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Abstract: Neutrophils are the principal trouper of the innate immune system. Activated neutrophils
undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil
extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack.
This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like
myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clear-
ance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host’s protection.
However, recent accumulated evidence shows that dysregulated and enhanced NET formation has
various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic,
nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing
gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases
and focus on some updated potential therapeutic approaches against NETs.

Keywords: neutrophil extracellular traps (NETs); innate immunity; sepsis; lung disease; cardiovascular
disease; liver disease; kidney disease; diabetes; COVID-19; coagulopathy and thrombotic microangiopathy;
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1. Introduction to Neutrophil Extracellular Traps (NETs)
1.1. Neutrophil and Innate Immunity

Innate immunity is the first line of defense of the body. The main function of the
innate immunity is to protect our body from invading microorganisms and limit the growth
and proliferation and finally kill the microorganisms. Neutrophils are the most abundant
granular leukocytes produced at a rate of 5 × 1010–10 × 1010 cells per day, contributing
approximately 50–70% of all circulating white blood cells in humans, having an average
short half-life of 6–8 h in circulation and are key players of the innate immunity [1,2].
They are the first responder of the inflammatory cascades [3,4]. Neutrophils are derived
from the bone marrow and enter into the circulation from where they quickly move into
the sites of infection or inflammation in response to pathogen attack in the body and
roll, adhere to endothelial layer, crawl, and thus transmigrate from the vessel and kill the
microbes [5–7]. After accomplishment of their role, they undergo apoptosis and are cleared
by macrophages [8]. As the arsenal of innate immunity, neutrophils appears first at the
infected site in the body and imply several strategies to eliminate the infection. In fact,
neutrophils evolved to fulfill the key role in innate immunity through rapid deployment
and effective antimicrobial action against a broad range of pathogens and noninfectious
inflammation. Hence, they are equipped with multiple weapons that can be deployed as a
part of their antimicrobial strategies [9].
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1.2. Antimicrobial Actions of Neutrophils

Neutrophils were recognized as the vanguard of the innate immunity and a vital
protector against microbial infection and foreign invasion. In past decades, it was thought
that when neutrophils encounter invading pathogens in the body, they kill them either
by phagocytosis, where they engulf and inactivate the pathogen and rapidly kill them by
releasing proteolytic enzymes, antimicrobial proteins or reactive oxygen species (ROS) or
by exocytosis, where they degranulate and release antimicrobial factors in the extracellular
space. However, in 2004, Brinkmann et al. described another way of neutrophil-derived
novel antimicrobial defense mechanism of innate immunity termed NETosis that can
participate in pathogen killing extracellularly through the release of NETs [10]. Although
neutrophils are classically known to die primarily by apoptosis or necrosis and highly
regulated necroptosis, NETosis is a cell death program that is distinct from apoptosis and
necrosis [11,12].

1.3. Neutrophil Extracellular Traps (NETs)

NETs are released by activated neutrophils, and the structure is composed of a mesh-
work of decondensed chromatin fibers decorated with antimicrobial granular proteins
such as histones, myeloperoxidase (MPO), neutrophil elastase (NE), and cathepsin G. This
weblike architectural design and composition allow NETs to prevent the dissemination
of pathogen in the body. NETs can only be released robustly by matured neutrophils
upon stimulation. Immature neutrophils are less potent compared to mature neutrophils
at promoting innate immune defenses [13–15], and neutrophils from term and preterm
infants fail to form NETs upon activation by inflammatory agonist [16]. Several infectious
and sterile stimuli have been reported to trigger NET formation including bacteria [10,12],
viruses [17], fungi [18,19], parasites [20], pro-inflammatory cytokines like interleukin 8
(IL-8) [21], tumor necrosis factor α (TNF-α) [22], placental micro-debris [23], activated
platelets [24], cholesterol crystals, monosodium uric acid [25], immune complexes [26],
autoantibodies [27], complements such as C5a [28], and even cancer cells [29–31]. Phorbol
esters such as phorbol myristate acetate (PMA) and bacterial products such as lipopolysac-
charide (LPS) are the most widely used nonphysiological agonists to generate NETs ex
vivo [10,32,33].

1.4. NETosis Mechanism

Two different mechanisms, NADPH Oxidase 2 (Nox 2)-dependent and Nox 2-independent
NETosis have been well validated by published literature (Figure 1). Agonists like PMA,
LPS, and bacteria such as Pseudomonas aeruginosa induce Nox-dependent NETosis, while
agonists like calcium ionophores (A231128, ionomycin), uric acid crystals, certain microbes,
and UV light trigger Nox-independent NETosis through the formation of different ROS;
Nox-ROS and mitochondrial ROS, respectively [34–36]. The generated ROS activates Nox-
dependent and Nox-independent specific different sets of kinases (MAPK, ERK, p38, and
JNK) leading to transcriptional firing and stimulation of MPO. In Nox-independent NETosis,
histone citrullination is facilitated by a nuclear enzyme protein arginine deiminase 4 (PAD4)
activation [37,38]. MPO triggers the stimulation and translocation of NE from azurophilic
granules to the nucleus and decorates the chromatin [39–41]. Ultimately, nuclear membrane
disintegrates, and NETs are released.

