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Abstract: Human sexual and reproductive development is regulated by the hypothalamic-pituitary-
gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH)
acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital
hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR
makes it a potential target for treatments in several reproductive diseases and in congenital adrenal
hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when
bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope
cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the
production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ac-
companied with the phospholipase C, inositol phosphate production, and protein kinase C activation.
Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the
agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and
lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR
and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR
therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic
mutations and hold serious promise for CHH treatment. Understanding of the GnRHR’s genomic
and protein structure is crucial for the most appropriate assessing of the mutation impact. Such muta-
tions in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various
clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These
mutations vary regarding their mode of inheritance and can be found in the homozygous, compound
heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and
is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues
such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR’s
multifaceted role in human reproduction and its clinical implications for reproductive disorders.

Keywords: HPG axis; GnRH; GnRHR; hypogonadotropic hypogonadism; pituitary; gonadotropes

1. Introduction

Reproduction and development of sexual characteristics, in humans, is under the con-
trol of the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone
(GnRH) that is produced in the hypothalamic neurosecretory cells is the main regulatory
hormone of the HPG axis and acts in a pulsatile manner on the gonadotrope cells of the
anterior pituitary gland by binding to GnRH receptors (GnRHRs) [1–3]. The stimulated
GnRHRs cause the production and secretion of the luteinizing hormone (LH) and the
follicle-stimulating hormone (FSH) that are known to control several important functions
and have a direct effect on the gonads. Such functions include the gonadal steroid produc-
tion, gametogenesis, and the gonadal cell proliferation [4–6]. Stimulation of the GnRHR by
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the GnRH takes place through the Gq/11 heterotrimeric protein pathway [4,5,7]. During
childhood, GnRH secretion is suppressed and rises during puberty, in which increased
production of gonadotropins and gonadal steroids trigger sexual development [8]. Re-
production development is disrupted somewhat by dysfunction of the GnRHR including
causative mutations in the GnRHR gene resulting in the delay of puberty and congen-
ital hypogonadotropic hypogonadism (CHH) [9,10]. In humans, GnRHRs are divided
into two subtypes, GnRH1R and GnRH2R, with the expression of the latter being contro-
versial [11–13]. The GnRH1R receptor is a member of the rhodopsin G protein-coupled
receptor (GPCR) family and, in addition to its primary expression in pituitary gonadotrope
cells, it was also found to be expressed in the breast, ovaries, prostate cells and lympho-
cytes [14–17]. Given its importance in reproductive regulation, the GnRHR has emerged
as a potential target for the treatment of infertility and sex steroid-dependent hyperplasia,
such as uterine fibroids, endometriosis, and prostate cancer [18–21]. In these conditions,
gonadal steroid secretion is reduced by the delivery of GnRH antagonists or high doses of
GnRH agonists, which reduce the expression of the receptor [22,23]. In this review, the main
type of human GnRHR receptor is outlined and its main role in regulating reproduction
through complex signaling pathways is described. Additionally, the genomic and protein
structure of GNRHR along with ligands, mutations, and therapeutic possibilities are also
explored. A discussion on tissue expression patterns of GNRHR, extending beyond the
pituitary gland, and their possible implication on clinical entities such as hypogonadotropic
hypogonadism is also presented.

2. Genomic and Protein Structure of GnRHR
2.1. Genomic Structure of GnRHR

Using cloning and mapping analyses, the human GnRH receptor gene was found to
be located on chromosome 4q13.2–13.3 and consists of three exons separated by two introns
covering 17.2 kb on the chromosome [24–27]. Specifically, the chromosomal location is
Chromosome 4: 67,737,118–67,754,388 (genome assembly: GRCh38.p14); gene code (Gene:
ENSG00000109163.7). The main transcript of the gene is 4402 bp in length and encodes a
protein of size 328 aa and predicted unmodified molecular weight of ~38 kDa (Transcript ID:
ENST00000226413.5; Refseq: NM_000406.3). Fan et al. showed, due to the size of the gene,
that the promoter and the 3′-UTR regions contain multiple transcription initiation sites and
polyadenylation signals, respectively [24]. In 1997, Grose et al. showed the presence in the
pituitary of a second smaller transcript generated by alternative splicing and encoding a
protein of size 249 aa (Transcript ID: ENST00000000420975.2). Expression of this smaller
protein was shown to be inhibitory to the mechanism of GnRHR signaling [28]. The 5′

UTR is found in exon 1 as well as the first 522 nucleotides of the coding sequence, which
encode the first three transmembrane (TM) domains and a part of the fourth TM domain.
Exon 2 encodes the following 220 nucleotides of the coding sequence, which includes the
rest of the fourth TM and the fifth TM domain. Finally, exon 3 consists of the remaining
245 nucleotides of the coding sequence and the 3′ UTR [24–26] (Figure 1A).

