
Citation: Berkowitz, R.L.; Bluhm,

A.P.; Knox, G.W.; McCurdy, C.R.;

Ostrov, D.A.; Norris, M.H. Sigma

Receptor Ligands Prevent COVID

Mortality In Vivo: Implications for

Future Therapeutics. Int. J. Mol. Sci.

2023, 24, 15718. https://doi.org/

10.3390/ijms242115718

Academic Editor: James K. Bashkin

Received: 26 September 2023

Revised: 26 October 2023

Accepted: 28 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Sigma Receptor Ligands Prevent COVID Mortality In Vivo:
Implications for Future Therapeutics
Reed L. Berkowitz 1 , Andrew P. Bluhm 2,3, Glenn W. Knox 1, Christopher R. McCurdy 4,5 , David A. Ostrov 1

and Michael H. Norris 3,6,*

1 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida,
Gainesville, FL 32610, USA; reedberkowitz@ufl.edu (R.L.B.); ostroda@pathology.ufl.edu (D.A.O.)

2 Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, College of Liberal Arts
and Sciences, University of Florida, Gainesville, FL 32611, USA

3 Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
4 Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
5 Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida,

Gainesville, FL 32610, USA
6 School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
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Abstract: The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring
cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though
its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants
have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing
their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic
approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the
direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of
an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent
the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and
cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine,
a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived
replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has
shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In
the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced
mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug
combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated
with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival
rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated
animals. Clinical translation of these findings may support the discovery of new treatment and
research strategies for SARS-CoV-2.

Keywords: SARS-CoV-2; coronaviruses; COVID; antivirals; therapeutics; vaccines; lactoferrin;
mutations; variants; sigma receptors; diphenhydramine; antiviral resistance; treatment strategies

1. Introduction

Sigma receptors are widely expressed intracellular chaperone proteins that typically
reside on the endoplasmic reticulum (ER) membrane [1]. Sigma receptors exhibit a broad
array of physiological properties with roles in mediating cell stress responses, nociception,
and addiction [2–4]. Coronavirus-induced cell stress helps form an ER-derived complex
conducive to virus replication [5]. Sigma receptors were unexpectedly linked to the SARS-
CoV-2 life cycle because sigma receptor ligands exhibited direct antiviral activity [6].
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Previously, we investigated the role of sigma-1 and sigma-2 receptors in mediating
antiviral activity against SARS-CoV-2 in vitro [6]. These studies found that sigma-1 and
sigma-2 receptor ligands exerted direct antiviral activity against SARS-CoV-2 in vitro.
This observation was interpreted as the consequence of sigma receptor ligation on cell
stress, inhibiting the formation of the coronavirus replication complex, thus, decreasing
viral replication. Additionally, we previously investigated the effect of an investigational
antiviral drug combination consisting of an off-target sigma receptor ligand antihistamine
(diphenhydramine) and an immunomodulatory protein (lactoferrin) against SARS-CoV-2
in vitro. Diphenhydramine was selected due to the analysis of electronic health records
revealing a reduced incidence of SARS-CoV-2 positivity in subjects taking antihistamines
and its activity as an off-target sigma receptor ligand [7]. Lactoferrin was selected based
on high-throughput drug repurposing screenings for SARS-CoV-2 antivirals as well as
demonstrated in vitro activity against SARS-CoV-2 [8,9]. The diphenhydramine/lactoferrin
combination was demonstrated to reduce SARS-CoV-2 replication in vitro by 99% [6].

In this study, we investigated the role of highly specific sigma receptor ligands on
SARS-CoV-2-induced mortality in ACE2-transgenic mice. K18-hACE2 mice were selected
for this study because they express human ACE2 receptors, effectively simulating the
human response to SARS-CoV-2 and allowing evaluation of the therapeutic effect of sigma
receptor ligands [10]. These mice are widely available, thoroughly studied as models
of SARS-CoV-2 infection, and their broad expression of the hACE2 gene leads to acute
infections [10,11]. The expression of human ACE2 also facilitates the assessment of spike-
hACE2 interaction interference. In addition, we measured the effect of the diphenhy-
dramine/lactoferrin combination on SARS-CoV-2-induced mortality in ACE2-transgenic
mice. The effects of tested treatments on SARS-CoV-2 mortality in mice were determined
by survival studies (Figure 1).
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initial weight; (3) Anesthetizing with Ketamine and Xylazine; (4) Intranasal challenge with 2.5 × 104

