, there was a slight fluctuation in the eval-
uation metrics, as shown in Figure 5. It was easier for M2 to obtain good performance
with minor changes in the evaluation results. However, the Nfp per image could have been
better because the data (F1) used to test M2 contained more light-spot noise with the same
appearance as cells. Because the light-spot noise was not present in the training data (F2)
of M2, M2 mistakenly took the light-spot noise as cells. Nevertheless, the Nfn per image
was relatively low. Therefore, we considered M2 to perform well. Both models achieved
the best performance on iteration 10, affirming the positive effect of updating labels on
model performance during training. This also confirmed the effectiveness of our weakly
supervised method designed for cell detection.
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Figure 5. The change in the performance of M2 when testing on F1: (a–c) are the performance results
in period 1; (d–f) are the performance results in period 2; (g–i) are the performance results in period 3.
The model performed best in iteration 10 on almost all the metrics except Nfp per image.



Int. J. Mol. Sci. 2023, 24, 16028 12 of 28

2.4. Performance on the Fluo-N2DH-GOWT1 Dataset
2.4.1. The Effect of Initial Labels’ Quality Improvement in the Training Process

To prove the effectiveness of our method, we tested it on a public dataset by studying
the effect of the initial labels’ quality improvement on our approach. The transferability
of the developed method was tested on the Fluo-N2DH-GOWT1 cell dataset from CTC.
We chose the Fluo-N2DH-GOWT1 dataset to test our approach because it has brightfield
images with strong contrast. Fluo-N2DH-GOWT1 contains two training datasets with
reference annotations. We followed the same procedure on the iPS cell dataset to test the
developed method on these two training datasets. The same evaluation metrics were used
to assess the performance of our approach on these public datasets. We randomly removed
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the cell markers in each labeled label
to simulate the pseudo-ground truth used to train the model. The two datasets are denoted
as S1 and S2. After the training process, the improvement in initial labels for S1 and S2 are
shown in Tables 5 and 6, respectively. The models trained on S1 and S2 are denoted as U1
and U2, respectively.

To demonstrate the performance of refining the labels of our method during training,
we used different percentages of labels (Lper) to start training. The 10% Lper in Tables 5 and 6
means that we randomly removed 90% of the annotations in each label before training,
which was later updated 10 times during the training process. The evaluation metrics of
the updated labels were calculated after 10 iterations. As shown in Tables 5 and 6, the DET
and Recall values for the initial labels are very close to the proportion of cell markers used
while training the model. The Nfn/image values gradually decrease as the proportion of
cell markers used for model training increases. Additionally, it can be observed that the
Nfn/image values of S2 are greater than those of S1, reflecting that the cell density of S1
is smaller than that of S2. However, the cells may adhere to each other regardless of the
density, making it challenging to determine cell boundaries accurately.

Although the training started from 10% of labels, the labels were updated precisely,
and consequently, the DET value was updated from 0.130 to 0.903 (Table 5). With an
improvement in the quality of initial labels, the refined labels show a trend of improve-
ment after training. When the percentage of annotations used for training was 90%, the
updated labels achieved the DET value of 0.981. Without any doubt, the developed method
effectively refined the initial labels during the training process. When more than 60% of
annotations were used for training, the DET values of the final labels after 10 iterations
changed with a slight difference (0.1). The results in Table 6 show the same trend as those
in Table 5.

Table 5. The improvement in the quality of labels on S1 after training with our method. To test the
performance, we used difficult-quality initial labels for training.

Lper State DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10%
initial 0.130224 0.115625 0.992537 0.129377 0.228916 19.5 0.0

updated 0.903499 0.899080 0.899420 0.920792 0.909980 1.7 2.3

20%
initial 0.219631 0.196848 0.995575 0.218872 0.358852 17.5 0.0

updated 0.926385 0.916323 0.900529 0.959058 0.928872 0.9 2.3

30%
initial 0.323372 0.295377 0.996992 0.322628 0.487500 15.1 0.0

updated 0.962391 0.954258 0.941771 0.983912 0.962380 0.3 1.3

40%
initial 0.423955 0.393272 0.997706 0.423358 0.594465 12.8 0.0

updated 0.965355 0.956924 0.893713 0.991968 0.940281 0.2 2.6

50%
initial 0.513362 0.481752 0.998108 0.512895 0.677596 10.9 0.0

updated 0.963946 0.959568 0.871166 0.989055 0.926375 0.2 3.2

60%
initial 0.616861 0.586671 0.998424 0.616545 0.762335 8.6 0.0

updated 0.978814 0.972813 0.993497 0.992504 0.993000 0.2 0.1

70%
initial 0.721331 0.694594 0.998652 0.721168 0.837525 6.2 0.0

updated 0.983090 0.978123 0.959350 0.998507 0.978537 0.0 0.9
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Table 5. Cont.