2.2. Protein Structure of GnRHR

The GnRHR, as a member of the GPCR protein family, is composed of seven alpha-
helical transmembrane (TM) domains that span the lipid bilayer of the cell membrane.
These seven TMs are designated TM1 to TM7 and are connected by three intracellular
(IL1–3) and three extracellular loops (EL1–3). The amino-terminal end (NH2) is on the ex-
tracellular side and the carboxyl-terminal end is on the intracellular side [14,29] (Figure 1B).
TMs form a barrel-like structure that creates a hydrophobic core, allowing the receptor
to integrate itself in the lipid bilayer of the cell membrane. This provides the structural
framework of the receptor’s function, allowing it to interact extracellularly with GnRH
ligands and intracellularly with G proteins [30,31]. The extracellular loops of the GnRHR
help in the stability of the ligand-receptor complex. Specific amino acid residues of the
extracellular loops of the receptor form a ligand-binding pocket that allows recognition and
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binding of the GnRH ligand with high specificity and its partial entry to the transmembrane
part of the receptor [31]. Specifically, amino acid residues Asp at position 98, Trp at position
101, Asn at position 102, Lys at position 121, and Asp at position 302 were identified as
important residues for ligand binding [31–35] (Figure 1B). The GNRHR intracellular loops
are involved in G protein coupling. They contain specific sequence motifs that interact with
G proteins, facilitating the activation of downstream signaling pathways. Moreover, intra-
cellularly, the GnRHR differs from other GPCRs in a number of ways, including the absence
of the carboxyl COOH terminal tail. This domain is regularly anchored to the membrane
in other GPCRs [36] and plays an essential part in short-term desensitization caused by
ligand-stimulated phosphorylation of Ser/Thr residues [37]. In GnRHR-mediated inositol
phosphate production, the immediate desensitization is not observed, which is in line with
the absence of a carboxy-terminal tail. Another difference of GnRHR compared to GPCRs
is the substitution of Tyr with Ser, at position 140, in the highly conserved GPCR motif
Asp-Arg-Tyr found at the junction of TM3 and the second intracellular loop [38–40]. This
motif’s Asp and Arg residues have been related to the interaction of several GPCRs to their
corresponding G proteins [41]. In addition, the substitution of Ser140 for Tyr had no effect
on the GnRHR’s coupling to cytoplasmic G proteins [42,43]. The Tyr140 mutant receptor,
on the other hand, increased the degree of receptor internalization and agonist-binding
affinity, indicating that this substituted residue has mild impact on GNRHR structure [43].
The conserved residues ile135, ile143, and leu147 in the second intracellular loop of GnRHR
play an important role in G protein coupling, validating the significance of this loop for the
coupling with G proteins [43,44].
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Figure 1. Gene and protein structure of GnRHR. (A) Schematic representation of the GNRHR gene and
protein. Exon/Intron organization on the gene and the amino-terminal (NH2) tail, transmembrane
(TM), intracellular (IL), extracellular (EL), and carboxy-terminal (COOH) domains on protein are
indicated. The three exons of gene are indicated with numbers 1–3. (B) The GnRHR structural
organization in the pituitary gonadotrope cell membrane. Ligand-binding amino acid residues are
indicated with orange color, G protein coupling amino acid residues are indicate with purple color,
the highly conserved Asp-Arg residues are indicated with green color, and the Ser140 which is
different compare to other GPCRs, is indicated with blue color. The seven transmembrane domains
of the protein are indicated with numbers 1–7.
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2.3. Signal Transduction Pathways of GNRHR

