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Abstract: Heterochromatin and euchromatin form different spatial compartments in the interphase
nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms
responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear
lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders.
This review is focused on recent studies showing that heterochromatin interactions with the nuclear
lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin
interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
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1. Introduction

In eukaryotic cells, the nucleus is separated from the cytoplasm by the nuclear enve-
lope (NE), which is composed of inner and outer nuclear membranes with a perinuclear
space between them. The nuclear lamina (NL), a meshwork of lamins and lamin-associated
proteins, lines the inner nuclear membrane. It is anchored in the inner nuclear membrane
by nuclear envelope transmembrane proteins [1]. Nuclear pore complexes (NPCs) that
penetrate both nuclear membranes are made up of nucleoporins (Nups). NPCs ensure
macromolecular transport between the nucleus and the cytoplasm [2].

Chromatin is divided into condensed heterochromatin and less condensed euchro-
matin. Constitutive heterochromatin covers pericentromeric and telomeric regions of
chromosomes, while facultative heterochromatin is represented by islands of inactive chro-
matin within chromosome arms. Heterochromatin is known to be depleted in histone
acetylation, as well as in other active histone marks, and enriched with H3K9me2/3 or
H3K27me3 histone modifications [3,4]. Early electron microscopy observations have shown
that chromatin is not randomly distributed throughout the nucleus. In most cell types,
heterochromatin is located at the nuclear periphery in close association with the NE as
well as around the nucleoli, whereas euchromatin occupies a more interior position (see,
for example [5,6]). These observations gave rise to the idea that heterochromatin may be
linked to the NE, which serves as a scaffold for its tethering [7].

With the advent of new technologies, such as DamID [8], genomic regions interacting
with the NL, the lamina-associated chromatin domains (LADs), were identified in various
organisms [9–12]. LADs, which represent peripheral heterochromatin, have a median
length of ~0.5 Mb in mammals and ~90 kb in Drosophila. Surprisingly, in both organisms,
LADs constitute ~40% of the genomes [9,12]. In line with the localization at the nuclear
periphery, LADs consist of transcriptionally inactive chromatin corresponding to silent
or weakly-expressed tissue-specific genes [9–12]. It should be mentioned that not all
heterochromatin interacts with the NL. For example, in Drosophila Kc167 cells, Polycomb
(Pc) domains enriched with H3K27me3 only partially overlap with LADs [3].

Apart from the NL, DamID studies in Drosophila indicate that NPCs also interact
with numerous genomic sites scattered throughout the genome [13,14]. The question then
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arises about which type of interaction is responsible for the positioning of heterochromatin
at the NE.

2. Mechanisms of Chromatin Interactions with the NL

Disruption of the NL components results in heterochromatin displacement from the
nuclear periphery to the nuclear interior [15–21], thus indicating that, in normal cells,
heterochromatin is attached to the NL. Various proteins of the NE are involved in this
attachment [22]. This list includes but is not limited to lamins [19–25], the lamin-B-receptor
(LBR) in mammals (but not in Drosophila) [21,25,26], LAP2, emerin, and the MAN1 (LEM)
domain proteins in mammals and Drosophila [27–32], PRR14 in mammals [17], CEC-4 in
C. elegans [33], and NE transmembrane proteins in mammals [34,35]. These proteins interact
with chromatin either directly (such as lamins, LBR, and CEC-4) or through chromatin
binding proteins, such as BAF [36–38], cKrox with HDAC3 [39], or HP1 [17,26,40,41]. The
NE protein PRR14 directly binds H3K9me2/3 chromatin domains, whereas CEC-4 and
LBR bind them through HP1α [17,26,33,42]. As a result of this binding, H3K9me2-modified
heterochromatin forms a peripheral layer beneath the NL in various organisms [43].

Numerous FISH data indicate that inactive loci are usually removed from the NE upon
activation [15,44–51]. These microscopy observations were confirmed by DamID analysis,
which showed that most (but not all) activated loci lost contact with the NL [11,52,53]. Loss
of contact was most pronounced at the promoters of these loci.