Lper State DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

70%
initial 0.721331 0.694594 0.998652 0.721168 0.837525 6.2 0.0

updated 0.983090 0.978123 0.959350 0.998507 0.978537 0.0 0.9

80%
initial 0.824830 0.805797 0.998821 0.824818 0.903518 3.9 0.0

updated 0.986054 0.980895 0.980976 0.997520 0.989179 0.1 0.4

90%
initial 0.914237 0.902994 0.998937 0.914355 0.954776 1.0 0.0

updated 0.981147 0.973744 0.987562 0.998993 0.993245 0.0 0.3

Lper: percentage of annotations in each label used for training. 10% means only 10% of annotations in each label
were used for training.

Table 6. The improvement in the quality of the labels on S2 after training with our method. To test
the performance, we used difficult-quality initial labels for training.

Lper State DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10%
initial 0.116011 0.102517 0.993151 0.115308 0.206626 24.2 0.0

updated 0.877116 0.874489 0.909873 0.887690 0.898645 3.1 2.4

20%
initial 0.211760 0.190179 0.996248 0.211133 0.348425 21.6 0.0

updated 0.961661 0.960489 0.957724 0.967665 0.962669 0.9 1.2

30%
initial 0.316647 0.289650 0.997491 0.316103 0.480072 18.7 0.0

updated 0.9631303 0.958861 0.906273 0.977053 0.940333 0.6 2.7

40%
initial 0.412396 0.380913 0.998073 0.411928 0.583169 16.1 0.0

updated 0.973023 0.970774 0.964131 0.980361 0.972178 0.5 1.0

50%
initial 0.509337 0.477024 0.998440 0.508946 0.674216 13.4 0.0

updated 0.983830 0.982080 0.990381 0.986821 0.988598 0.4 0.3

60%
initial 0.610648 0.579109 0.998699 0.610338 0.757651 10.7 0.0

updated 0.990266 0.989438 0.987322 0.992038 0.989674 0.2 0.3

70%
initial 0.719507 0.693244 0.998896 0.719284 0.836338 7.7 0.0

updated 0.993643 0.992901 0.972050 0.997212 0.984470 0.1 0.8

80%
initial 0.824394 0.804921 0.999036 0.824254 0.903268 4.8 0.0

updated 0.992809 0.991429 0.988920 0.994033 0.991470 0.2 0.3

90%
initial 0.920540 0.910312 0.999137 0.920477 0.958195 2.2 0.0

updated 0.997735 0.997022 0.992490 0.998410 0.995441 0.0 0.2

Lper: percentage of annotations in each label used for training. 10% means only 10% of annotations in each label
were used for training.

2.4.2. Performance of Cell Detection Method Using Labels with Different Qualities and
Cross-Dataset Performance Evaluation

This section explores the impact of training with different initial label annotations
on model performance. The models obtained in the previous section were used to test
the performance on opposite datasets. Moreover, the performance of these models was
compared with the model trained with the fully supervised learning method using different
evaluation indicators. Table 7 presents the cell detection performance of model U1 trained
on S1 with different initial labels and tested on S2 except for the last row. The table’s last
row shows the model’s performance trained with the normal supervised learning method.
The training epochs were set to 30, and the batch size was set to 8 using the same input
and DL network. The last row illustrates the best model performance after 30 training
epochs. The results on other rows were calculated using a model trained for 10 iterations
with our method.

As shown in Table 7, even when the model was trained with 100% of reference
annotations using the normal supervised learning method, the model performance was not
better than the model trained with 60% of reference annotations using our method. The
reason is that the model trained with our approach gained more robustness during training.
In the updating process of the labels, like in curriculum learning, simple samples were used
at the beginning, and complex samples were used during the next training process. It was
found that the FN errors in the labels functioned like regularization to prevent the model
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from overfitting issues. After training the model with the same iterations, we observed an
improvement in model performance for our method.

Even when training with 10% of annotations, the model achieved the acceptable DET
value of 0.849. When 90% of annotations were used for training, the model trained with
our method achieved a DET value of 0.967, significantly better than the model trained with
full supervision. Table 8 shows the cell detection performance of model U2 trained on S2
with different initial labels and tested on S1 except for the last row. The results in Table 8
have the same trend as those in Table 7. As can be observed, the performance of U2 on S1
is better than that of U1 on S2, which aligns with the expected outcomes.

Table 7. The performance of U1 when testing on S2. The performance of the model trained with
different initial labels is compared, with 100% Lper indicating the model trained with full reference
annotations like the normal supervised learning method, which uses the same U-Net within our
method but skips the updating procedure.

Lper DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10% 0.849352 0.845280 0.949266 0.855939 0.900190 3.9 1.2
20% 0.843226 0.834753 0.954984 0.861583 0.905882 3.6 1.1
30% 0.849821 0.846180 0.921484 0.862333 0.890928 3.7 1.9
40% 0.867104 0.863114 0.934792 0.877921 0.905464 3.3 1.7
50% 0.892531 0.890591 0.919625 0.903407 0.911444 2.6 2.1
60% 0.942114 0.939521 0.944577 0.952553 0.948549 1.3 1.5
70% 0.954350 0.951468 0.942700 0.964659 0.953553 1.0 1.6
80% 0.957211 0.955831 0.927475 0.967962 0.947286 0.9 2.0
90% 0.966706 0.964454 0.962361 0.974719 0.968501 0.7 1.0

100% 0.938657 0.938275 0.961071 0.942346 0.951616 1.6 1.0

The model trained using 100% of reference annotations was set to 30 epochs, and the best performance was
achieved on epoch 21.