1.5. NETosis Pathways

NET formation occurs via two pathways: suicidal NETosis and vital NETosis. Suicidal
NETosis represents a cell death pathway that starts with nuclear delobulation, the nuclear
membrane disassembly followed by continuous loss of cellular polarization, chromatin
decondensation, and finally finished with plasma membrane rupture and expulsion of
NETs [42]. This lytic slow cell death process usually takes 2–4 h [33]. On the other hand
vital, NETosis is a cell-death-independent non-lytic process whereby expulsion of nuclear
chromatin is accompanied by the release of granular proteins, and fabrication of these
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components occurs extracellularly, leaving active anucleated phagocytic cytoplast having
the potency to ingest microorganisms and chemotaxis [42]. Vital NETosis happens faster,
within 5–60 min depending on the inducer [43]. In vital NETosis, the released extracellular
DNA by neutrophils could be either nuclear or mitochondrial [44–46].
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Figure 1. NET formation overview. NETosis occurs via two pathways. Cell-death-independent
vital/non-lytic (faster) NETosis and cell-death-dependent suicidal/lytic (slower) NETosis. The NET
formation mechanism is either Nox-dependent or Nox-independent depending on inducers. The
cascade of events includes sets of kinases activation by Nox-ROS/Mito-ROS leading to transcrip-
tional firing, MPO, NE, and PAD4 translocation from cytosol to the nucleus, facilitating chromatin
decondensation, nuclear membrane disintegration, and finally NETs are expelled.

1.6. Physiological Role of NETs

Decades ago, when the NETs emerged, scientists became very interested in observing
its antibacterial capacity. The wide range of killing capacities of NETs made the immu-
nologist work with great haste. NETs conquer infections by trapping, immobilizing, and
neutralizing Gram-negative and Gram-positive bacteria [10], viruses [17] fungi [47], para-
sites [48,49], and thus they prevent the dissemination of intruding microbes and protect
the host (Figure 2). Although NETs trap microbes through charge interaction [50], some
pathogens evade NETs. Many Gram-positive pathogens, including but not limited to
pathogens of the Streptococcus and Staphylococcus genera, release endonucleases, and se-
creted endonuclease degrades the extracellular DNA scaffold, destroying and evading
NETs [51,52]. The escaped bacteria with endonuclease may promote further invasion and
spread from the local sites to distant organs and the bloodstream [53–55]. Again, Streptococ-
cus pneumoniae can escape from NETs in a charge-dependent manner. This Gram-positive
bacterial strain expresses anti-phagocytic polysaccharide capsules and lipoteichoic acid
which can produce a positive charge on their surface and thus prevent them from being
trapped by positively charged NET fibers and histone residues [56]. Interestingly, the
beneficial effect of NETosis over phagocytosis is the size of NETs. Large microbes and
parasites evade phagocytosis and can prove difficult to clear. But neutrophil has a unique
microbe-sensing mechanism that allows them to selectively tailor their antimicrobial re-
sponses to pathogen on the basis of microbial size. The large filamentous form of fungi
cannot be removed by phagocytosis. NETs play a significant role in controlling these large
filamentous fungi [57–59].
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Figure 2. Physiological role of NETs. The web-like structure of NETs entraps intruding pathogens
(bacteria, virus, fungi, and parasites) and prevents growth, proliferation, and spreading, to kill them
and protect the host.

In addition, NETs also contribute to immunothrombosis. Immunothrombosis is a
physiological process having a bidirectional role with the innate immune system. Although
excessive activation of coagulation cascade leads to many clinical conditions including
sepsis, disseminated intravascular coagulation (DIC), myocardial infarction (MI), and
coronavirus disease 2019 (COVID-19) [60], in contrast, it also plays an essential protective
role in maintaining physiological hemostasis to avoid blood loss and arresting both viral
and bacterial infections. However, with the discovery of NETs, it has come to light that
thrombus is not only for the hemostatic purpose of stopping bleeding but also takes
part in innate immunity. NETs provide a large procoagulant surface by activating the
contact phase of coagulation [61,62]. Moreover, neutrophils and neutrophils-derived micro-
particles during NETosis such as DNA, histones, and granule proteins provide coagulant
activities [61].