PFU SARS-CoV-2; (5) Daily treatments with Sigma receptor ligands, Lactoferrin, or Saline (untreated);
(6) Continuous weight monitoring; (7) Euthanasia upon reaching moribund state, defined as a mass
below 70% of initial weight; and (8) Documentation of survival curve. (Bottom) Proposed action
mechanism of Sigma receptor ligands: (1) Binding to host receptors; (2) Reduction of coronavirus-
induced cell stress; and (3) Inhibition of coronavirus replication complex formation.

These data are relevant to the diminishing efficacy of available COVID drugs and
potential strategies to improve efficacy, including the use of sigma receptor ligands. The
potential of combinatorial therapies targeting multiple viral replication stages for enhanced
efficacy against future coronaviruses and reduced susceptibility to declining efficacy com-
pared to current COVID drugs is discussed.

2. Results

K18-hACE2 transgenic mice were challenged with SARS-CoV-2 strain UF-1. Mice
were treated daily or twice daily with either saline, a sigma-1 and sigma-2 receptor binding
ligand (AZ66), a sigma-2 receptor binding ligand (CM398), or an investigational antiviral
drug combination consisting of an off-target sigma receptor ligand (diphenhydramine;
DPH) and an immunomodulatory protein (lactoferrin; LF) (Figure 2). All mice treated with
only saline (mock-treated) or AZ66 underwent rapid weight loss, culminating in a 100%
mortality rate, as illustrated in Figure 3. In contrast, mice treated with CM398 initially lost
weight rapidly but subsequently displayed a sharp rebound in mass, exhibiting nonzero
survival rates.

In an additional survival study, K18-hACE2 transgenic mice were challenged with
the SARS-CoV-2 strain UF-1. Mice were treated with saline (mock treated) or the inves-
tigational diphenhydramine/lactoferrin combination. The survival study presented in
Figure 4 unequivocally demonstrates that employing the diphenhydramine/lactoferrin
combination significantly extends the survival time of COVID-infected mice with several
achieving recovery (Figure 4). Notably, mice treated with a combination of diphenhy-
dramine and lactoferrin exhibited the most gradual weight loss among all groups, followed
by a pronounced rebound in weight and improved (nonzero) survival rates. This under-
scores the efficacy of the treatment in not only enhancing survival but also in moderating
the rate of weight loss and facilitating rapid mass recovery for those who survived, outper-
forming all other treated and untreated groups in this regard.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 17 
 

 

of initial weight; (3) Anesthetizing with Ketamine and Xylazine; (4) Intranasal challenge with 2.5 × 
104 PFU SARS-CoV-2; (5) Daily treatments with Sigma receptor ligands, Lactoferrin, or Saline (un-
treated); (6) Continuous weight monitoring; (7) Euthanasia upon reaching moribund state, defined 
as a mass below 70% of initial weight; and (8) Documentation of survival curve. (Bottom) Proposed 
action mechanism of Sigma receptor ligands: (1) Binding to host receptors; (2) Reduction of corona-
virus-induced cell stress; and (3) Inhibition of coronavirus replication complex formation. 

These data are relevant to the diminishing efficacy of available COVID drugs and 
potential strategies to improve efficacy, including the use of sigma receptor ligands. The 
potential of combinatorial therapies targeting multiple viral replication stages for en-
hanced efficacy against future coronaviruses and reduced susceptibility to declining effi-
cacy compared to current COVID drugs is discussed. 

2. Results 
K18-hACE2 transgenic mice were challenged with SARS-CoV-2 strain UF-1. Mice 

were treated daily or twice daily with either saline, a sigma-1 and sigma-2 receptor bind-
ing ligand (AZ66), a sigma-2 receptor binding ligand (CM398), or an investigational anti-
viral drug combination consisting of an off-target sigma receptor ligand (diphenhydra-
mine; DPH) and an immunomodulatory protein (lactoferrin; LF) (Figure 2). All mice 
treated with only saline (mock-treated) or AZ66 underwent rapid weight loss, culminating 
in a 100% mortality rate, as illustrated in Figure 3. In contrast, mice treated with CM398 
initially lost weight rapidly but subsequently displayed a sharp rebound in mass, exhib-
iting nonzero survival rates. 