Table 8. The performance of U2 when testing on S1. The performance of the model trained with
different initial labels is compared.

Lper DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10% 0.904665 0.902740 0.882824 0.920059 0.901057 1.8 2.7
20% 0.947036 0.942516 0.897649 0.967694 0.931356 0.7 2.4
30% 0.963703 0.958997 0.884168 0.990481 0.934310 0.2 2.8
40% 0.970019 0.966466 0.917587 0.987611 0.951313 0.3 2.0
50% 0.973372 0.968878 0.909008 0.994030 0.949620 0.1 2.2
60% 0.976336 0.971522 0.917928 0.996020 0.955381 0.1 1.9
70% 0.976531 0.972072 0.909173 0.998504 0.951747 0.0 2.2
80% 0.976579 0.974019 0.914247 0.991146 0.951145 0.2 2.9
90% 0.980855 0.978314 0.939070 0.992138 0.964875 0.2 1.4

100% 0.974150 0.970951 0.913934 0.990133 0.950509 0.2 2.1

Here, 100% Lper means the model trained with full reference annotations like the normal supervised learning
method, which uses the same U-Net within our method but skips the updating procedure. The model trained
using 100% labels was set to 30 epochs, and the best performance was achieved on epoch 20.

2.4.3. Performance of Cell Detection Method by Replacing U-Net with Another Deep
Learning Architecture

We performed an evaluation study to show that the methodology proposed in this
study works when U-Net is replaced by other advanced DL architectures. On the Fluo-
N2DH-GOWT1 method, we replaced U-Net with a CTC algorithm named “MU-US” in
our dataset. The MU-US algorithm was proposed with a custom deep convolutional
U-Net named “U-SE-ResNet”. U-SE-ResNet is an encoder–decoder architecture with a
ResNet-50 backbone used for feature extraction in the encoder module [56]. The overall
architecture of this model is similar to U-Net. The encoder part of this method consists of
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residual blocks equipped with squeeze and excitation blocks and skip connections after
each block of ResNet-50 [56]. During the training process for this method, we used the
same hyperparameters and training configurations used to train U-Net.

In this evaluation study, the S1 and S2 datasets of Fluo-N2DH-GOWT1 were used to
train the proposed models denoted as D1 and D2, respectively. For testing these models,
the performance of D1 was tested on S2, while the performance of D2 was tested on S1.
Following the procedure described in Section 2.4.2, we compared the model’s performance
trained with different initial annotations with a fully supervised learning method. Table 9
shows the performance of model D1 trained on S1 with different initial labels and tested
on S2. The results obtained using the model trained with U-SE-ResNet show the same
trend as those obtained using the model trained with U-Net, although there is a slight
difference. The model trained with 60% of reference annotations performed better than
that trained with 100% of reference annotations using the normal supervised learning
method. We used tracking-assisted correction to update the model iteratively. Table 10
shows the cell detection performance of model D2 trained on S2 with different initial labels
and tested on S1. The results in Table 10 have the same trend as those in Table 9. Our
method is recommended or uniformly justifiable based on the results of replacing U-Net
with U-SE-ResNet. The weakly supervised learning method proposed in this study can
work efficiently using different DL architectures.

Table 9. The performance of D1 when testing on S2. The performance of the model trained with
different initial labels is compared, with 100% Lper indicating the model trained with full reference
annotations like the normal supervised learning method, which uses the same U-SE-ResNet within
our method but skips the updating procedure.

Lper DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10% 0.808701 0.808349 0.935130 0.814240 0.870508 5.0 1.5
20% 0.825904 0.823118 0.939530 0.833133 0.883138 4.5 1.4
30% 0.855185 0.854578 0.926306 0.863418 0.893757 3.7 1.8
40% 0.936631 0.935141 0.960553 0.941410 0.950885 1.5 1.0
50% 0.932261 0.929393 0.960262 0.939478 0.949756 1.6 1.0
60% 0.947477 0.946482 0.945167 0.953062 0.949098 1.2 1.5
70% 0.953159 0.951659 0.977189 0.956539 0.966753 1.1 0.6
80% 0.956099 0.955433 0.939076 0.962226 0.950510 1.0 1.7
90% 0.952523 0.951295 0.984577 0.982279 0.948549 0.4 1.6

100% 0.942034 0.941997 0.940433 0.947912 0.944158 1.4 0.9

The model trained using 100% of reference annotations was set to 30 epochs.

Table 10. The performance of D2 when testing on S1. The performance of the model trained with
different initial labels is compared, with 100% Lper indicating the model trained with full reference
annotations like the normal supervised learning method, which uses the same U-SE-ResNet within
our method but skips the updating procedure.