Then what is the mechanism of the detachment of activated loci from the NE? The
binding of transcriptional activators, possessing the acidic domain, to the silent locus
resulted in chromatin decondensation and locus repositioning to the nuclear interior, even
in the absence of locus transcription [54]. The relocalization of loci from the NE to the
nuclear interior is likely mediated by a non-diffusion process since nuclear actin and nuclear
myosin were shown to be involved [55–59]. It is supposed that the binding of transcriptional
activators to the promoter regions recruits the myosin motor to the activated loci, and then
it moves loci along the nuclear network consisting of short dynamic actin polymers [60].
However, the mechanism of directionality during this movement is still unclear.

Chromatin decondensation may be induced also by histone acetylation [61–64]. Thus,
the question arises whether histone acetylation by itself leads to the detachment of loci
from the NL? A recent study in C. elegans demonstrates that artificially increased H3K27
acetylation within silent chromatin domains drives the relocalization of these domains to
the nuclear interior [65].

3. Mechanisms of Chromatin Interactions with NPCs

There is a growing body of evidence showing that chromatin interacts with various
Nups. Studies on yeast performed on several model loci have indicated that, upon induc-
tion, these loci moved to the NPCs [66–70]. However, in metazoans, mobile Nups are not
only the constituents of NPCs but are also present in the nucleoplasm [71,72]. Moreover,
numerous chromatin interactions with Nups have been shown to take place in the nucle-
oplasm [13,73,74]. For this reason, in the majority of studies in mammals and Drosophila,
chromatin interactions with Nups identified genome-wide [73–78] were not subdivided
into those occurring at the NPCs or those occurring in the nucleoplasm. Pioneering work,
where such interactions were classified as nucleoplasmic or NPC-linked, was carried out
using the DamID technique in Drosophila Kc167 cells, which expressed either Nup98 lacking
the N-terminus responsible for its association with NPCs or chimeric protein consisting of
the N-terminal part of Nup98 and of the integral membrane protein NDC1 [13].

Elys is the only known Nup that possesses chromatin-binding activity [79–83]. Thus,
it seems likely that Elys may directly bind chromatin both at NPCs and in the nucleo-
plasm [84]. Using the ChIP-seq approach with antibodies against stable or dynamic Nups,
binding sites of several Nups, including Elys, were identified in Drosophila larvae brain
and S2 cells [85,86]. Recently, Elys binding sites were also identified in late Drosophila
embryos using the DamID technique [14]. Almost all Elys sites from embryos were clas-
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sified as nucleoplasmic or NPC-linked [14] after comparing them with the data from
Kalverda et al. [13]. It turned out that NPC-linked sites are mainly represented by short
stretches of inactive chromatin embedded in LADs or Pc-domains, whereas nucleoplasmic
sites contain active chromatin enriched in the acetylated histone modifications [14,85,86].
Interestingly, nucleoplasmic Elys fraction binds highly acetylated chromatin of enhancers
and promoters, and this binding leads to decondensation and “opening” of their chro-
matin [14,86,87]. Therefore, unlike in yeast, where NPC-linked loci are associated with
active gene expression, NPC-linked sites in Drosophila mostly correspond to the inactive
peripheral heterochromatin [14]. However, using a modified DamID approach, it was
recently shown that, in mammals, super-enhancers are associated with the NPCs [88].

Importantly, the depletion of Elys in S2 cells, which does not cause the disappearance
of nuclear pores, results in the relocalization of peripheral heterochromatin from the NE to
the nuclear interior [14]. A similar effect was observed upon the depletion of lamin Dm0
in S2 cells [21]. Therefore, it can be concluded that heterochromatin is attached through
multiple sites to both the NL and NPCs (Figure 1). In support of this model, Elys was
shown to interact more strongly with the single X chromosome of C. elegans males than with
two X chromosomes of hermaphrodites, which correlates with a more intimate association
of the male X chromosome with the NE [89].
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Figure 1. Peripheral heterochromatin is attached through multiple sites to both the NL and NPCs.
The schematic shows the anchoring of inactive peripheral heterochromatin (violet) at the NL (brown)
and NPCs (through Elys, red ovals). Active chromatin is indicated by red. The binding sites of
heterochromatin to the NL and NPCs are shown by green clips.