 
Figure 2. Chemical structures of ligands utilized in SARS-CoV-2 survival studies in mice. Displayed 
are the molecular structures of: AZ66, a dual sigma-1 and sigma-2 receptor ligand; CM398, specific 
to sigma-2 receptors; and diphenhydramine, recognized as an off-target sigma receptor ligand. 

 

Figure 2. Chemical structures of ligands utilized in SARS-CoV-2 survival studies in mice. Displayed
are the molecular structures of: AZ66, a dual sigma-1 and sigma-2 receptor ligand; CM398, specific to
sigma-2 receptors; and diphenhydramine, recognized as an off-target sigma receptor ligand.



Int. J. Mol. Sci. 2023, 24, 15718 4 of 17

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 17 
 

 

of initial weight; (3) Anesthetizing with Ketamine and Xylazine; (4) Intranasal challenge with 2.5 × 
104 PFU SARS-CoV-2; (5) Daily treatments with Sigma receptor ligands, Lactoferrin, or Saline (un-
treated); (6) Continuous weight monitoring; (7) Euthanasia upon reaching moribund state, defined 
as a mass below 70% of initial weight; and (8) Documentation of survival curve. (Bottom) Proposed 
action mechanism of Sigma receptor ligands: (1) Binding to host receptors; (2) Reduction of corona-
virus-induced cell stress; and (3) Inhibition of coronavirus replication complex formation. 

These data are relevant to the diminishing efficacy of available COVID drugs and 
potential strategies to improve efficacy, including the use of sigma receptor ligands. The 
potential of combinatorial therapies targeting multiple viral replication stages for en-
hanced efficacy against future coronaviruses and reduced susceptibility to declining effi-
cacy compared to current COVID drugs is discussed. 

2. Results 
K18-hACE2 transgenic mice were challenged with SARS-CoV-2 strain UF-1. Mice 

were treated daily or twice daily with either saline, a sigma-1 and sigma-2 receptor bind-
ing ligand (AZ66), a sigma-2 receptor binding ligand (CM398), or an investigational anti-
viral drug combination consisting of an off-target sigma receptor ligand (diphenhydra-
mine; DPH) and an immunomodulatory protein (lactoferrin; LF) (Figure 2). All mice 
treated with only saline (mock-treated) or AZ66 underwent rapid weight loss, culminating 
in a 100% mortality rate, as illustrated in Figure 3. In contrast, mice treated with CM398 
initially lost weight rapidly but subsequently displayed a sharp rebound in mass, exhib-
iting nonzero survival rates. 

 
Figure 2. Chemical structures of ligands utilized in SARS-CoV-2 survival studies in mice. Displayed 
are the molecular structures of: AZ66, a dual sigma-1 and sigma-2 receptor ligand; CM398, specific 
to sigma-2 receptors; and diphenhydramine, recognized as an off-target sigma receptor ligand. 

 
Figure 3. Efficacy of highly specific sigma receptor ligands on SARS-CoV-2 survival in ACE2-
transgenic mice. The ACE2-transgenic mice underwent intranasal challenge with 2.5 × 104 PFU
SARS-CoV-2 (strain UF-1) and subsequently received treatment either with the vehicle control (mock-
treated), CM398 (sigma-2 receptor-specific ligand), or AZ66 (dual sigma-1/sigma-2 receptor ligand).
Two distinct dosing regimens were employed, intraperitoneal (IP) injection either daily or twice
daily. The number of animals in the saline-treated group was 8, whereas the treated groups contained
5 animals each. The displayed results capture the survival outcome for each respective treatment.
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Figure 4. Impact of diphenhydramine/lactoferrin (DPH/LF) treatment on survival and weight loss
in SARS-CoV-2-infected ACE2-transgenic mice. Mice were challenged with 2.5 × 104 PFU SARS-
CoV-2 (UF-1) intranasally and administered either vehicle control (mock treated) or a combination
of 30 mg/kg diphenhydramine and 50 mg/kg lactoferrin (DPH/LF) twice daily via intraperitoneal
injection. Group sizes: n = 3 (uninfected), n = 8 (mock-treated), and n = 5 (DPH/LF treated). Left
panel: Percentage of starting mass post-infection over 10 days comparing uninfected, mock-treated,
and DPH/LF-treated mice. Right panel: Probability of survival over 10 days for mock treated and
DPH/LF-treated mice. An asterisk denotes a significant difference in outcomes between mock treated
and DPH/LFN-treated groups (p ≤ 0.05).
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No statistically significant difference was detected in a 50% tissue culture infectious
dose (TCID50) in treated mice 48 h after viral challenge compared to mock-treated mice
(Figure 5). This suggests that immunomodulatory mechanisms or antiviral effects in other
sites of the animal contributed to improved survival in treated mice rather than a direct
antiviral effect in the lungs.
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1/sigma-2 receptor ligand), or diphenhydramine (sigma receptor ligand) combined with lactoferrin.
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groups. Circles represent individual animals.