Lper DET TRA Precision Recall F-Measure Nfn/Image Nfp/Image

10% 0.937707 0.931979 0.895473 0.962387 0.927725 0.8 2.4
20% 0.948008 0.943764 0.921455 0.973094 0.919708 0.5 3.1
30% 0.949077 0.945012 0.930688 0.964338 0.947214 0.7 1.5
40% 0.941642 0.926563 0.945674 0.977639 0.961390 0.4 1.1
50% 0.98241 0.979964 0.927164 0.995573 0.960151 0.0 1.7
60% 0.980515 0.9766 0.940102 0.996033 0.967260 0.0 1.3
70% 0.980855 0.977171 0.928077 0.997522 0.961547 0.0 1.6
80% 0.98139 0.978631 0.920382 0.995570 0.956501 0.0 1.9
90% 0.984645 0.981784 0.931891 0.998520 0.964056 0.0 1.6

100% 0.981487 0.978504 0.925332 0.9960552 0.9593920 0.0 0.9

The model trained using 100% of the labels was set to 30 epochs.
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Due to the unique nature of our microscope and microscopy data, which have never
been used in similar research, it is difficult to compare our results with those of other
researchers. Despite this, the performance of the proposed method in this study was
compared with the CTC state-of-the-art cell detection and tracking algorithms from different
participants on a public dataset. It should be noted that in CTC, all datasets in every
category were used for training. As mentioned in the previous sections, we performed
the training on one dataset and tested it on the other. On the Fluo-N2DH-GOWT1 dataset
used to evaluate our method, the best-performing algorithm, namely “TUG-AT”, proposed
cosine embeddings combined with recurrent fully convolutional hourglass networks to
segment and track cell instances [29]. The second method, named “KTH-SE”, used a
tracking-by-detection architecture that relied on four separate segmentation algorithms and
a Viterbi-based track-linking method. The third method, named “BGU-IL”, used a hybrid
of convolutional long short-term memory and U-Net to incorporate temporal information
that can facilitate the detection and tracking of individual touching cells or partially visible
cells [57]. As shown in Table 11, our method can be ranked second in terms of TRA and
first in terms of DET.

Table 11. Quantitative results of the ISBI CTC dataset for DET and TRA as published on the CTC website.

Fluo-N2DH-GOWT1 Dataset

Ranking TRA DET

1st 0.979 (1) 0.980 (1)

2nd 0.976 (2) 0.977 (2)

3rd 0.967 (3) 0.970 (3)

Ours 0.978 0.980
The number in parentheses represents the ranking on the CTC website (blue: TUG-AT; green: KTH-SE;
orange: BGUIL; yellow: UFRGS-BR; purple: ours).

3. Materials and Methods

The overall workflow of the proposed method is presented in Figure 6. It mainly
includes the initial dataset construction, the incomplete initial labeling, the training and pre-
diction process, and the iterative cell detection and tracking procedure. Firstly, brightfield
cell images were taken as the input of the CNN model. Moreover, contrast augmentation
was applied to expand the training dataset (Figure 6a). Then, by processing fluorescent cell
images, incomplete initial annotations of the nucleus were generated using the contrast
limited adaptive histogram equalization (CLAHE) and bilateral filter methods. These in-
complete annotations/labels of cells were treated as initial pseudo-ground truth (Figure 6b).
In the next stage, the U-Net model was used for cell detection on the dataset with the initial
pseudo-ground truth as initial labels (Figure 6c). In the final step (Figure 6d), the training
process was divided into several iterations, during which the U-Net model predicted the
cells in all frames. We analyzed the tracking results by conducting cell tracking on the
predictions and removing the incorrect masks in the forecast. The pseudo-ground truth
was updated in this way for the next iteration. The details of the developed approach are
described in the following sections.
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3.1. Live Cell Imaging of iPS Cell Reprogramming

The cell images were generated using an Olympus IX81 live cell imaging system
equipped with a 10× UPlanFL objective iXon3 EMCCD camera sourced from Tokyo, Japan.
iPS cell reprogramming was performed for mouse embryonic fibroblasts (MEFs). A detailed
description of cell culture and the generation of iPS cells can be found in Ref. [58]. From
Day 0, the images of mouse embryonic fibroblasts (MEFs) were taken for 135 h and 40 min.
For the first 48 h and 40 min, brightfield and red fluorescence images were acquired at an
interval of 10 min. After two days of dual-channel imaging, a green fluorescence channel
was added to indicate the expression of GFP-Oct4, and the acquisition interval was adjusted
to 30 min. Motorized stage control was used to track cells in the same field, and 33 fields
were selected each time for further analysis. Cell images taken within the first 48 h and
40 min since Day 0 were used to construct the dataset because, after this time, the GFP-Oct4
was added to identify the progenitor cells experimentally. Overall, 233 brightfield and the
same number of red fluorescence images for the dataset at each field correspond to the first
three periods.

3.2. Dataset Construction and Independent Test Dataset
3.2.1. Data Augmentation for Brightfield Cell Images

Data augmentation operations help gain the model’s robustness by increasing the
training dataset. Regular data augmentation operations for images include changing con-
trast, brightness, zooming, rotating, mirror filling, cropping, and elastic deformation. These
operations can be combined with different parameters. Because of uneven luminous inten-
sity distribution produced by the point light source, cells in various fields and periods show
different intensities. In this paper, we applied contract augmentation for the brightfield
microscopic images. By changing the contrast of the brightfield images, more input samples
for the DL model were generated to reduce overfitting and obtain a more robust prediction
model. The protocol to change the contrast of brightfield images was to multiply the pixel
value by a parameter determined manually by the next steps.