It should be noted that various Nups can interact with chromatin indirectly through
association with chromatin binding complexes. For example, Nup93 was coimmunoprecip-
itated from protein extracts of Drosophila S2 cells together with Pc and the enhancer of zeste
(E(z)) [86]. These associations may explain the strong overlap between Nup93-binding
sites and Pc-response elements (PREs) in the genome of S2 cells [86]. Nup153 was shown
to physically associate with cohesin and CCCTC-binding factor (CTCF), as well as with
acetyltransferase CBP/p300 in mammals [90,91]. Nup98 may be recruited to chromatin
through its association with the MBD-R2 DNA-binding protein of the nonspecific lethal
(NSL) complex or via the trithorax (Trx) complex [92,93]. Apart from these possibilities,
Nups can be recruited to chromatin by other Nups [87,94] which additionally complicates
the final picture.

4. An Influence of Chromatin Detachment from the NE on Genome Architecture

It was found that cell senescence [95–98], aging [99,100], some human diseases, in-
cluding Hutchinson–Gilford progeria syndrome [101], as well as rare cases of terminal cell
differentiation [25] correlate with the lack of lamins or other components of the NL. The loss
of these components is frequently accompanied by heterochromatin relocalization from the



Int. J. Mol. Sci. 2023, 24, 15771 4 of 14

nuclear periphery to the nuclear interior. In the case of oncogene-induced cell senescence,
peripheral heterochromatin is aggregated into senescence-associated heterochromatin foci
(SAHF) in the nuclear interior [18,102]. Cells undergoing replicative senescence rarely form
SAHF. Nevertheless, they have lost the peripheral heterochromatin layer [103]. Upon aging,
peripheral heterochromatin is also lost in the Drosophila fat body, which is the immune
organ of this organism [100]. Likewise, fibroblasts from patients with Hutchinson–Gilford
progeria syndrome do not have SAHF, but still have a thinner layer of peripheral hete-
rochromatin [104,105]. In the rod photoreceptor cells of animals with nocturnal vision, the
3D genome organization becomes “inverted” [16]. It is characterized by the aggregation of
all heterochromatin into a spherical structure in the center of the nucleus, whereas active
chromatin appears at the nuclear periphery [16].

Therefore, the emerging picture is that upon the loss of attachment to the NE, hete-
rochromatin is removed from the NE and tends to self-aggregate in the center of the nucleus.
Depending on the degree of heterochromatin enrichment with HP1/H3K9me2/3 complex,
it may form a common chromocenter, as in rod photoreceptor cells of animals with noc-
turnal vision lacking both lamin A/C and LBR [16,25], or be only slightly displaced from
the NE, as in S2 cells upon lamin or Elys depletion [14,21]. Computer simulations of the
nucleus that lost heterochromatin attachment to the NE confirm this model [106]. Another
parameter is likely to be the period of time. The complete formation of heterochromatin
aggregates in the center of the nucleus requires several weeks without cell division [16].

5. Chromatin Interactions with the NL and NPCs in Individual Cells

Interactions of chromatin with the NL and with NPCs were identified in cell popula-
tions and, thus, represent the sum of interactions detected in all individual cells. Are these
interactions the same in each cell? The current view is that this is not the case. For example,
LADs identified in cell populations occupy roughly half of the genome [9,12], calling into
question that such a large proportion of chromatin may be simultaneously located at the
NE in a cell. Recent mapping of LADs performed in individual cells confirmed that only a
small proportion of all LADs (~15–30%) identified in cell population interact with the NL
in each cell [107,108].