GnRH and its receptor are differently distributed in the various tissues where they
are detected. Consequently, the signaling pathways activated by the binding of GnRH
to its receptor, in order to transmit extracellular information intracellularly, are strongly
influenced by the type of cells in which they occur [45]. In pituitary gonadotrope cells,
binding of GnRH to its receptor results in structural changes in both the receptor and the
heterotrimeric GTP-binding proteins (G proteins). Heterotrimeric G proteins comprise
three subunits: Gα, Gβ, and Gγ [46–50]. G proteins are differentiated into several sub-
classes based on differences in the structure of the Gα subunit. In mammals, Gα subunits
belong to several subtypes: Gαs, Gαq/11, Gα12/13, Gαi/o, and Gαt [51,52]. In pituitary
gonadotrope cells, GnRHR is associated with the Gαq/11 subunit and, by few studies, with
the Gαs subunit [46]. The structural changes that occur in the heterotrimeric G protein
result in an altered affinity for GDP and its replacement by GTP. This change promotes the
detachment of the Gα subunit from the heterotrimer and its separation from the Gβγ dimer
subunits, which remain as one [49,53]. Initial studies on the GnRH signaling pathway
in pituitary gonadotrope cells revealed that the Gαq/11 subunit intracellularly triggers a
series of signaling events by binding to phospholipase Cβ (PLCβ) [54] (Figure 2). Further
studies showed that the Gβγ dimer could also bind to and activate PLCβ. It was also
shown that upon prolonged GnRH stimulation, other factors such as the phospholipase
A2 (PLA2) and phospholipase D (PLD) can be stimulated by either Gα or Gβγ [55]. The
primary signaling pathway of GnRH’s response is through the phospholipase PLCβ which
catalyzes the enzymatic hydrolysis of the membrane phospholipid phosphatidylinositol 4,5
bisphosphate (PIP2), synthesizing the inositol 1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG) [46,56]. IP3 activates the release of Ca2+ into the cytosol through its binding to IP3 re-
ceptors on the membrane of the endoplasmic reticulum, which act as Ca2+ channels [57,58].
Due to GnRH activation, Ca2+ accumulation together with DAG are the major causes of
the production and secretion of gonadotropins in gonadotrope cells by activating protein
kinase C (PKC) [59,60] (Figure 2). In gonadotrope cells, as mentioned above, GnRH binding
to GnRHR also causes a delayed activation of PLD. PLD hydrolyzes the membrane phos-
phatidylcholine (PC) generating phosphatidylethanol (PET) and phosphatidic acid (PA)
that eventually result in the production of DAG. The production of DAG by this pathway
causes a sustained and prolonged activation of PKC, which has its two isoforms α and βII
phosphorylate PLD as a positive feedback mechanism [61–63] (Figure 2). PKC activation
also induces the activation of fibrosarcoma protein kinase 1 (Raf-1), protein tyrosine kinase
src, and certain mitogen-activated protein kinases (MAPKs) [64–66]. These kinases act
through the MAPK signaling pathway in which the end result is the phosphorylation and
activation of transcription factors, including Elk-1, Egr-1, c-Fos, and c-Jun, which have a
positive effect on the expression of gonadotropin kinase subunit α and PLA2 [56,64,67]
(Figure 2). In addition, the PLA2 phospholipase produces arachidonic acid (AA), which is
used as a substrate in a number of intracellular signals. AA is converted into leukotrienes
by lipoxygenase, which in elevated concentrations are involved in the gene activation
of PKCβ and the gonadotropins α subunit [68,69] (Figure 2). In summary, all signaling
pathways activated by the binding of GnRH to the GnRHR receptor are interconnected
and eventually result in the production and secretion of gonadotropins, LH, and FSH [5].
Moreover, due to the different pulse frequencies of GnRH secretion, different subunits
of gonadotropins are produced. Specifically, when gonadotrope cells are exposed to an
increased pulse frequency of GnRH, there is an induction in the production and release of
the α subunit of gonadotropin and the β subunit of LH. Conversely, when cells are exposed
to a low pulse frequency of GnRH, there is induction in the synthesis and release of the β

subunit of FSH [70] (Figure 2).
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Figure 2. Signal transduction pathways of GnRHR. Schematic illustration of GnRHR activation by
GnRH ligand binding to the pituitary gonadotrope cell leading to the expression of the gonadotropin
genes, LH/FSH. When GnRH binds to its receptor (GnRHR), structural changes occur in both the re-
ceptor and the heterotrimeric GTP-binding proteins (G proteins), specifically the Gαq/11 subunit. This
leads to a shift in the affinity of G protein for GTP over GDP, causing the Gα subunit to detach from the
Gβγ dimer. The Gαq/11 subunit primarily triggers the phospholipase Cβ (PLCβ) pathway, leading to
the hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG). IP3 induces Ca2+ release from the endoplasmic reticulum, whereas DAG, along
with Ca2+, activates protein kinase C (PKC). In addition, GnRH binding to the GnRHR causes delayed
activation of phospholipase D (PLD) that hydrolyzes the membrane phosphatidylcholine (PC), gener-
ating phosphatidylethanol (PET) and phosphatidic acid (PA) that cause DAG production, resulting
in prolonged PKC activation. PKC then triggers the activation of various kinases, including Raf-1,
src, and mitogen-activated protein kinases (MAPKs), which ultimately activate transcription factors
such as Elk-1, Egr-1, c-Fos and c-Jun, leading to the expression of genes involved in gonadotropin
production. The pathway also involves the activation of phospholipase A2 (PLA2) that hydrolyses PC
to produce arachidonic acid (AA) which is converted to prostaglandins (PGs), thromboxanes (Txs),
and leukotrienes (LTs) with the latter playing a role in gene activation and gonadotropin production.