Firstly, in the training dataset, the original brightfield and augmented images were
combined. Moreover, the training dataset with the partially labeled data was used to train
the U-Net model. If the number of markers in the predicted results was more significant
than that in the partial labels, we selected this parameter since the change in contrast
by multiplying this parameter would help the model to learn more characteristics and
gain robustness. After a few tests, we set the parameters for changing contrast to values
varying from 0.8 to 1.5 with an interval of 0.1. The parameters resulted in 8 times larger
datasets (F1 and F2). Since both the F1 and F2 datasets contained 233 brightfield images,
the total images for both datasets increased to 1864 after data augmentation. For the
Fluo-N2DH-GOWT1 dataset, the same data augmentation technique was used.

3.2.2. Incomplete Initial Labeling of Brightfield Images Using the Paired Red
Fluorescent Images

Incomplete initial labels represent the pseudo-ground truth for the brightfield images.
The incomplete initial labels were generated from the paired red fluorescent images taken
under the point light. The variation in light source intensity affects the quality of an image,
and the pixel values in the central area of red fluorescent images are usually higher than
those around the cells. This complicates the process of image binarization. It is believed
that increasing the threshold value makes cell masks more transparent when the number of
cells is comparatively small. Figure 7 shows the first frame of the red fluorescent images of
the F1 dataset (Figure 7a), together with the results using different binarization techniques
(Figure 7b–f). A threshold value of 23 for binarization made the cell masks around the
boundary area challenging to detect (Figure 7b). In contrast, a threshold value of 16 made
it difficult to distinguish between the cell masks in the central region and those from the
background (Figure 7c).
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Figure 7. Initial labeling of brightfield images: (a) red fluorescent image of the first frame for the F1
dataset; (b) the binarization of (a) with a threshold of 23; (c) the binarization of (a) with a threshold
of 16; (d) the fluorescent image processed using CLAHE; (e) the result of (d) processed using the
bilateral filter; (f) the result after noise removal in (e). Images in (e,f) are binarized for visualization.
(Red squares and yellow ellipsis represent the sample of cells taken for initial labeling).

The red fluorescent images were processed in four steps. Firstly, CLAHE was per-
formed to equalize the pixel value (Figure 7d). In the second step, a bilateral filter was
applied to reduce the noise and protect the edge of cell masks at the same time (Figure 7e).
Thirdly, noises with a smaller area than cells in the images were removed by comparing
the size of cell markers (Figure 7f). Finally, thresholding was used to binarize the red
fluorescent images as incomplete initial labels. Instead of using the automated binarization
method in the last step, we determined the threshold manually to detect the nucleus better
and track the cells simultaneously. Overall, we generated the initial labels of the cells in
the brightfield images using the paired red fluorescent images. However, because not all
cells could be transfected successfully, only cells showing the red fluorescence signals were
labeled to obtain the incomplete initial labels considered pseudo-ground truth.

3.2.3. Ground-Truth Labels of Brightfield Cell Images

Among all the 33 field images, 2 fields with different cell densities were selected to
make manual annotations used as ground truth (GT) to evaluate the performance of our
method. The dataset with a small cell density was denoted as F1, while the dataset with
a large cell density was denoted as F2. Both datasets were used to train the proposed
algorithms denoted as M1 and M2, respectively. For testing the M1 and M2 models, the
performance of M1 was tested on F2, while the performance of M2 was tested on F1. We
developed a program based on OpenCV and red fluorescent image processing to annotate
the cells manually in brightfield images. The brightfield image was superimposed on the
paired red fluorescent image with the help of an interactive window, and the paired red
fluorescent image was used as a reference for cell labeling.

The left mouse button is used to draw a mask on the fluorescent image, while the right
mouse button is used to erase the mask. The program allows for using a stylus pen for
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more precise cell labeling. After manual labeling, cell tracking tasks were performed on
the annotated cells based on the overlap method to refine the annotations. To ensure that
the cells were labeled correctly, more than two researchers carefully evaluated the tracking
results frame by frame to remove the wrong annotations or add the missing ones. This
step was repeated until the researchers found no errors. In this paper, two researchers
performed the entire process, and the cell annotations obtained with consensus were taken
as the GT. In the ground truth, cell multi-division and cell fusion events were excluded
since they represent a deficient number of annotations.

3.2.4. Independent Test Datasets

The transferability of the proposed model was tested on the Fluo-N2DH-GOWT1
dataset from CTC. Leica TCS SP5 equipped with a Plan-Apochromat 63×/1.4 (oil) objective
lens was used to investigate whether Oct4 recognized damaged chromatin in mouse ESCs
expressing GFP-Oct4. The images were taken at an interval of 5 min. The details of this
dataset can be found in Ref. [59]. The training dataset with reference annotations was used
for evaluation. The training data were divided between two sub-datasets, denoted in this
paper as S1 and S2. Both of them had 92 brightfield images with reference annotations. The
S1 and S2 datasets were used to train the proposed algorithms/models denoted as U1 and
U2, respectively. For testing the U1 and U2 models, the performance of U1 was tested on
S2, while the performance of U2 was tested on S1.