LADs were classified as constitutive (cLADs) or facultative (fLADs) by their presence
in the majority or minority of cell lines analyzed [109]. Consistent with this classification,
upon single-cell analysis, cLADs that were shared across cell populations were found to
interact with the NL in the majority of individual cells, whereas fLADs interacted with
the NL only in a minor fraction of cells [108]. LADs that were localized by microscopy at
the NE before mitosis may appear inside the nucleus after mitosis [107]. However, since
cLADs exist at a single-cell level, the redistribution of LADs during mitosis is not entirely
stochastic. It was noticed that cLADs are enriched with H3K9me2/3 heterochromatin marks
in comparison with fLADs [108]. These histone modifications may mediate a stronger and
more robust association of cLADs with the NL.

Nevertheless, many LADs appear to be located in the nuclear interior [107,108]. This
finding is in agreement with numerous FISH observations showing that many signals
corresponding to LADs were detected at some distance from the NE [9,11,15,110]. More-
over, upon 3D-reconstruction of the whole X chromosome after single-cell Hi-C analysis,
inactive chromatin, corresponding to LADs identified in cell populations, was rather evenly
distributed over the surface of the X-chromosome territory [111] and, thus, was unable
to interact with the NL simultaneously from both sides of the chromosome. It should be
mentioned that a fraction of LADs located in the nuclear interior may interact with the
nucleoli [112–114]. However, a notable fraction of LADs in individual cells does not interact
with either the NL or nucleoli.

The same story occurs with chromatin interactions with NPCs. Approximately
4000 NPC-interacting sites have been identified in late Drosophila embryos [14]. At the
same time, the embryonic S2 cell line has ~1000 nuclear pores per nucleus [115], which
is several-fold less. The most plausible explanation is that only a small proportion of all
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NPC-interacting sites are attached to NPCs in individual cells. Therefore, many LADs
and NPC-interacting sites identified in cell population are, in fact, located in the nuclear
interior (Figure 2). This may be caused by the competition between different LADs or
NPC-interacting sites for binding with the NL or NPCs, respectively. In other words,
the limited surface of the NL and the limited number of NPCs do not allow all potential
LADs and NPC-binding sites to interact with them. Several indications supporting this
idea have been obtained recently. For example, DamID interactions between the NL and
chromosomes in the KBM7 cell line, existing in either the diploid or haploid state, were
more pronounced in haploid than in diploid cells [108]. Similarly, more interactions with
the NL were revealed for the single X chromosome than for each of the paired autosomes
in Drosophila male germ line cells [53].
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Another interesting question is whether LADs interact with the NL along their whole
length. The segregation of topologically associating domains (TADs) in Drosophila was
shown to follow epigenetics, i.e., some long TADs are collinear to LADs, while some short
TADs are collinear to active genes or gene clusters [116,117]. It is hard to imagine how TADs
consisting of inactive chromatin, which are visualized by super-resolution microscopy as 3D
globular structures [118,119], can be attached to the NL simultaneously by all nucleosomes.
Rather, the collinearity between inactive TADs and LADs does exist in a cell population,
while only a fraction of nucleosomes from each inactive TAD interacts with the NL in a
single cell.