1.7. Controversial Role of NETs

In fact, the intervention of NETs is a landmark progression of science. Now the
question is whether NETs are too good or too bad for us. NETs are like a double-edged
sword. While NETs have a physiological role in antimicrobial defenses, if dysregulated,
they also have various pathological aspects that have attracted recent attention (Figure 3).
In some conditions when it is excessively generated and present, NETs can do harm to
the host. The antimicrobial histones and peptides decorating the NET-DNA are directly
cytotoxic to tissue and ineffective clearance of NETs results in deleterious inflammation
of the host tissue. The list of disorders implicated by NETs includes sepsis, pulmonary,
cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer
diseases and are gradually increasing.
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Figure 3. Controversial role of NETs. NET is a powerful weapon of innate immunity and provides
protection to the host through clearing the invading pathogens. Aberrant NET formation causes
pathology in numerous ways and is attributed to autoimmune, infectious, and non-infectious diseases.
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1.8. Detection of NETs

Uncontrolled release of NETs has been reported in several disease pathophysiology
(discussed later). Therefore, precise spotting of NETs in clinical samples could have great
potential in the prognosis of disease progression and subsequent consequences. NETs are
made up of cell-free DNA (cf-DNA) and antimicrobial proteins like MPO, and NE NET
detection is very challenging due to its fragile structure, timing of formation and turnover,
and frequent presence of DNase. Measuring cf-DNA is not a good approach to quantify
NETs as the source could also be apoptosis and necrosis in addition to NETosis [63]. NETs
can be visualized and quantified by fluorescence microscopy [64] and flow cytometry [65]
tools in human neutrophils in vitro. However, enzyme-linked immunosorbent assay is
the handy, highly sensitive, and reliable method to quantitatively measure remnants of
circulating NETs in plasma [66,67], as well as in cell culture supernatants in vitro [68].

2. NETs in Clinical Settings
2.1. NETs in Sepsis

Sepsis is a dysregulated response to an infection with deleterious effects in a host,
leading to circulatory shock, multiple organ failure syndromes (MODS), and ultimately
death. A common cause of death in sepsis is the overwhelming infection in the bloodstream
and the resulting complications [69]. During sepsis, activation of neutrophil with microbial
or inflammatory stimuli occurs, which results in the expulsion of NETs [70]. NETs are
an essential antimicrobial defense for pathogen clearance in the blood and tissues during
infection, but at the same time, NETs and NET components exert excessive inflammation,
resulting host tissue damage [42]. Using an animal model of sepsis, circulatory NET in the
bloodstream became evident [24,45,71], and the biomarkers used to check the presence of
NETs were also increased in septic patients [72–74]. NET damages tissue and increases
vascular permeability in sepsis. Promotion of neutrophil infiltration occurs in tissues
through neutrophil–endothelial cell (EC) interaction [75]. This interaction results in excess
NET formation which is dependent on activated EC-derived IL-8 [76]. This damage is
neutralized when incubated with either NAPDH oxidase inhibitors or DNase [76].

Immunothrombosis represents controlled inflammation and coagulation and is the
major line of innate immune defense against intruding infection. In sepsis, dysregulated,
sustained, and hyper-immunothrombosis leads to DIC complications [77]. Sepsis-induced
DIC is detrimental to the host and causes organ dysfunctions, having a mortality rate
double that of septic patients without DIC [78]. Neutrophils diligently participate in
thrombosis-associated DIC [79]. Neutrophil-released NETs contribute excessive thrombin
generation due to their early presence at the onset of DIC [80].

Normally, platelet remains dormant in the circulation [81]. A growing body of evidence
reveals that, in sepsis, the interaction between neutrophils and activated platelets happens simulta-
neously, and that platelets can rapidly mediate neutrophils to make NET in vivo [24,82]. Activated
platelets trigger the neutrophils-derived NET release in either a P-selectin-dependent [83,84]
or Toll-like receptor (TLR) 4-dependent manner [24,85], which traps bacteria at the expense
of endothelial tissue damage. Histones along with fragmented DNA are the abundant com-
ponents of NETs. In acute systemic inflammatory conditions, including sepsis and trauma,
circulating histones aggravate micro-circulatory thrombosis, worsen tissue perfusion, and
contribute significantly to organ injury [85].