3.3. Training and Prediction
3.3.1. Cell Detection for Brightfield Images Using Incomplete Annotations

The essence of weakly supervised learning is DL, with the deep neural network as
the core. Cell detection is a binary classification task where the cells to be detected are
regarded as the foreground and background as a class. The label value corresponding to
the cell is 1, while the label value corresponding to the background is 0. U-Net has garnered
recognition for its exceptional performance in addressing intricate image segmentation
tasks. We decided to use U-Net as the cell detector in our method because it has achieved
excellent ranking on many ISBI Cell Tracking Challenge datasets [60–62]. However, many
binary classification models such as ResNet [63], fully convolutional neural networks [64],
Mask RCNN [65], and other advanced DL architectures can be used as cell detectors
for subsequent training processes. This study extends the conventional approach and
introduces a custom deep convolutional U-Net called “U-SE-ResNet” as a replacement for
U-Net to prove the effectiveness and adaptability of the proposed methodology [56].

Initially created for cell segmentation, U-Net proves its mettle in achieving superior
performance with a relatively small volume of training data. As shown in Figure 6b, the
contraction part (left side, encoder) of the proposed U-Net in our method contains four
blocks and skip connections after each block. Each block consists of two 3 × 3 convolutions
and a downsampling max pooling operation. The first layer of the contraction part consists
of the input layer, which accepts gray images with the size 736 × 736. After each downsam-
pling process, the length and width of the feature map are divided into two. The expansion
part of the network (right side, decoder) also consists of four blocks, each containing one
deconvolution and two convolution operations. The deconvolution operation doubles the
length and width of the feature map. Then, it merges with the feature map obtained in the
contraction path at the same level for the successive two convolution operations. Due to
the symmetry of the encoder and decoder structures, the model generates the exact size
of the corresponding marker as the original image. Our model had 31,402,501 trainable
parameters with a computation time of 3 h.

The computation time of 3 h was achieved during the training process of our weakly
supervised learning method. The experiments were conducted on a robust computing
system featuring four NVIDIA Tesla P100 GPUs. These GPUs, known for their parallel
processing capabilities, played a pivotal role in accelerating the training process. The
system operated on a CentOS Linux release 7.4.1708 operating system, with computational
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tasks managed with an Intel Xeon E5-2650 v4 CPU boasting 128 GB of RAM, sourced and
operated in Santa Clara, CA, USA. While specific details about processor speeds and other
hardware specifications are not provided, this carefully configured setup undoubtedly
contributed to the attainment of the stated computation time. The training process was
implemented using Python version 3.8 within a PyTorch DL framework, highlighting the
utilization of cutting-edge tools to achieve efficient and accurate results.

After thoroughly searching for the best hyperparameters and training configurations,
we used the binary cross-entropy loss function and Adam optimizer parameters to train
the model. The learning rate was set to 0.0001. We divided the whole training process
into 10 iterations. The pseudo-ground truth of the brightfield images was updated and
improved iteratively. We trained our algorithm on two datasets of iPS cell reprogramming
denoted as F1 and F2, respectively. Each dataset has 1864 augmented images. The batch
size was set to 24, implying that the model was updated 78 times for each epoch. The
two models trained on F1 and F2 datasets were denoted as M1 and M2, respectively. The
performance of M1 was tested on F2, while the performance of M2 was tested on F1.
For the Fluo-N2DH-GOWT1 dataset, we trained our methods on the S1 and S2 datasets.
Both datasets contained 92 images, and the total number of images increased to 736 after
data augmentation. The batch size was set to 8, implying that the model was updated
92 times for each epoch. The two models trained on S1 and S2 were denoted as U1 and U2,
respectively. The performance of S1 was tested on U2, while the performance of S2 was
tested on U1.