3. Discussion
3.1. Future of Coronavirus and COVID Drugs

Coronaviruses of concern have emerged periodically since 2002 [12–14]. Based on this
pattern, considering the continued lack of effective surveillance and prevention measures
in Asian wet markets [15], it is prudent to anticipate new lethal coronavirus outbreaks with
the potential to emerge in the near future (Figure 6). Although the infectious mechanism of
the next coronavirus has yet to be revealed, there is a significant likelihood that it may have
similar infectious advantages that were seen in SARS-CoV-2, such as the furin cleavage site.

It is important to plan ahead for drug development directed at the next emerging
coronavirus, but it is challenging given that the virus sequences and host cell receptors
are not known. Thus, in preparation, healthcare professionals may benefit by focusing
on mechanisms of action conserved in all coronaviruses rather than by targeting proteins
unique to SARS-CoV-2.
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Figure 6. Historical and potential emergence of lethal coronaviruses. This timeline illustrates the
sequential emergence of significant coronaviruses from 2002 to a projected window up to 2034. In
2002, SARS-CoV emerged, quickly reaching a peak of 400 cases per day, and was declared contained
by the WHO after 8000 total cases. MERS-CoV peaked at 150 new cases per day, with subsequent
outbreaks leading to 2500 total infections. SARS-CoV-2, causing the COVID-19 pandemic, had a daily
peak of 3.8 million cases, accumulating 674 million cases globally. The period from 2028 to 2034
represents the anticipated window for the potential emergence of a new lethal coronavirus. The
timeline underscores the cyclical nature of coronavirus outbreaks, highlighting the importance of
global preparedness for future occurrences.

3.2. Current Tools against COVID, and Their Pitfalls

Small molecule antivirals, monoclonal antibodies, and vaccines are available but have
demonstrated limitations in terms of effectiveness and safety. As SARS-CoV-2 continues
to mutate, the efficacy of current therapeutics is expected to drop. For example, vaccine
efficacy in terms of CFR reduction in the United States dropped from 90.5% pre-Delta to
72.7% following the emergence of Omicron [16]. Despite the decreasing overall COVID-
19 CFR, the high levels of vaccine specificity resulted in a quickly diminishing efficacy.
Vaccine manufacturers also struggle with long regulatory approval and manufacturing
timelines that prevent updated vaccines from reaching the population in a timely manner.
For example, the first SARS-CoV-2 vaccine updated for the Omicron variant was approved
for use in the United States by September 2022 [17], about 10 months after Omicron
emerged [18]. Additionally, drugs that bind in a highly specific manner to distinct viral
protein structures have resulted in the selection of virions with mutations that result in
evasion of antiviral effect.

Paxlovid (nirmatrelvir/ritonavir), a viral protease inhibitor drug combination, has
flaws that could jeopardize its widespread use. Paxlovid patients commonly experience
“COVID rebound”, a phenomenon in which SARS-CoV-2 replication will initially decrease,
but then return to normal, causing a rebound in symptomatic disease [19].