2.4. Tissue Expression of GnRHR in Humans

Pituitary gland is the main tissue with the highest expression of GNRHR. Initial
localization studies regarding the GnRHR transcript(s) identified three different transcripts.
The primary transcript is correctly spliced and encodes the full-length protein [25,71].
The second transcript contains a 128-nucleotide deletion in exon 2 that causes alternative
splicing, resulting in a truncated protein with a change in amino acid 174 and the addition
of an extra 75 new amino acids. It is worth noting that this shorter transcript when
expressed together with the full-length causes a dominant-negative effect preventing
the wild-type protein from normally entering the cell membrane. The third transcript
contains a 220-nucleotide deletion at exon 2 encoding a truncate protein with a size of
177 amino acids [28,72]. Immunoreactivity experiments demonstrated that GnRHR is
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specifically expressed in the gonadotrope, thyrotrope, and somatotrope cells of the pituitary
gland [73,74]. GNRHR expression has been identified in other tissues other than the
pituitary gland that are related or not to reproduction. Experiments in different ovarian cell
types, as well as in several ovarian cancer lines, have shown in addition to GnRHR protein
expression, the presence of GnRHR mRNA transcripts and the presence of binding sites
for the GnRH ligand [75–78]. Binding sites for the GnRH ligand have also been found in
uterus related cells, as well as in endometrial cancer lines. GnRHR transcripts have also
been found in normal and neoplastic uterine cells [79,80]. GnRHR expression has also been
observed in various placental cells such as cytotrophoblasts and syncytiotrophoblasts [81].
Moreover, GnRHR expression has also been detected in normal and neoplastic prostate
gland cells [82,83] in various breast cancer cell lines [84–86] and in cells and cell lines not
associated with reproduction, i.e., heart, skeletal muscles, liver, kidney, peripheral blood
mononuclear cells, and melanoma cells [45,87,88].

2.5. GnRHR Characterized Mutations

Since 1997 when de Roux et al. identified the first mutation in the GNRHR gene in a
family with hypogonadotropic hypogonadism (HH), several mutations in the gene have
been described [89]. The mode of inheritance regarding mutations in the GNRHR follows
the autosomal recessive manner and, to date, have been found in both the homozygous and
compound heterozygous state. Furthermore, patients with HH have been found to carry, in
a digenic mode of inheritance fashion, a heterozygous in the GNRHR and a second mutation
in the second allele in one of the ANOS1 (KAL1), FGFR1, GNRH1, FGF8, PROK2, PROKR2,
KISS1R, CHD7, TAC3, and TACR3 genes. All these genes have recently reported to be
associated with HH [90–93]. It is worth mentioning that the above-mentioned pathogenic
variants have also been associated with HH with phenotypes such as partial or total delayed
puberty, infertility, and Kallmann syndrome. In HH cases, mutations in GNRHR account
for 3.5–16% of sporadic cases and up to 40% of familial cases [91,94]. To date, 58 mutations
have been reported including 48 missense, 3 nonsense, 5 frameshift, 1 in-frame, and 1 splice
acceptor [89,90,95–129] (Table 1). Interestingly, all of the these mutations are localized in all
regions of the receptor except the first transmembrane region (TM1), the first intracellular
loop (IL1), and the third extracellular loop (EL3) (Figure 3). The mutations have been
described as inactivating and cause an alteration in the function of the receptor either by re-
ducing its expression, its localization, impairing ligand binding, and/or affecting signaling.
It is worth mentioning that three of the identified mutations, p.Gln106Arg, p.Arg139His,
and p.Arg262Gln, show an increased frequency number compared to the others. According
to gnomAD browser (https://gnomad.broadinstitute.org/ (accessed on 2 October 2023)),
the allele frequency for p.Gln106Arg is 0.002749, for p.Arg139His is 0.0001630, and for
p.Arg262Gln is 0.001789, while allele frequencies for the remaining mutations range from
0.0001291 to 0.000004005. Due to this increased frequency, these three mutations have also
been found in non-consanguineous families while the remaining mutations, when found in
homozygous tissue, typically come from consanguineous families [122,130,131]. For this
reason, in 2015, Choi et al. investigated the possibility of these mutations being inherited
from a common ancestor. Indeed, it was proven so that all of the tested patients with
these specific mutations shared a common haplotype, thus suggesting that they have been
inherited from a common ancestor and behave as founder mutations [131]. Identification
and characterization of the mutations will demonstrate the regions of GNRHR that are
important for ligand binding, signaling, proper protein folding, and correct localization.

https://gnomad.broadinstitute.org/
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Table 1. Disease-associated mutations found in GnRHR.

cDNA (NM_000406.3) Protein (NP_000397.1) Molecular
Consequence

Region
Affected Phenotype Classification Reference

c.2T>C p.Met1Thr Missense NH2 tail Hypogonadotropic
hypogonadism Pathogenic [103]

c.30T>A p.Asn10Lys Missense NH2 tail Hypogonadotropic
hypogonadism Likely Pathogenic [117]

c.30_31delinsAA p.Asn10_Gln11delinsLysLys Missense NH2 tail Hypogonadotropic
hypogonadism Pathogenic [117]

c.31C>A p.Gln11Lys Missense NH2 tail Hypogonadotropic
hypogonadism. Likely Pathogenic [97]

c.32delA p.Gln11fsX23 Frameshift NH2 tail Hypogonadotropic
hypogonadism Pathogenic [103]

c.35delA p.Asn12Ilefs*12 Frameshift NH2 tail Hypogonadotropic
hypogonadism Pathogenic [128]

c.53A>G p.Asn18Ser Missense NH2 tail Hypogonadotropic
hypogonadism Likely Pathogenic [115]

c.94A>G p.Thr32Ala Missense NH2 tail Hypogonadotropic
hypogonadism Pathogenic [106]

c.95 C>T p.Thr32Ile Missense NH2 tail Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [103]

c.110T>G p.Ile37Ser Missense NH2 tail Hypogonadotropic
hypogonadism Pathogenic [115]

c.112C>T p.Arg38* nonsense NH2 tail Hypogonadotropic
hypogonadism Pathogenic [127]

c.113_114insG p.Arg38Argfs*15 Frameshift NH2 tail hypogonadotropic
hypogonadism Pathogenic [115]

c.247C>T p.Leu83Val Missense TM2 Hypogonadotropic
hypogonadism Pathogenic [126]
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Table 1. Cont.