6. An Influence of Chromatin-NE Interactions on Chromatin Compaction

Early cytological observations indicated that heterochromatin is more compact than eu-
chromatin [120]. Mammalian LADs have been shown to be enriched with the H3K9me2/3
mark through their whole length and with the H3K27me3 mark at LAD boundaries [9,121].
In the differentiated cell types of Drosophila, such as neurons, LADs are also enriched with
H3K9me2/3 [122]. H3K9me2/3 and H3K27me3 histone modifications are the targets for
binding of HP1 and Pc repressors, respectively [40,41,123,124]. It has been shown that both
HP1 and Pc were able to condense chromatin [125–128]. Thus, their binding to LADs is
one of the reasons for the compact state of peripheral heterochromatin. However, LADs in
embryonic Drosophila Kc167 cells are not enriched with H3K9me2/3, and only half of them
overlap with Pc-domains [3,12]. Yet, they strongly overlap with histone H1 [3], which is
able to compact chromatin [129].
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Using the technique of chromosome conformation capture with high-throughput
sequencing (Hi-C, [130]), two recent studies have analyzed the impact of detachment of
LADs from the NL on their chromatin compaction [20,21]. Loss of all lamins in mouse em-
bryonic stem cells resulted in the decreased packaging density of a fraction of NL-attached
TADs [20]. Similarly, the average frequency of Hi-C contacts in TADs, calculated before
and after the loss of all lamins in Drosophila S2 cells, has shown that TADs corresponding
to LADs became less compact upon NL disruption. Thus, in cells possessing intact NL,
interactions of LADs with it result in the elevated chromatin compaction [20,21]. Moreover,
computer modeling has shown that NE attachment, by itself, leaded to the increased chro-
matin packaging density [21]. Therefore, besides HP1- or Pc-mediated compaction, LADs
become mechanically more compact due to their attachment to the NL.

Mechanosensing and mechanotransduction in cells are mediated by the linker of
the nucleoskeleton and cytoskeleton (LINC) complex [131]. It is composed of the KASH
domain proteins (nesprins in mammals) integrated into the outer nuclear membrane and
protruding into the cytoplasm, which are bound with the SUN domain proteins integrated
into the inner nuclear membrane [132,133]. KASH proteins, which interact with various
cytoskeletal components, receive cytoplasmic signals and transmit them to the nucleus
through the NL-associated SUN proteins [134,135]. It is currently accepted that mechanical
rigidity of nuclei is determined by both the NL and chromatin (for example, [136]). In
support of the role of chromatin in this process, chromatin decondensation has been shown
to result in a more profound deformation of nuclei in response to extracellular forces,
while chromatin condensation, on the contrary, enhanced the stiffness of nuclei [136,137].
Chromatin decondensation may be caused by the loss of chromatin attachment to the
NE. However, it is unclear whether the attachment of heterochromatin to the NE per se
makes the nuclei more rigid. A recent study on yeast has shown that heterochromatin
attachment to the NE does matter [138]. Upon depletion of LEM-domain proteins that
tether heterochromatin to the NE, the rigidity of nuclei was decreased. Therefore, the
intactness of the NL, the degree of chromatin compactness, and interactions between
the NL and chromatin are the major determinants of the stiffness of nuclei that resist
extracellular forces.

What is the influence of chromatin attachment to NPCs on its compaction? To address
this question, Hi-C analysis was performed in S2 cells depleted for Elys, which is responsible
for peripheral heterochromatin tethering to the NPCs [14]. It was found that, upon Elys loss,
TADs consisting of inactive chromatin became less compact, while active TADs became
more compact [14]. It seems likely that, upon Elys loss, the less compact state of TADs,
which correspond to LADs, is mediated by the lack of interactions between LADs and the
NL [14]. Interestingly, chromatin tethering to NPCs through Elys facilitates Hi-C contacts
between chromatin regions locally adjacent to the site of attachment [14].

Elys is known to be present also in the nucleoplasm, where it binds active, acetylated
chromatin [14,85,86]. Artificial recruitment of Elys to several sites on Drosophila polytene
chromosomes results in their decompactization [87], which is likely caused by the PBAP
chromatin-remodeling complex associated with Elys [139]. Therefore, a more compact state
of TADs consisting of active chromatin upon Elys depletion can be explained by the lack of
PBAP, normally recruited by Elys to the active promoters and enhancers [14].