One theory behind the mechanism of Paxlovid rebound is that virions are pressured to
develop Paxlovid-resistant protease mutations, thus, creating Paxlovid-resistant strains of
SARS-CoV-2. While the theory has not been confirmed in clinical settings, two studies (one
preprint and one peer-reviewed) showed that SARS-CoV-2 treated with Paxlovid in vitro
resulted in mutations at the same protease positions [20,21]. These mutations resulted in
an 80-fold decrease in Paxlovid efficacy in vitro. Spontaneously occurring mutations of the
protease in circulating variants have also decreased Paxlovid efficacy [22], demonstrating
that regardless of the mechanism for gaining resistance (i.e., as a result of Paxlovid use or
spontaneous mutations), decreased efficacy would still occur if the antiviral drugs induced
the selection of resistant variants. Accordingly, protease inhibitors developed for viruses
like HCV and HIV have had their own troubles maintaining efficacy due to resistance [23].
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SARS-CoV-2-specific nucleotide analogs that function by inducing random viral mu-
tations can also result in onward transmission of mutated viruses. A 2023 article found
a specific class of phylogenetic branches that emerged in 2022 following the introduction
of molnupiravir [24]. Elevated G-to-A and C-to-T mutation rates were observed in these
branches, corresponding to the mechanism of action of molnupiravir [25]. These data
indicates that molnupiravir use, like Paxlovid, could result in new resistant SARS-CoV-2
variants exhibiting drug-induced mutations. While mutations caused by nucleotide analogs
usually harm viruses or leave them unaffected [26], it is possible that these mutations could
affect the efficacy of antivirals that bind to distinct viral protein structures (if such structures
are mutated by molnupiravir use).

The most exquisitely specific COVID therapies developed to date are likely to be
monoclonal antibodies. When newly developed, monoclonal antibodies exhibit dramatic
antiviral effects and acceptable safety profiles. However, the use of monoclonal antibodies
to treat COVID has halted because mutations in new variants resulted in a profoundly
decreased efficacy [27,28]. It seems unlikely that an existing monoclonal antibody will be
effective against a distinct new coronavirus outbreak.

Due to the ever-decreasing drug efficacy from drug-induced and spontaneous mu-
tations, continuing to develop variant-specific SARS-CoV-2 antiviral drugs may not be
the optimal approach. The strategies most likely to succeed against future SARS-CoV-2
variants, and other new coronaviruses yet to emerge, should inhibit the virus life cycle at
multiple steps common to known coronaviruses.

3.3. Repurposed Drugs That Inhibit the Coronavirus Life Cycle

Repurposing of FDA-approved drugs is a promising strategy for the rapid iden-
tification of treatments due to known safety profiles, robust supply chains, and short
deployment time frames. In an effort to identify drugs that can inhibit a SARS-CoV-2
infection, a landmark study generated a protein interaction map as the basis for target
identification and drug repurposing [29]. The study found 69 small molecule compounds
that could inhibit SARS-CoV-2 infection in vitro, 29 of which were FDA-approved drugs.

The study found that many pharmacological agents that displayed antiviral activity
were known or predicted ligands of the sigma-1 and sigma-2 receptors, which are ER mem-
brane proteins that participate in the modulation of cell stress. Coronaviruses, including
SARS-CoV-2, replicate in a membranous compartment derived from the ER (Figure 7) [30].
These compartments provide developing virions with an environment favorable to RNA
synthesis and protection from host cell immune functions [31]. Coronaviruses are known
to cause host cell ER stress and activate pathways to facilitate adaptation of the host cell
machinery to viral needs [5]. Virus-induced stress helps form the compartment within
cells conducive to SARS-CoV-2 replication. Drugs that bind sigma receptors are thought to
exert antiviral activity by inhibiting the formation of this intracellular compartment where
coronavirus replication occurs [6].

It was demonstrated that specific FDA-approved antihistamines exhibit off-target
sigma receptor binding activity and antiviral activity against SARS-CoV-2 [6]. For example,
clemastine, cloperastine, astemizole [29], hydroxyzine, azelastine, and diphenhydramine [7]
are common antihistamines with direct antiviral activity in vitro. Consistent with these data,
electronic health records showed that usage of antihistamines, including diphenhydramine,
was associated with a decreased incidence of SARS-CoV-2 positivity [7].

In this study, we showed that highly specific sigma receptor ligands protected ACE2-
transgenic mice from SARS-CoV-2-induced mortality.