cDNA (NM_000406.3) Protein (NP_000397.1) Molecular
Consequence

Region
Affected Phenotype Classification Reference

c.266T>A p.Leu89* nonsense TM2 Hypogonadotropic
hypogonadism Pathogenic [107]

c.268G>A p.Glu90Lys Missense TM2 Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [125]

c.270G>C p.Glu90Asp Missense TM2 Hypogonadotropic
hypogonadism Likely Pathogenic [115]

c.275T>C p.Leu92Pro Missense TM2 Hypogonadotropic
hypogonadism Likely Pathogenic [124]

c.281T>C p.Val94Ala Missense TM2 Hypogonadotropic
hypogonadism Likely Pathogenic [123]

c.286C>T p.Pro96Ser Missense TM2 Hypogonadotropic
hypogonadism Likely Pathogenic [103]

c.296G>A p.Gly99Glu Missense TM2 Hypogonadotropic
hypogonadism Likely Pathogenic [122]

c.311C>T p.Thr104Ile Missense EL1 Hypogonadotropic
hypogonadism Likely Pathogenic [121]

c.317A>G p.Gln106Arg Missense EL1 Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [89]

c.323 A>G p.Tyr108Cys Missense EL1 Hypogonadotropic
hypogonadism Likely Pathogenic [121]

c.350T>C p.Leu117Pro Missense TM3 Delayed Puberty Likely Pathogenic [103]

c.350T>G p.Leu117Arg Missense TM3 Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [95]

c.364C>T p.Leu122Phe Missense TM3 Hypogonadotropic
hypogonadism Pathogenic [120]

c.386C>A p.Ala129Asp Missense TM3 Hypogonadotropic
hypogonadism Pathogenic [119]
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Table 1. Cont.

cDNA (NM_000406.3) Protein (NP_000397.1) Molecular
Consequence

Region
Affected Phenotype Classification Reference

c.392T>C p.Met131Thr Missense TM3 Hypogonadotropic
hypogonadism Pathogenic [95]

c.401T>G p.Val134Gly Missense TM3 Hypogonadotropic
hypogonadism Pathogenic [102]

c.415C>T p.Arg139Cys Missense IL2 Hypogonadotropic
hypogonadism Pathogenic [118]

c.416G>A p.Arg139His Missense IL2 Hypogonadotropic
hypogonadism Pathogenic [117]

c.436C>T p.Pro146Ser Missense IL2 Hypogonadotropic
hypogonadism Likely Pathogenic [116]

c.487G>T p.Ala163Ser Missense TM4 Kallman syndrome Likely Pathogenic [115]

c.497T>C p.Leu166Pro Missense TM4 Hypogonadotropic
hypogonadism Likely Pathogenic [103]

c.504T>A p.Ser168Arg Missense TM4 Hypogonadotropic
hypogonadism Pathogenic [114]

c.511G>A p.Ala171Thr Missense TM4 Hypogonadotropic
hypogonadism Pathogenic [113]

c.521A>G p.Gln174Arg Missense TM4 DSD Likely Pathogenic [112]

c.523-1G>A - Splice acceptor - Hypogonadotropic
hypogonadism Pathogenic [111]

c.599G>A p.Cys200Tyr Missense EL2 Hypogonadotropic
hypogonadism Pathogenic [104]

c.651C>A p.Ser217Arg Missense TM5 Hypogonadotropic
hypogonadism Pathogenic [110]

c.662T>A p.Ile221Asn Missense TM5 Hypogonadotropic
hypogonadism

Hypogonadotropic
hypogonadism [109]
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Table 1. Cont.

cDNA (NM_000406.3) Protein (NP_000397.1) Molecular
Consequence

Region
Affected Phenotype Classification Reference

c.719G>A p.Arg240Gln Missense IL3 Kallmann syndrome Likely Pathogenic [108]

c.784C>T p.Arg262Trp Missense IL3 Hypogonadotropic
hypogonadism Likely Pathogenic [107]

c.785G>A p.Arg262Gln Missense IL3 Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [89]

c.797T>G p.Leu266Arg Missense IL3 Hypogonadotropic
hypogonadism

Pathogenic/Likely
Pathogenic [104]

c.806C>T p.Thr269Met Missense IL3 Hypogonadotropic
hypogonadism Pathogenic [105,106]

c.836G>A p.Cys279Tyr Missense TM6 Hypogonadotropic
hypogonadism Pathogenic [104]

c.842C>T p.Thr281Ile Missense TM6 Hypogonadotropic
hypogonadism Pathogenic [103]