3.3.2. Prediction of Cell Masks Using the Weighted Sum for the Training Dataset

During each iteration, the model predicted eight results for the brightfield image
corresponding to eight additional augmented images. To enhance the reliability of the
prediction results, we calculated the weighted sum of the eight outcomes. The exact weight
of 0.125 was used for all eight different results. For example, Figure 8a shows the pseudo-
ground truth of the first frame of the F1 dataset. The predicted cell masks from the weighted
sum on the same image are demonstrated in Figure 8b in blue circles. The weighted sum
prediction and the pseudo-ground truth were combined, as shown in Figure 8c. Inevitably,
the model sometimes showed poor performance due to its strong ability to fit the FN
errors in the pseudo-ground truth, indicated by the green boxes in Figure 8a,c. In other
cases, some cells were not predicted even when they had the corresponding masks in
pseudo-ground truth, as shown by the white boxes in Figure 8a,b.
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Figure 8. The prediction of cell masks by weighted sum: (a) shows the initial pseudo-ground truth of
the first frame of F1. The red circles indicate cell marks of the initial pseudo-ground truth; (b) cell
masks from the weighted sum of the eight different predictions (blue circles); (c) a combination of
cell masks from weighted sum prediction (b) and the initial pseudo-ground truth (a); (d) shows the
final cell masks after applying the tracking-assisted correction to the cell masks in (c). Green boxes in
(a,c) indicate the FN errors in pseudo-ground truth (a), which were predicted correctly in (c). White
boxes in (a,b) indicate the cells for which the model predicted worse results than the pseudo-ground
truth. Yellow boxes in (c,d) show the FP errors in the weighted sum, which were determined and
removed using the tracking-assisted correction.
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When comparing the incomplete labels with the weighted sum results, it is clear that
the latter can annotate more cells. However, some cells with the corresponding annotations
could not be detected with the weighted sum. Thus, when using the weighted sum results
to replace the incomplete labels to continue training, different FP errors were introduced
while reducing some FN errors. We used the union of the initial labels and the weighted
sum results to address this issue. For the convenience of the following description, we refer
to this union as the cell detection results. The cell detection results contained some incorrect
annotations (FP errors), which were reduced in subsequent analyses using cell tracking.

3.4. Iterative Cell Detection and Tracking
3.4.1. Tracking by Detection

Given the cell detection results for all time-lapse brightfield images, the cell tracking
problem is to find the successor in frame t + 1 for the cell in frame t. We used the intersection
between adjacent cell masks to track cells. Assuming the area of cell masks between
intersections as At and At+1 in frame t and t + 1, respectively, the overlap is calculated as
follows:

Overlap =
At ∩ At+1

At
(1)

We detected the nucleus area, and changing its location as the cell moved was easy.
When finding the candidate cells in frame t + 1, we dilated the cell mask in frame t. We
chose the one where the overlap exceeded the threshold to determine the specific cell
successor. This strategy was also applicable to the cell division scenarios. The threshold
value depends on several factors such as the time interval between the frames, cell speed,
and cell area. Generally, cell tracking based on overlap worked well when the threshold
value was set to 0.1. Even if the markers belonging to the same cell in two adjacent frames
could not be associated due to some unreasonable setting of this threshold, they would be
associated in the subsequent analysis of tracking results.

3.4.2. Tracking-Assisted Correction

In the brightfield images, some impurities and bubbles similar to cells under high
magnification appeared, which made it difficult for the model to distinguish them. This
resulted in incorrect annotations (FP errors) in the cell detection results. We believe that
these FP errors shared the same features, with shorter trajectories than cells. For our
dataset, we set α to 3 and β to 5, which stated that if no prediction was associated in the
subsequent 5 frames, the mask with a trajectory length shorter than 3 was determined
as FP and removed from the pseudo-ground truth. We set α to 3 and β to 8 for the Fluo-
N2DH-GOWT1 dataset. We analyzed the tracking results and started a new tracker for the
markers whose length of trajectories was shorter than α. FP errors were determined and
removed from the pseudo-ground truth. When choosing the FP, the following two factors
were taken into account:

Location: The cells around the boundary of the brightfield image entered and left the
image field frequently, making their trajectory relatively short and hard to associate. From
the trajectory perspective analysis, these cells were treated as noise. Their removal had
no impact on model performance. Therefore, the cells near the border of the image were
not analyzed. Although some noise might be missed, this had no significant effects on cell
detection prediction performance.

The acceptable maximum number of frames for missing markers: For the possible FP,
we started a new tracker to check if there was any prediction associated with the subsequent
β frames. To find the candidate cells in the successive β frames, the area of the mask in the
last trajectory frame was dilated three times. In addition, the overlap with the subsequent
β frames was calculated to obtain the candidate cells. Once the cell mask with no parents
appearing in the next β frames had the overlap exceeding the threshold of 0.1, this cell was
taken as the successor.
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3.5. Evaluation Metrics

In this paper, we used the following evaluation metrics to measure the performance of
the proposed method:

DET: This is an evaluation metric for detection accuracy used in CTC [13]. DET evalu-
ates the detection accuracy by comparing the nodes of acyclic-oriented graphs representing
objects in both the GT and the detection results from the tested method. Numerically, DET
is a normalized acyclic oriented graph matching (AOGM-D) measure for detection and is
defined as follows [66]:

DET = 1− min(AOGM− D, AOGM− D0)

AOGM− D0
(2)

where AOGM− D is the cost of transforming a set of nodes predicted using the tested
method into the set of GT nodes; AOGM − D0 denotes the cost of creating the set of
GT nodes from scratch; and AOGM indicates empty detection results. The DET value
always falls in the [0,1] interval, with higher values corresponding to better detection
performance [13].

TRA: This is also an evaluation metric used in CTC. It evaluates the tracking accuracy
of the tested method measured by comparing the tracked objects with the gold standard
reference annotation of selected frames. Numerically, TRA is a normalized acyclic oriented
graph matching (AOGM) measure defined as follows [66]:

TRA = 1− min(AOGM, AOGM0)

AOGM0
(3)

where AOGM0 is the cost required for creating the reference graph from scratch, and
AOGM is the value for empty tracking results. The TRA value always falls in the [0,1]
interval, with higher values corresponding to better tracking performance [13].