Finding drug combinations with broad activity against coronaviruses is an important
approach to strengthen the toolkit for SARS-CoV-2 and future coronaviruses. For SARS-
CoV-2, all variants replicate using the same ER-derived compartment. The same is true of
all coronaviruses [30], therefore, increasing the likelihood that sigma-receptor-targeting
therapeutics will be effective against future variants and novel coronaviruses.
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3.4. Antiviral Drug Combinations for COVID

Antiviral combinations targeting highly conserved viral mechanisms have proven their
success in treating drug-resistant viruses. For example, HIV and hepatitis C patients are
treated with drug combinations instead of single drugs, with each drug targeting distinct
pathways involved in the virus life cycle [33,34]. For SARS-CoV-2, effective antiviral drug
combinations may consist of a sigma receptor-binding drug combined with an agent that
interferes with other aspects of the virus life cycle. The most rapidly employable antiviral
drug combination would include drugs that are economical, stable, and have a long history
of safety.

One such drug is diphenhydramine, an over-the-counter antihistamine that is a potentially
useful off-target sigma receptor ligand in an antiviral drug combination due to its wide
accessibility and long safety record [35]. Diphenhydramine has also been previously re-
searched for repurposing as an antiviral drug for filoviruses including the Ebola virus and
Marburg virus [36]. A drug that would complement sigma receptor ligands by targeting
a different part of the virus life cycle could result in a combination that is highly efficacious
against COVID. Another therapeutic option is lactoferrin, which is a large iron-binding
glycoprotein that is thought to have important properties in terms of antimicrobial activity
and modulation of the immune system (Figure 8) [37]. It is produced by secretory cells in
all mammals and is expressed at the highest level in breast milk. Lactoferrin is classified as
a “Generally Recognized As Safe” dietary supplement by the FDA and has been shown
to be safe in clinical studies in the context of neonates, children, and adults (Figure 8) [38].
Lactoferrin has been shown to display broad antiviral activity, including against rotavirus,
respiratory syncytial virus, herpes virus, and HIV [39,40]. A high-throughput screen
of 1425 compounds that sought to discover FDA-approved drugs with activity against
SARS-CoV-2 in vitro led to the discovery of lactoferrin as the most efficacious hit [8].
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Figure 8. Overview of the sources, properties, and therapeutic applications of lactoferrin. Originating
from neutrophils and epithelial cells, lactoferrin boasts a range of bioactivities, including antimicrobial,
anti-inflammatory, antioxidant, and immunomodulatory properties. The clinical utility of lactoferrin
spans from managing neonatal infections to mitigating specific symptoms in COVID-19 patients,
among other therapeutic applications.

Both diphenhydramine and lactoferrin are safe for oral consumption by adult humans.
Effective doses of diphenhydramine for its indicated use (allergy symptoms) are 25 to
50 mg every 4 to 6 h as needed, not to exceed 300 mg/day [35]. Lactoferrin does not have
established dosage guidelines but has demonstrated safety in clinical trials with doses of
up to 7200 mg/day for 8 weeks and 3000 mg/day for 12 months [41,42].

Lactoferrin has been tested in the clinic for the treatment of COVID because of its
antiviral activity, immunomodulatory properties, and safety profile. Such studies have
garnered highly varied and controversial results, ranging from no observed effect to
symptom resolution in all treated patients [43–47]. This variation can likely be attributed to
methodological differences, including but not limited to the delivery method (intranasal
spray or oral), type (liposomal or non-liposomal lactoferrin), endpoints, dosage, time of
dosage relative to illness onset, and in one study, use of anti-inflammatory adjuvants. With
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only a 30% reduction in viral replication in vitro, it is not expected that treatment solely with
lactoferrin would translate to clinical success in SARS-CoV-2 patients. However, combining
lactoferrin with diphenhydramine has been shown in vitro to significantly improve its
antiviral efficacy against SARS-CoV-2 [6].