c.845C>G p.Pro282Arg Missense TM6 Hypogonadotropic
hypogonadism Likely Pathogenic [98]

c.847T>C p.Tyr283His Missense TM6 Hypogonadotropic
hypogonadism Pathogenic [102]

c.851A>G p.Tyr284Cys Missense TM6 Hypogonadotropic
hypogonadism Likely Pathogenic [101]

c.869A>T p.Tyr290Phe Missense TM6 Hypogonadotropic
hypogonadism Likely Pathogenic [100]

c.924_926delCTT p.Phe309del In frame deletion TM7 Delayed Puberty Likely Pathogenic [99]

c.937_947del p.Phe313Metfs*3 Frameshift TM7 hypogonadotropic
hypogonadism Pathogenic [90]

c.941T>A p.Leu314* nonsense TM7 Hypogonadotropic
hypogonadism Pathogenic [96]
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Table 1. Cont.

cDNA (NM_000406.3) Protein (NP_000397.1) Molecular
Consequence

Region
Affected Phenotype Classification Reference

c.959C>T p.Pro320Leu Missense TM7 Hypogonadotropic
hypogonadism Pathogenic [97]

c.968A>G p.Tyr323Cys Missense TM7 Hypogonadotropic
Hypogonadism Pathogenic [98]

c.987A>G p.X329WextX22 Frameshift COOH tail Hypogonadotropic
hypogonadism Likely Pathogenic [95]

Dup of Exon 1 - Exon Duplication - Hypogonadotropic
hypogonadism Pathogenic [129]

Del of Exon 2 - Exon Deletion - Hypogonadotropic
hypogonadism Pathogenic [129]
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2.6. GnRHR Ligands: Agonists, Antagonists, and Pharmacoperones

The GNRHR is a key regulator of reproductive processes, and a wide range of ligands,
including agonists, antagonists, and pharmacoperones, can control its function [23,132–134].
These compounds have various effects on the receptor, controlling the secretion of LH and
FSH, all of which are important in the male and female reproduction process.

2.7. GnRHR Agonists
2.7.1. Gonadotropin-Releasing Hormone (GnRH)

The endogenous GnRH, when bound to the GNRHR, functions as an agonist. GnRH is
synthesized in the hypothalamus and serves as the catalyst for the pituitary gland’s pulsatile
secretion of LH and FSH [45]. Its pulsatile secretion behavior is critical for reproductive
process regulation.

2.7.2. GnRH Analogues (GnRHa)

Synthetic GnRH analogues are used to treat infertility, endometriosis, uterine fibroids,
precocious puberty, hypogonadotropic hypogonadism, and hormone-sensitive cancers of
the breast in women and prostate in men [135–142]. In HH treatment, GnRHR analogues
bind to GnRHR on the pituitary gland, leading to the initial release of LH and FSH. Upon
administration of a GnRHR analogue, there is an initial “flare” effect, in which there is a
brief surge of LH and FSH production. This flare can temporarily worsen symptoms in
some individuals with HH. After the initial flare, continuous exposure to GnRHR analogue
leads to desensitization of the pituitary gland. The pituitary becomes less responsive to
GnRH, which results in a decrease in LH and FSH production. By initially stimulating
the release of LH and FSH and subsequently downregulating their production, GnRHR
analogues can help normalize sex hormone (estrogen and testosterone) levels over time.
This process is critical for reproductive regulation due to the decrease in estrogen and
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testosterone levels in HH patients [135]. Examples of GnRHa used in therapy are the
leuprorelin, goserelin, nafarelin, triptorelin, buserelin, and histrelin. In addition, deslorelin
is used in veterinary medicine for a variety of purposes such as promoting ovulation and
the treatment of high-risk pregnancies in animals. Gonadorelin is used in both humans
and animals. In contrast to other GnRH analogues, which are used to inhibit LH and FSH
secretion, deslorelin is associated with stimulation of LH secretion (Table 2).

Table 2. GnRHR agonists with clinical or veterinary applications.

Name Brand Name PubChem CID Medical Applications

GnRH - Natural ligand of GnRHR

Buserelin Suprefact 50225
Breast cancer, Endometrial hyperplasia,

Endometriosis, Female infertility, Prostate cancer,
Uterine fibroids

Goserelin Zoladex 5311128
Breast cancer, Endometriosis, Female infertility,

Prostate cancer, Uterine fibroids, Uterine
hemorrhage

Histrelin Vantas, Supprelin 25077993 Precocious puberty, Prostate cancer

Leuprorelin Lupron 657181
Breast cancer, Endometriosis, Menorrhagia,

Precocious puberty, Prostate cancer,
Uterine fibroids

Nafarelin Synarel 25077405 Precocious puberty, Endometriosis

Triptorelin Decapeptyl 25074470
Breast cancer, Endometriosis, Female infertility,

Precocious puberty, Prostate cancer,
Uterine fibroids

Gonadorelin Factrel 638793
Cryptorchidism, Delayed puberty,

Hypogonadotropic hypogonadism, Veterinary
medicine (assisted reproduction)