2.2. NETs in Lung Diseases

Excessive activation of neutrophils causes MODS, and the lung, the most sensitive
and important organ in systemic inflammation, is the main target [86,87]. Acute lung
injury (ALI) is one of the leading causes of death in the ICU. Lung edema, inflammation,
hyaline membrane, and alveolar damage are the characteristic morphological features of
ALI [88]. Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury
characterized by hypoxemic respiratory failure as a consequence of increased permeability
of the endothelial–epithelial barrier, alveolar damage, and pulmonary edema. ALI and
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its severest form ARDS, or chronic obstructive pulmonary disease, remains an important
clinical challenge due to its complex and ambiguous pathophysiology [89,90]. A massive
influx of activated neutrophils is seen to the lung microvasculature, interstitial, and alveolar
space, and dysregulated inflammatory neutrophils are the key factor in the progression of
ALI/ARDS [91–93]. This excessive neutrophil activation and accumulation induces increased
formation of NETs along with increased release of proinflammatory mediators [94,95]. NET-
mediated cytotoxicity on alveolar epithelial cells as well as pulmonary EC is mainly due to
protein components of NETs [96]. Histones, major components of NETs, are too toxic to cells
and the lung is the most susceptible vital organ to high levels of circulatory histones [97].
NET-derived histones were detected from bronchoalveolar lavage fluid (BALF) samples
from humans with ARDS [98]. Co-culture of PMA-stimulated neutrophil with EC alters
barrier function, resulting in EC damage, which is attributed to NETs and pretreating
EC with DNase, Cl-amidine, a PAD4 inhibitor, and 1-(3-methylbenzoyl)-1H-indazole-
3-carbonitrile, an NE inhibitor, restore the damage [99]. A growing body of evidence
suggested that the lung injury in ALI or ARDS is triggered by C5a-activated NET release
along with histones and enzymes that cause tissue damage [98,100]. NETs also contribute
to pathogen-induced lung injury in mouse models and human [101].

Cystic fibrosis (CF) is an inherited autosomal recessive disease of the lung charac-
terized by chronic inflammation, bacterial colonization, and mucus overproduction in
the airways leading to morbidity and mortality in patients [102,103]. CF occurs due to
a mutation in the CF trans-membrane conductance regulator (CFTR) gene that encodes
CFTR protein [103]. This anion channel regulates the balance of bicarbonate and chloride
secretions across the cell surface epithelium of the airways [102]. This mutation increases
the susceptibility of these patients to airway bacterial infection mainly by Pseudomonas
aeruginosa and Haemophilus influenza and Staphylococcus aureus [104]. Neutrophils are in-
filtrated into the airway upon bacterial colonization and show less potency to eliminate
microbes, instead contributing to lung damage [105]. This colonization induces NET expul-
sion, resulting in sputum viscosity and ultimately exacerbating the patient’s respiratory
capacity [106]. Neutrophil count and extracellular DNA can be used as a severity marker
for the assessment of inflammation and lung disease severity in CF [107]. High levels
of NET components such as MPO and NE enzymes available in CF sputum and BALF
are responsible for the damage of airway epithelium and connective tissues that correlate
with lung disease severity [96,108,109]. DNase treatments in CF patients diminished this
damage and improved pulmonary function [110].

Asthma is a chronic heterogeneous airway inflammatory disorder with symptomatic
features of periodic wheezing, coughing, and shortness of breath, leading to the deteriora-
tion of lung function [111]. Asthmatic inflammation was thought to be attributed mainly to
eosinophil, but recent research suggested a greater proportion of neutrophilic involvement
having worsened disease severity with poor treatment outcomes with traditional glucocor-
ticoids [112]. Extracellular traps have been marked in the airway of atopic allergic asthmatic
patients [113]. In asthmatic patients, BALF neutrophil count and IL-8 are reported as the
most powerful biomarker to differentiate severe and moderate conditions [114]. IL-8 is a
neutrophil chemoattractant and established agonist of NETosis. Again in asthmatic patients,
plasma-activated platelet also rises [115], which is also responsible for the induction of NET
formation [24].

2.3. NETs in Cardiovascular Diseases

Acute myocardial infarction (AMI) is a life-threatening condition that occurs due to the
blockade of blood flow to the heart muscle because of thrombus formation occluding one
or more coronary arteries, resulting tissue damage. Neutrophil recruitment has been men-
tioned to be involved in the development of atherothrombosis [116], coronary thrombi [117]
and also used as the prediction of acute coronary events [118]. High levels of NETs are
associated with severe coronary atherosclerosis patients [119]. NETs are detected at the
advanced atherosclerotic lesion both in human and mice models [120,121], and the applica-
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tion of DNase in Ischemia-reperfusion injury mice models reduces reperfusion injury [122].
Histone H4 structural components of NET scaffold results in atheromatous plaque instabil-
ity, and anti-histone H4 antibody implication results in plaque stabilization [123]. A report
described that NET could be a potential diagnostic marker in atherosclerosis [124]. Tissue
factor is a transmembrane protein that stimulates the coagulation process. NET-associated
tissue factor induces thrombogenic potential through platelet activation and increased
thrombin generation, resulting in myocardial infarction [125].