An investigational antiviral drug combination effective against SARS-CoV-2 in vitro
has been described in which each component is an approved agent inhibiting distinct
mechanisms of the virus life cycle. Diphenhydramine, an off-target sigma receptor ligand,
is thought to exert antiviral activity by inhibiting the host cell stress response and thereby
inhibiting the formation of the ER-derived coronavirus replication compartment. Diphen-
hydramine was combined with lactoferrin which is thought to exert indirect antiviral
activity via immunomodulation as well as direct antiviral activity by binding heparan
sulfate proteoglycans (HSPGs) [45] and angiotensin-converting enzyme 2 (ACE2) [48], the
host cell receptors of SARS-CoV-2 (Figure 9) [45].
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Figure 9. Lactoferrin binds ACE2, the host receptor for SARS-CoV-2. A model is shown in which
lactoferrin (yellow) interacts with ACE2 (cyan) receptor, hindering the binding of the SARS-CoV-2
spike protein (magenta) to ACE2. This mechanism suggests a reduction in the ability of the virus to
infiltrate the host cell.

Diphenhydramine and lactoferrin were tested in combination to determine any en-
hanced antiviral activity. Independently, diphenhydramine and lactoferrin reduced SARS-
CoV-2 replication by approximately 30% in vitro. Strikingly, in combination, diphenhy-
dramine and lactoferrin exhibited a synergistic effect in vitro, resulting in a 99% reduction
in SARS-CoV-2 replication in monkey and human cell lines (Figure 10) [6]. In vivo, we
showed that ACE2-transgenic mice challenged with SARS-CoV-2 demonstrated signifi-
cantly improved survival with sigma receptor ligand treatment.

It follows that the in vivo results in this study of SARS-CoV-2-challenged ACE2-
transgenic mice treated with the diphenhydramine/lactoferrin combination exhibited the
slowest decline in mass compared to any other group, nonzero survival rates compared to
untreated mice, and a rapid rebound in mass in surviving mice. However, a direct antiviral
effect was not observed in vivo. This may be explained by the effects of the combination
on immunomodulation.
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Figure 10. Synergistic inhibition of SARS-CoV-2 replication by a combination of non-prescription
drugs. Vero E6 cells were subjected to infection with a SARS-CoV-2 isolate and subsequently treated
with either diphenhydramine, lactoferrin, or a combination of both. The replication efficiency was
evaluated by quantifying the SARS-CoV-2 genomic presence using PCR. Adapted with permission
from Ref. [6]. 2021, MDPI.

COVID is a multiphasic disease in which initial symptomatic manifestations are caused
by the “viral phase”, and later symptomatic manifestations, including mortality, are caused
by the “inflammatory phase”, which includes lethal cytokine storms [49]. Thus, it is posited
that the protective effects of the diphenhydramine/lactoferrin combination observed in
this study are mediated by the prevention of lethal inflammation.

Additionally, therapeutic effect may have been achieved by direct antiviral effect in
non-lung sites of the animal, or antiviral effect after the viral phase of the disease which
may not have been observed at the time of the predetermined endpoint study.

4. Materials and Methods
4.1. Virus Culturing and Growth

SARS-CoV-2 work was performed in a biosafety level 3 (BSL-3) lab using practices and
procedures approved by the University of Florida Institutional Biosafety Committee. SARS-
CoV-2 strain UF-1 was obtained from a patient at University of Florida Shands Hospital
(Gainesville, FL, USA) as previously described [6,50]. SARS-CoV-2 was cultured in Vero
E6 cells grown in DMEM + 2% heat-inactivated fetal bovine serum (FBS) with PenStrep at
37 ◦C in a 5% CO2 environment also as previously described. Vero E6 cells were obtained
from ATCC (Manassas, VA, USA). Viral stocks were harvested and quantified using TCID50
dilution titering in Vero E6 cells.

4.2. Sigma Ligands and Other Chemicals Used in This Study

Sigma ligands were produced in the McCurdy lab at the University of Florida (Gainesville,
FL, USA) as previously described [51–54]. Lactoferrin at 95% purity from cow milk was
kindly donated by Milk Specialties Global (Eden Prairie, MN, USA). Diphenhydramine
HCl at 98% purity was obtained from Spectrum Pharmaceuticals (Boston, MA, USA).