Lecirelin Dalmarelin 66577115 Veterinary medicine (assisted reproduction)

Peforelin Maprelin 16197823 Veterinary medicine (assisted reproduction)

Azagly-nafarelin Gonazon 156613532 Veterinary medicine (assisted reproduction)

Deslorelin Ovuplant, Suprelorin 25077495 Veterinary medicine (assisted reproduction)

Fertirelin Ovalyse 188304 Veterinary medicine (assisted reproduction)

2.8. GnRHR Antagonists

GnRH antagonists, contrary to GnRHa, directly block the GnRH receptor, and thus
the action of GnRH, without the initial activation seen with agonists. The resulting LH
suppression causes rapid reduction of the production of testosterone in the testes in men,
and a reduction of estradiol and progesterone production from the ovaries in women.
GnRH antagonists are capable of preventing gonadal sex hormone production and sup-
pressing sex hormone levels [143]. In controlled ovarian stimulation protocols for in vitro
fertilisation (IVF), this rapid blockade prevents premature LH surges [144]. GnRH antag-
onists are used in assisted reproductive technologies for fertility treatment as well as the
treatment of conditions such as precocious puberty, endometriosis, uterine fibroids, and
prostate cancer [137–140,145]. Many GnRH antagonists, like cetrorelix, degarelix, abarelix,
and ganirelix, have a structure analogous to natural GnRH but have an antagonistic activ-
ity, whereas others, like elagolix, linzagolix, and relugolix, are non-peptide compounds
(Table 3).
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Table 3. GnRHR antagonists with clinical applications.

Name Brand Name Molecule
Status PubChem CID Medical Applications

Abarelix Plenaxis Peptide 16131215 Prostate cancer

Cetrorelix Cetrotide Peptide 25074887 Female infertility

Degarelix Firmagon Peptide 6136245 Prostate cancer

Ganirelix Orgalutran Peptide 16130957 Female infertility

Linzagolix KLH-2109, OBE-2109 Non-peptide 16656889 Endometriosis, Uterine fibroids

Relugolix Relumina Non-peptide 10348973 Uterine fibroids, Prostate cancer

Elagolix Orilissa Non-peptide 11250647 Endometriosis, Uterine fibroids

2.9. GnRHR Pharmacoperones

Pharmacological chaperones or Pharmacoperones are small molecules that bind to a
target protein and correct or improve its folding, trafficking, or stability. These molecules
have the ability to restore proper protein function, making them a potential therapy for
genetic disorders caused by misfolded or impaired proteins [134]. In the case of GnRHR,
specific genetic mutations can cause its misfolding and retention in the endoplasmic retic-
ulum, preventing it from reaching the cell membrane. Pharmacoperones can therefore
successfully rescue mutant GNRHRs that would otherwise be non-functional, helping
to properly fold the receptor and thus, traffic it to the cell membrane, while restoring
its ability to respond to GnRH [146,147]. All described GnRHR pharmacoperones act as
receptor antagonists. The first study was conducted using four different pharmacoperones;
IN3, Q89, A177775, and TAK-013, and tested their ability to restore GnRHR function in
the COS-7 cell line that expressed the mutant GnRHR. All four pharmacoperones were
successful in restoring cell-surface expression and stimulating constitutive activity [148].
The properties of pharmacoperone IN3 were further studied in transgenic mice with a hy-
pogonadotropic hypogonadism phenotype due to the GnRHR p.Glu90Lys mutation. After
a 30-day treatment with IN3, male mice showed elevated sperm concentration, positive
changes in sperm morphology, and increased expression of steroidogenic enzymes [148].
This approach holds promise for the treatment of genetic disorders caused by mutations in
GNRHR, such as congenital hypogonadotropic hypogonadism (CHH).

2.10. Clinical Implications of Mutated GnRHR

The main feature in patients carrying mutations in GnRHR is normosmic hypogo-
nadotropic hypogonadism. These patients exhibit a variety of clinical symptoms charac-
terized by different phenotypic diagnosis and/or different evaluation at age of diagnosis.
Spontaneous pulsality of gonadotropins is not normal in patients with GnRHR mutations,
showing reduced intensity but normal frequency and absence of pulsality of LH and FSH
secretion [89,104,110,119,149,150].