2.4. NETs in Liver Diseases

The liver is the main organ for the clearance of circulating DNA and histones from
the body. In Ischemia reperfusion, neutrophils are identified to the site of liver injury, and
expulsion of damage-associated molecular patterns (DAMPs) and extracellular histones
from damaged hepatocytes were observed to worsen the hepatic injury through TLR-4
and TLR-9 [126]. These DAMPs activate neutrophils to release NETs, which intensifies
sterile inflammatory liver injury [127]. Again, extracellular histones activate the nucleotide-
binding domain, leucine-rich repeat-containing protein 3 inflammasome, which further
contributes to liver injury [128]. LPS activated platelets, and the subsequent NET formation
showed disturbed microcirculation and liver damage [24]. In a mouse model of ischemia-
reperfusion injury, NET-mediated amplified inflammation and liver damage were found to
be restored after DNase or PAD4 inhibitor treatment [126].

2.5. NETs in Kidney Diseases

The pathophysiology of acute kidney injury involves the renal tubular cell death and
auto amplification loop of cell necrosis called necroinflammation [129,130]. Infections,
trauma, toxins, and ischemia induce a huge neutrophil recruitment in the renal tubule,
resulting in necrosis and apoptosis and release of DAMPs and alarmins. Extracellular-free or
NET-bound or immune-complex-associated histones are potent mediators of renal epithelial
cell necrosis [131,132] and induce further histone release that acts as DAMPs [131,133].
These DAMPs and other inflammatory mediators further activate neutrophils to release
NETs, which accelerate more surrounding tissue injury. Histones and NETs enhance tubular
necrosis and capillary injury [134], and this glomerular injury can be rescued by using
PAD4 inhibitor and anti-histone antibodies [132,135].

2.6. NETs in COVID-19

COVID-19 is a highly contagious respiratory disease caused by SARS-CoV-2 virus and
was declared a global pandemic by the World Health Organization [136]. A higher presence
of NETs in COVID-19 patients has been marked [137,138]. Neutrophilia, immune dysfunc-
tion and hyper-inflammation are the clinical features of severe COVID-19 patients [139,140].
This hyper-inflammation in COVID-19 is attributed to NETs [141]. Excessive production of
cytokines termed cytokine storm is the hallmark in the pathogenesis of COVID-19 with aug-
mented plasma levels of CCL 2, IFNγ, IFNγ-inducible protein 10, G-CSF, CCL3, IL-1β, IL-2,
IL-6, IL-7, IL-8, IL-10, IL-17, and TNF-α, leading to subsequent severe consequences like
ALI, ARDS, pulmonary thrombosis, and MODS [142–146]. IFN-γ, TNF-α, IL-1β, and IL-8
are strong agonists of NET induction [21,22,138]. NETs have been reported to contribute to
the damage of the alveoli and pulmonary endothelium and immunothrombosis in patients
with severe progression of COVID-19 [146–151]. Inflammatory microvascular thrombi hav-
ing NET components have been identified in the lungs, kidneys, and hearts of COVID-19
patients [152]. NET components such as genomic DNA and citrullinated histones have
been marked to initiate coagulation in COVID-19 patients through thrombin generation, re-
sulting in poor fibrinolysis and dropped anticoagulant factor by binding to factor XII. NET
inhibition in COVID-19 patients is found to compensate for the NET-induced inflammation
and thrombotic tissue damage linked to COVID-19 ARDS and death [146]. Ultimately,
there is a negative correlation between increased levels of NETs and decreased survivability
in COVID-19 patients [153,154].
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2.7. NETs in Coagulopathy and Thrombotic Microangiopathy

Thrombosis is a principle cause of morbidity and mortality. Vascular occlusion rep-
resents deleterious effects of NETs. DIC is a heterogeneous group of disorder featured
by widespread activation of intravascular coagulation [70,155]. The interaction between
coagulation and innate immunity results in immunothrombosis, and NET-induced im-
munothrombosis plays an essential physical role in innate immunity by immobilizing and
preventing the dissemination of invading pathogens. Nevertheless, exaggerated NETs can
initiate abnormal thrombogenicity, leading to DIC. NETs initiate a coagulation cascade
and high-flow circulating NETs aggregate and stick platelets to its own scaffold and form
RBC-rich thrombus that serves as a template for thrombus formation and adhere to the
vascular endothelium in microvasculature [156]. Electrostatic interaction of the negatively
charged cells with positively charged histones in NETs probably contributes to construct-
ing the scaffold. This scaffold is responsible for deep-vein thrombosis (DVT). In fact,
this NET–platelet–thrombin axis promotes intravascular coagulation and microvascular
dysfunction [157,158]. Moreover, circulating free DNA suppresses fibrinolysis either by
accelerating the inactivation of tissue plasminogen activator by PAI-I [159] or by thickening
the fibers of fibrin clots in combination with histones [160]. Again, there is a recommenda-
tion for NETs to be an important factor in excessive and unbalanced thrombin generation
because of their early presence at the onset of DIC [80]. Histones also play a key role
in the NET-mediated coagulopathy. H3 and H4 of NETs stimulate platelets and induce
thrombotic reaction in mice models [161]. Again in an animal model, NET and its integral
part citrullinated histones H3 was found in thrombi and its intravenous administration
induced clot formation [162].