4.3. Animal Challenge Experiments

Animal work was carried out in the Animal Biosafety Level 3 (ABSL3) laboratory and
was approved by the University of Florida Institutional Animal Care and Use Committee
(IACUC) under IACUC protocol number 202111322. Six- to eight-week-old female K18-
hACE2 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). K18-
hACE2 mice are transgenic for the human ACE2 receptor and express it from the keratin
18 promoter to direct ACE2 expression to epithelia including airway epithelia. The mouse
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strain has been extensively characterized as a SARS-CoV-2 animal model, as their tissue-
wide expression of human ACE2 ensures fulminant acute infections [10,11,55]. Mice were
provided food and water ad libitum and housed in isolator caging. On the day of the
challenge, the mice were weighed and then anesthetized by intraperitoneal (IP) injection of
100 µL of ketamine/xylazine (87.5/12.5 mg/kg) in saline. Fully anesthetized mice were
challenged by intranasal instillation with 25 µL containing 2.5 × 104 plaque-forming units
(PFU) of SARS-CoV-2. Each day thereafter, mice were observed for moribundity, and
the mass of each mouse was recorded. Treatments were delivered by an IP injection of
the drugs suspended in 100 µL of saline, or saline alone. Treatments were given once or
twice daily depending on the experiment, and the doses were titrated based on previously
reported drug pharmacokinetic profiles [51,53]. Mice were determined to be moribund if
their mass fell below 70% of their starting mass and were euthanized with carbon dioxide.

4.4. Modeling Interactions between SARS-CoV-2 Spike Protein and Ligands

The model of the SARS-CoV-2 spike protein binding to ACE2 is based on the crys-
tal structure of the SARS-CoV-2 spike protein complexed with ACE2 [56] (PDB 6M17).
A structural model of ACE2 bound to lactoferrin was generated by HDOCK [57] using
crystal structures of ACE2 [58] (PDB 1R42) and bovine lactoferrin [59] (PDB 1BLF).

5. Conclusions

The current toolkit of COVID-specific antivirals is losing efficacy over time. Thus,
further development of highly variant-specific antiviral drugs could be questioned. One
option is to phase out currently available post-exposure COVID antiviral drugs due to the
risks outlined in Figure 11.

There are benefits to updating the COVID antiviral toolkit with broader-spectrum
antiviral combination drugs targeting multiple distinct mechanisms in the life cycle that are
shared by all coronaviruses. This strategy will likely increase drug efficacy while decreasing
the risk that drug-induced mutations, natural mutations, or new coronaviruses will render
such an antiviral combination ineffective. Ideally, new antiviral drug combinations will
function by making host cells nonpermissive to replication, a strategy that has proven to be
effective in preventing antiviral resistance [60].

Sigma receptor ligands offer a promising approach to host-targeted antiviral activity
against coronaviruses by inhibiting the formation of the coronavirus replication complex
from the host endoplasmic reticulum. SARS-CoV-2-challenged ACE2-transgenic mice
demonstrated improved survival when treated with highly specific sigma receptor ligands.
Mice that survived were shown to rapidly rebound in mass following treatment. The sigma-
2 receptor ligand CM398 showed a stronger effect than the sigma-1 receptor ligand AZ66.

A current candidate fitting these criteria most likely to be effective for a new coro-
navirus antiviral combination may be the diphenhydramine/lactoferrin combination
(Figure 12). Mice treated with this combination exhibited the slowest decline in mass
following the challenge with SARS-CoV-2, improved survival rates, and rapid rebound in
mass in surviving mice. Despite the lack of a statistically significant direct antiviral effect
in the lungs of mice, improved outcomes were demonstrated, likely due to the previously
outlined immunomodulatory effects of the combination.

Both components of the combination exhibit direct antiviral activity in vitro as well as
protective effects in vivo, are FDA-approved, economical, and have long histories of safety.
Clinical investigation of the diphenhydramine/lactoferrin combination is warranted to de-
termine benefits for COVID patients. The collection of clinical data pertaining to the efficacy
or absence thereof resulting from the employment of the diphenhydramine/lactoferrin com-
bination would be significantly advantageous if communicated by physicians. Such data
could help to further inform coronavirus drug development strategies while potentially
enabling the widespread employment of the diphenhydramine/lactoferrin combination if
proven effective in clinical settings.
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Figure 12. Discovery of synergy between lactoferrin and diphenhydramine against SARS-CoV-
2. Utilizing high-throughput screening and analysis of electronic health records, both lactoferrin
and diphenhydramine were identified as potential antiviral agents. When combined, these drugs
demonstrate a potentiated, synergistic effect against SARS-CoV-2.
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