Precision: This metric is used to evaluate the percentage of true-positive instances in
the overall positive instances of objects in the detector based on the reference annotation. It
is defined as follows:

Precision =
TP

TP + FP
(4)

Recall: This metric is used to evaluate the ratio of true positives that have been
predicted in the ground truth, defined as follows:

Recall =
TP

TP + FN
(5)

F-Measure: The harmonic mean of Precision and Recall is defined as follows:

F−Measure =
2× Precision× Recall

Precision + Recall
(6)

Nfn/image: This metric measures the average number of cell markers not given in
every image. It is defined as follows:

N f n/image =
FN

num o f image
(7)

Nfp/image: This metric measures the average number of wrong cell markers in the
prediction results per image. It is defined as follows:

N f p/image =
FP

num o f image
(8)
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4. Conclusions

In this paper, we proposed a novel weakly supervised learning method for cell detec-
tion and tracking using incomplete initial annotations in brightfield microscopy images.
Using the tracking-by-detection algorithm, we updated the incomplete initial labels to
train a robust cell detector. The whole process was automated without using manually
labeled data. We proposed a procedure to remove the point light effect in fluorescent
images to obtain incomplete initial labels. On other microscopy image datasets different
from ours, incomplete initial labels can be obtained using some unsupervised cell detectors
with prior knowledge of cell shape, while our procedure relies on fluorescent images. Once
the initial labels are acquired, our method can be used to train a robust cell detector. After
cell detection, tracking through detection can be efficiently conducted. Our method can
analyze large volumes of data with comparable performance as fully supervised methods
while requiring less annotation work.

The proposed method was extensively evaluated on two fields of brand-new iPS
cell reprogramming datasets. Its competitive performance was confirmed on the public
FluoN2DH-GOWT1 from CTC, which contains two datasets with reference annotations.
The detection and tracking power of the developed model was evaluated using two ap-
propriate evaluation metrics from CTC (DET and TRA). The average DET values for three
periods achieved on the two fields of the iPS dataset were 0.862 and 0.924, while the TRA
values were 0.850 and 0.918. We simulated the incomplete initial annotations on open
data with reference annotations by randomly removing 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90% of the cell markers to train the model. Moreover, the performance was
evaluated using the fully supervised learning method. On FluoN2DH-GOWT1, the DET
improved from 0.130 to 0.903 and 0.116 to 0.877, while the TRA improved from 0.115 to
0.899 and 0.102 to 0.874 after training the model on the two datasets with labels containing
only 10% of cell markers. After training the model with 60% of cell markers, the DET
improved from 0.616 to 0.978 and 0.610 to 0.990, and the TRA improved from 0.586 to 0.972
and 0.579 to 0.989.

Although our method uses only weak labels, the updated performance results after
training the model with 60% of cell markers prove that our method outperforms many
state-of-the-art fully supervised learning methods. Using a normal supervised learning
method on FluoN2DH-GOWT1 data, the DET values obtained were 0.938 and 0.974,
while the TRA values were 0.938 and 0.970. The outcomes of this paper can help to
know the trajectories of cells and function as a reference for manual annotations. While
the method demonstrates promising performance on specific datasets, some limitations
warrant consideration. Notably, the framework’s effectiveness is contingent upon the
quality of initial annotations and the accuracy of preprocessing steps, which could impact
its generalization to diverse microscopy contexts.

Furthermore, while the reduction in annotation effort is advantageous, the potential
trade-off between effort and performance should be carefully evaluated. Future research
endeavors could explore advancements in the method’s robustness, broader applicability,
and possible extension to other deep learning models to address these concerns. By openly
acknowledging these limitations and emphasizing the method’s unique contributions, we
aim to engage in constructive discourse and advance the field of weakly supervised cell
analysis. Furthermore, we plan to study the effect of applying test-time/prediction-time
augmentation and the impact of using limited artificially labeled datasets to learn how cell
density, shape, and texture affect the model’s performance.

Implications of the Study

The implications of this study extend to both the scientific and practical realms of cell
analysis. Scientifically, our proposed weakly supervised framework challenges the con-
ventional reliance on extensive manual annotations, paving the way for more efficient and
scalable methods for studying cell dynamics. By demonstrating competitive performance
on diverse datasets, the study highlights the potential of utilizing incomplete initial labels



Int. J. Mol. Sci. 2023, 24, 16028 25 of 28

to gain insights into cellular behaviors, ultimately aiding researchers in understanding
complex biological processes.

From a practical standpoint, the developed framework is promising as it significantly
reduces labor-intensive annotation efforts in cell detection and tracking tasks. This effi-
ciency gain can accelerate research timelines and make large-scale analyses more accessible
to a broader range of researchers, fostering advances in various fields of biomedicine
and beyond. Moreover, the framework’s adaptability to different datasets and potential
integration with more advanced deep learning models underscores its potential for broader
applications in real-world scenarios, ranging from drug discovery to disease modeling.
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