Thrombotic microangiopathy (TMA) is a life-threatening condition and causes massive
microvascular thrombosis with thrombocytopenia, microangiopathic hemolytic anemia,
and MODS [163]. A high level of serum DNA–histone complexes and MPO in TMA patients
implies the involvement of NETs in disease severity [164]. In mice models, treatment with
DNase and PAD4 inhibitor blocks DVT, which reflects the involvement of NETs as potential
agonists of thrombosis [156,165]. NE is a NET component, and in an experimental model of
NE-deficient mice, thrombosis was found to be ameliorated [166]. Furthermore, low levels
of plasma of DNase I activity were reported in thrombotic patients, which also passively
proves the involvement of NET in thrombosis [167].

2.8. NETs in Diabetes

Diabetes mellitus (DM) is an array of metabolic diseases with clinical features of hy-
perglycemic conditions that arise due to impairment in insulin action, secretion, or the two.
Hyperglycemia is connected to priming neutrophils for oxidative burst and ROS generation.
Neutrophils and NETs are involved in the pathogenesis of both insulin deficiency type 1
diabetes (T1DM) and insulin resistance type 2 (T2DM) and subsequent complications [168].
In T1DM patients with disease severity of less than 1 year, circulating protein levels and
enzymatic activities of proteinase 3 (PR3), NE, and MPO-DNA are found significantly
higher compared to healthy controls, which indicates the amplified NET formation [169].
In an experimental model of T1DM, inhibition of neutrophil function and NETosis ablate
the progression of diabetes [170]. In T2DM patients, elevated levels of NETs, neutrophil
elastase, mono- and oligonucleosomes and cf-DNA are observed compared to healthy
donors [171,172]. NETs are also responsible in the pathogenesis of diabetes-induced compli-
cations. PAD4, an enzyme taking part in chromatin decondensation during NETosis cascade
and citrullinated histones, were markedly elevated in both T1DM and T2DM, which impli-
cated poor wound healing in both mice and human, and interestingly, PAD4 inhibition with
Cl amidine and application of DNase restore the wound healing [173,174]. A case–control
study reported that the elevated levels of circulating NET components, DNA-histones, and
NE are associated with the development of diabetes-induced retinopathy [175]. NETs are
also reported in the sera of diabetic neuropathy [176] and nephropathy [177] patients.
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2.9. NETs in Autoimmune Diseases

NETs and histones are strongly associated with autoimmune diseases [178]. NET
exposure in the presence of B cells like immune cells develops antibodies directed against
self-nucleic acids and cytoplasmic proteins such as MPO and PR 3 [179]. Prolonged
presence of NETs triggers the production of anti-neutrophil cytoplasmic antibodies and
anti-nuclear antibodies and vice-versa, which promotes vasculitis and enhances the au-
toimmune response [180]. NETs have been implicated in numerous autoimmune diseases
like systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) [181,182]. RA is a
chronic, deleterious systemic autoinflammatory disease of the synovial joints, and SLE is a
complex and heterogeneous disease with characteristic features of the systemic multi-organ
inflammation. Elevated propensity of spontaneous NET release along with high ROS, MPO,
and NE had been identified from isolated neutrophils in patients with RA and SLE compared
to healthy controls along with higher nuclear translocation of PAD4 [182–184]. Moreover,
increased levels of NET formation and NET remnants MPO-DNA are also reported in
the serum of RA patients [185]. In a rat model of RA, PAD4 inhibition by chloramidine
compensated the NET-induced inflammation and erosive changes [186]. Another RA
model study reports the reduction of joint inflammation and erosion when NETs inhibition
was implicated by monoclonal antibodies directed against citrullinated histones [187]. In
SLE, slow degradation of NETs and complement activation contributes to the disease
progression [188]. In a murine model of SLE, NET inhibition by DNase I constrains the
development of anti-ssDNA and anti-histone antibodies [189], and PAD4 inhibition by
chloramidine reduces SLE-induced subsequent vascular injury and organ damage [190].