In HH, the HPG axis is disrupted due to dysfunction at the hypothalamic and/or
pituitary level. This disorder leads to a deficiency of the key hormones GnRH, LH, and
FSH, resulting in a cascade of effects. The hypothalamus fails to produce and release GnRH
or does so inadequately. This means that there is insufficient signal to the pituitary gland
to stimulate the release of LH and FSH. Regardless of the specific point of dysfunction,
the end result is low levels of LH and FSH in the bloodstream. With low levels of LH
and FSH, the gonads receive inadequate stimulation. In males, this result in decreased
testosterone production, while in females, there is a lack of proper ovarian stimulation for
the production of estradiol and progesterone [151–154]. As a result, individuals with HH
have low levels of sex hormones, leading to various clinical features such as delayed or
absent puberty, infertility, and absence of secondary sexual characteristics.
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More specifically, in childhood and adolescence, HH is characterized by delayed or
completely absent of puberty. Girls with HH often do not show the expected signs of
puberty at the typical age, such as breast development and minimal body hair growth,
while boys show absence of facial and body hair growth, impaired testicular development,
and limited muscle growth. In addition, delayed growth and development in children
and adolescents, defined by delayed bone age compared to chronological age, can result
in shorter stature and slower growth rates compared to their peers. As a consequence of
insufficient sex hormone production, individuals with HH in this age group are typically
infertile. This is due to the gonads’ inability to produce mature eggs or sperm necessary for
reproduction. Adolescents with HH may experience several symptoms related to low levels
of sex hormones. In boys, this may include low libido, erectile dysfunction, and fatigue.
Girls may experience menstrual irregularities, including primary or secondary amenorrhea
(absence of menstruation), as well as symptoms such as mood changes and fatigue. The
uterus is the size of that at the prepubertal stage and the ovaries are small or absent due to
lack of follicular stimulation. Furthermore, the delayed or absent puberty and the absence
of typical secondary sexual characteristics can have a significant psychosocial impact on
adolescents. This may lead to feelings of self-consciousness, reduced self-esteem, and emo-
tional challenges [104,114,117,119,125]. In adulthood, HH presents with a range of clinical
characteristics that reflect the deficiency of sex hormones, particularly testosterone in males
and estradiol in females. These clinical characteristics can vary depending on the underly-
ing cause and the individual’s specific case. In males, HH can result in the loss of secondary
sexual characteristics, such as decreased facial and body hair growth, reduced muscle mass,
gynecomastia, microphallus, and a decrease in the size of the testes [89,110,113,114,119,149].
In females, there may be a loss of breast development, changes in body fat distribution,
and the absence of typical female secondary sexual characteristics. Infertility is a significant
concern for individuals with HH in adulthood. The lack of adequate sex hormone produc-
tion can lead to the inability to conceive naturally. Both men and women with HH may
experience infertility, and assisted reproductive technologies may be necessary to achieve
pregnancy [96,104,110,111,150,155]. However, hormonal treatment with human chorionic
gonadotropin resulted in production of normal sperm counts leading to successful concep-
tion and pregnancy [89,149,150,156]. Sexual dysfunction is a common feature of HH in both
men and women. In males, this may manifest as erectile dysfunction and reduced libido.
In females, it can lead to decreased sexual desire and vaginal dryness. Low sex hormone
levels in HH can lead to symptoms of fatigue, reduced energy levels, and a general sense of
sickness. This can affect an individual’s quality of life and overall well-being. Men with HH
may experience symptoms such as hot flashes (similar to those seen in menopause), changes
in body composition, and a decrease in strength and stamina. The lack of testosterone can
result in muscle weakness and an increased risk of osteoporosis. Moreover, low testosterone
levels in men with HH can be associated with metabolic effects, including increased body
fat, insulin resistance, and potentially an increased risk of cardiovascular disease. Women
with HH may have irregular menstrual cycles, amenorrhea (absence of menstruation), and
symptoms like hot flashes, night sweats, and changes in bone density [157–159]. Although
most patients with mutations in GnRHR are thought to have hypogonadism early at birth,
this is diagnosed later when clinical symptoms are more prominent [160]. The underlying
causes of CHH can vary and may include genetic mutations, congenital abnormalities, or
disruptions in the hypothalamic-pituitary-gonadal axis. It is important to note that early
diagnosis and management of HH in childhood and adolescence are crucial to address
these clinical characteristics effectively. Treatment typically involves hormone replace-
ment therapy to induce and support the development of secondary sexual characteristics
and normal growth [159,161,162]. Similarly, early diagnosis and management of HH in
adulthood are important to address the clinical characteristics effectively. Treatment often
involves hormone replacement therapy (e.g., testosterone replacement in men or estra-
diol/progesterone replacement in women) to correct hormonal imbalances and alleviate
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associated symptoms. Endocrinologists and specialists in hormonal disorders play a key
role in the diagnosis and management of HH in children, adolescents, and adults.

3. Conclusions

In summary, GnRH and its receptor orchestrate complex signaling pathways, influ-
enced by tissue-specific distribution. These pathways involve heterotrimeric G proteins,
ultimately leading to gonadotropin production. Various ligands, including agonists, an-
tagonists, and pharmacoperones, modulate the receptor’s function. Genomic and protein
structures reveal critical regions and mutations associated with reproductive disorders.
GnRH receptor expression extends to diverse tissues. Clinical implications encompass
hypogonadotropic hypogonadism with symptoms affecting both genders. Future perspec-
tives include tailored therapies for GnRHR mutations and advancing precision medicine
in reproductive disorders. Current research may reveal additional roles for GNRHR in
non-reproductive tissues, expanding our understanding of their broader physiological
impact and potential therapeutic applications beyond reproduction.
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