7. An Influence of Chromatin-NE Interactions on Gene Expression

Currently, it becomes clear that interactions of loci with the NL only weakly affect
gene expression. For example, artificial tethering to the NL resulted in a two- to three-fold
down-regulation of the low-expressed reporter genes as well as of endogenous genes
located near the sites of tethering [140,141] but had a subtle effect on the strongly-expressed
reporter genes [140,142]. Moreover, the disruption of the NL resulted in only two- to
three-fold transcriptional up-regulation of silent genes but did not notably change active
gene expression [15,21]. By using single-cell DamID coupled with a single-cell RNA-seq
in mouse embryonic stem cells, it was recently revealed that when a locus interacts with
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the NL in a cell, its median expression level is about two-fold lower than when it is
detached from the NL in another cell of the same population [143]. However, various TRIP
experiments have shown that reporter gene expression appeared to be significantly lower
when the reporter was integrated into LADs, as compared to inter-LADs [144,145]. The
explanation for this discrepancy may be the following. LADs contain chromatin, which
exerts a strong repressive effect on the integrated reporter gene [145]. However, this effect
is mainly mediated by the presence of silencers within LADs but not by the attachment of
LADs to the NL.

It should be mentioned that the influence of the NL on the repression of attached genes
may be stronger in the differentiated cells [35,122,146]. In mouse embryonic stem cells,
interactions of LADs with the NL are less pronounced than in more differentiated cells, and
this effect correlates with the more abundant presence of H3K9me2/3 modification in the
latter case [11,121]. In Drosophila neurons, LADs are enriched with HP1 binding, which is
absent in embryonic Kc167 cells [122]. The binding of HP1 to H3K9me2/3, which makes
chromatin more condensed [127,128] and, thus, enhances gene repression in the neuronal
LADs [122], may be stabilized by the association of H3K9me2/3-modified LADs with the
NL. For this reason, NL disruption in the neurons potentially may have a more severe
derepression effect on the NL-attached genes. Similarly, muscle-specific expression of some
NETs in mouse cells results in the stronger binding of a set of myogenic genes with the NL
accompanied by the enhanced repression of these genes [35].

A recent study indicates that depletion of Elys in Drosophila S2 cells, leading to the
partial detachment of peripheral heterochromatin from the NE, also barely affects gene
expression [14]. The two-fold transcriptional up-regulation, detected for silent or weakly
expressed genes, is likely caused by partial loss of interactions between LADs and the
NL [14]. Therefore, heterochromatin tethering to the NL and NPCs causes suppression of
the background transcription of silent genes.

In addition, tissue-specific up-regulation of Nups during differentiation may affect the
expression of a subset of genes more drastically. For example, the inclusion of tissue-specific
transmembrane Nup210 in NPCs during myoblast differentiation is required for efficient
expression of muscle-specific genes. Nup210 recruits the Mef2C transcriptional complex to
the NPC-attached genes, thus enhancing their expression [147]. Another example is Seh1,
a scaffold Nup, which recruits the Olig2-dependent transcriptional complex to NPCs to
promote oligodendrocyte differentiation in mammals [148].

Moreover, the attachment of some inducible genes to the NPCs may mediate transcrip-
tional memory, i.e., more rapid activation of their transcription in response to repeated
treatment by external stimuli [85,149–152]. The mechanistic model explaining this phe-
nomenon is based on the idea that communication between enhancer and promoter may be
stabilized by anchoring both elements at the same NPC [85,150]. Nevertheless, transcrip-
tional memory can occur at some loci located in the nuclear interior [151] or relocated to
the nuclear interior upon gene induction [91]. Therefore, the detailed mechanism of this
phenomenon awaits further clarification.

8. Conclusions

We now realize that analysis of the genome architecture in cell populations and at
a single-cell level draws different pictures of chromatin–NE interactions. Although cell
population studies indicate that roughly half of the genome may interact with the NL, no
more than 15–30% of these LADs are attached to the NL in each individual cell [107,108].
A similar proportion of genomic sites that are potentially able to interact with NPCs are
tethered to NPCs in each cell. Therefore, many LADs with NPC-interacting sites are located
in the nuclear interior. This understanding leads to the important conclusion that, at least
in embryonic cells, the attachment of genes to the NL or NPCs can not strongly affect their
expression because the list of attached genes varies from cell to cell.

Another important conclusion is that heterochromatin is maintained at the nuclear
periphery through the multiple interactions with the NL, interspersed with its interactions
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with the NPCs. Without each type of interaction, heterochromatin relocates from the NE to
the interior of the nucleus.
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