2.10. NETs in Cancer

Inflammation is a trademark of cancer and recent emerging evidence identified the
presence of neutrophils as infiltrating inflammatory immune cells with tumor [191,192].
Neutrophil plays a controversial dual pro- and anti-tumorigenic role in tumor biology [193,194].
Consequently, the effects of NETs with tumors are also found in two reverse regulatory
ways: pro-tumor effects that enhance cancer cell proliferation, invasion and metastasis and
anti-tumor effects that inhibit proliferation and invasion [195]. Liu et al. hypothesized
that NET-mediated anti-tumor effect could be through tumor cell destruction or immune
system triggers. A recent study suggests cytotoxic and antineoplastic aspects of NETs
against tumor cells [196]. The study revealed that the interaction of NET with melanoma
cells can block tumor cell migration and reduce cell viability. Further intense exploration
is required to investigate the anti-tumor effects of NETs. In this section, we will highlight
the pro-tumorigenic role of NETs. Highly elevated levels of NETs deposition are marked
in some malignant cancers with Ewing sarcoma [197], Lewis lung carcinoma (LLC) [198],
breast cancers [199,200], and lymphoma [201].

Although the detailed underlying mechanism is yet to be investigated, several pub-
lished literature studies disclosed that NETs promote tumor development by the inhibition
of apoptosis and proliferative effects and thus uphold tumor progression and metasta-
sis [202,203]. Circulating tumor cells (CTC) are significantly involved in tumor metastasis.
Interestingly, due to its sticky mesh-like architecture, NETs can entrap and adhere to CTC
and take to adjacent areas, thus expanding tumor cell metastasis. In an animal model of
sepsis, significant levels of NET-associated tumor cells were clearly pictured upon injection
of LLC cells compared to the healthy group, and cancellation of neutrophils voids this
effect by lowering CTC adhesion within the liver [204]. A group of researchers further
reconfirmed that only NETs but not neutrophils are responsible for augmenting tumor
metastasis [201,205]. Moreover, the interaction of NETs with tumor cells induces a severe
cancerous phenotype in cancer cells [195].

NET components also play a significant role in tumor progression [206]. NE has
been described to have pro-tumorigenic activity and is found to induce proliferation and
migration of tumor cells in vitro [195]. Lung adenocarcinoma model showed increased
proliferation of a tumor cell line when neutrophils are co-cultured with A549 cells, and
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this proliferation is nullified when co-cultured with NE−/− neutrophils [207]. This pro-
tumorigenic role of NE is implicated by the degradation of insulin receptor substrate-1
and subsequent activation of phosphatidaylinositol-4,5-bisphosphate 3-kinase [207,208].
In addition, NE also induces the release of pro-tumor factors like transforming growth
factor A, vascular endothelial growth factor, and platelet-derived growth factor, facilitating
interaction with their respective receptors and favoring tumor progression [209].

Matrix metalloproteinase 9 (MMP-9), an integral part of NETs, degrades extracellular
matrix and supports tumor metastasis [5]. MMPs favor a pro-tumorigenic course through
tumor cell proliferation, impairing apoptosis, increased angiogenesis, invasion, and metas-
tasis [210–212]. In mice models, this invasiveness of tumor is reversed in MMP-9−/− mice
compared to wild-type mice [211].

Cathepsin G aided metastasis by increasing angiogenesis and tumor dispersion [213].
In animal models of breast cancer, cathepsin G potentiates tumor aggregation in vasculature
and form distal tumor emboli [214]. In patients with hepatocellular carcinoma, NETs-
associated cathepsin G induces tumor cell invasion [215].

2.11. NETs in Preeclampsia

Preeclampsia is a pregnancy disorder with characteristics of inflammation, hyper-
tension, kidney failure, and seizures and is a significant cause of maternal and neonatal
mortality worldwide [216]. Placental micro-particle-induced neutrophil extracellular DNA
lattices are found in preeclampsia [23]. A huge elevation of circulating cf-DNA is measured
from the maternal plasma [217]. A published literature indicates inappropriate NET forma-
tion as the source of this cf-DNA [218]. Elevated levels of microparticles from preeclampsia
patients could trigger NETs in isolated neutrophils through an IL-8-dependent manner [219].
Moreover, NET components have been detected by immunofluorescence staining in the
intervillous space of preeclamptic placentae [23,220]. Thus exacerbated NETosis leads to
placental tissue damage in preeclamptic patients.

2.12. NETs in Kawasaki Disease

Kawasaki disease (KD) is an acute multisystem vasculitis syndrome with a char-
acteristic feature of febrile illness and mainly affects infants and children in developed
countries [221,222]. EC activation and injury is observed in patients with KD [223]. Al-
though the etiology and mechanism are not crystal clear, however, KD patients are very
susceptible to acquiring coronary artery abnormalities and myocardial ischemia [224,225].
The endothelial glycocalyx is a carbohydrate-rich gel-like layer lining buildup of syndecan,
hyaluronic acid, chondroitin sulfate, and heparan sulfate [225]. A recent report demon-
strates circulating endothelial glycocalyx proteins syndecan-1 and hyaluronan as predictive
biomarkers of coronary artery lesions in KD [226]. Interestingly, NETs also promote car-
diovascular EC damages, suggesting that enhanced NET generation may participate in
the pathogenesis of KD vasculitis [227]. Again, high levels of proinflammatory mediators
including TNF-α, IL-1β, and IL-8 have been reported in KD patients which are a strong
inducer of neutrophils to release NETs [22,222]. The activation of neutrophils respiratory
burst assessed by flow cytometry assay using dihydrorhodamine is described in the acute
phase of KD [228]. Isolated neutrophils from acute-phase KD patients show enhanced NET
formation compared to healthy controls [229–231]. Moreover, the NE plasma level is also
higher in acute-phase KD [232]. Thus, NET and NET components contribute to KD and
subsequent squeals.

3. Evaluation of NETs Inhibition as Therapeutic Targets

NETs are generated from the matured activated neutrophils in response to a wide
array of infectious microbial pathogens and sterile stimuli and act as an indispensable
protective barrier of innate immunity. Expelled NETs entrap and protect the dissemination
of invading microorganisms throughout the body either by killing or confining them in its
web-like structure. In contrast, aberrant activation of neutrophils and excessive production
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of NETs exaggerate inflammatory response that is likely to contribute to different diseases
including infectious and non-infectious. Thus, NETs act as a double-edged sword due
to their dual controversial role. Albeit the microbial infection would be eradicated by
using broad-spectrum antibiotics in ICU, the issue of stopping the NET-induced systemic
effects has come forward. We suggest that NET should be inhibited because it is cytotoxic.
Recent evidence suggests that inhibition of NETosis does not hamper the killing capacity
of neutrophils other than NETs [233]. The development of blocking NETs is in progress
(Table 1) [234]. Inhibition of NETs by DNase and other inhibitors postulates benefits in the
context of thrombosis [235], ischemia reperfusion injury [236], SLE [237], CF [108], AMI,
stroke, diabetes [238], and cancer [239]. In pathological conditions, redundant NETs are
not only present at sites of infection or inflammation but also available in the bloodstream,
termed circulating cell-free NETs. Removal of circulating NET and NET components
could be another potential therapy to prevent inappropriate inflammation and improve
remote organ damage in critically ill patients. Recently, our group reported the removal of
circulating NET components, cf-DNA, MPO-DNA, and NE-DNA by direct hemoperfusion
with a cartridge containing polymyxin B (PMX)-immobilized membrane (Toray, Japan) in
sepsis [240].

Table 1. Inhibition of NETs as therapeutic approach.

References Year Results

Martinod et al. [235] 2014
NET inhibition by DNase I administration showed a protective role against
thrombosis in an in vivo murine model of ischemic stroke, myocardial
infarction, and DVT.

Brill et al. [166] 2012 Infusion of DNase I protected mice from DVT through inhibition of NETs.

De Meyer et al. [241] 2012 NET inhibition by DNase I improves ischemic stroke outcome in mice model.

Savchenko et al. [236] 2014 DNase I therapy against NETs in mice model exerts cardioprotective effects
and improves cardiac contractile function.

Papayannopoulos et al. [108] 2011 DNase I therapy enhances sputum solubilization in CF patients

Wong et al. [238] 2018 Elevated NETs contribute to diabetes complications, and NET disruption by
using DNase I therapy improves wound healing.

Patutina et al. [239] 2011 DNase I treatment inhibits tumor progression and dissemination.

The therapeutic target and the time of initiation of the therapies are important concerns
in the NET situation. This is because NETs are beneficial for the host in the early phase of
the infections and become detrimental and backfire in later stages. So, the fine-tuning of
NET formation throughout the disease course would be the goal for the development of
new NET-targeted therapies. Early detection of NETs is essential to start the therapy and
perhaps a combined therapeutic approach; inhibition of stimulation and damaged tissue
repair would be the best option for treatment.

4. Conclusions

From their discovery in 2004, NETs have long been recognized as a novel central
mechanism of innate immunity for their beneficial physiological role in host defense. But
their pathogenic role has attracted recent attention. Several factors including aberrant
activation, dysregulation, and excessive generation determine their controversial role.
The list of NET-implicated diseases is gradually expanding, ranging from autoimmune
disorders to diabetes to cancer [173,237,242]. This study will provide comprehensive
knowledge to researchers, scientists, and clinicians to better understand the role and
impact of NETs on health and address therapeutic targets to treat NET-mediated diseases.
Although new novel therapeutic strategies are evolving targeting NETs, still, further and
more extensive research is needed to explore their implication in different diseases
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