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Abstract: The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications
cause at a younger age. This propels the constant search for better diagnostic, treatment, and man-
agement strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential
of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular
interest are (a) their regenerative capacity, which depends on their “origin”, and (b) their “content”,
which determines the cell communication and crosstalk they influence. Other functional capacities,
including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in
insulin secretory defects or β-cell death under normal metabolic conditions, immunomodulation,
and promotion of regeneration, have also garnered significant interest. Exosome “specificity” makes
them suitable as biomarkers or predictors, and their “mobility” and “content” lend credence to
drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of
exosomes and their established as well as novel contributions at various pathways in the onset and
progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting
pancreatic β-cells and immune cells, which is partially mediated by exosomes. We also examine the
potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The
collective landscape presented is expected to help identify how a deeper understanding of exosomes
(and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the
very course of T1D and its complications.
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1. Introduction

The term “Exosomes” was coined by Johnstone et al. [1]. Exosomes were initially seen
as garbage released by cells until 1996, when they were identified as contributors to cell-to-
cell communication [1,2]. Cell communication is fundamental to achieving perception and
response to stimuli (mechanical/chemical/hormonal/neuronal), maintaining cell/tissue
homeostasis, regeneration, repair, and development, and immunity [3]. Prior to this
observation, hormones, immune cells, and neurons were considered the sole key players in
cell-to-cell communication. However, developments in nanotechnology helped isolate and
characterize exosome as the fourth key player [2]. Following the observation that Exosomes
participates in cell-to-cell communication, an antigen-presenting role was also identified
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(Raposo et al., 1996 [4]), suggesting a potential role in autoimmune regulation related
to errors in communication. Errors in communication play a key role in derangement
in cell/tissue homeostasis and the pathogenesis of a wide range of diseases, including
type-1 diabetes (T1D) as well as T1D complications [5,6]. After their release from cells,
exosomes transfer lipid, protein, and nucleic acid cargo from cells, mediating interaction
with receptors available on the surface of target cells. As such, it is highly plausible that
exosomes play an integral role in affecting glucose and lipid metabolism in T1D, insulin
delivery, β-cell function, and gene delivery. The prevalence of morbidity and mortality due
to the development of T1D complications (hypoglycemia, ketoacidosis, microvascular, and
macrovascular complications) are highly related to the severity of impairments and age
at onset (Table 1, Figure 1) [7–14]. Interdisciplinary exosome research has demonstrated
the importance of exosomes across disease states. For example, exosomes from prostate
cancer patients undergoing radiotherapy, chronic atrophic gastritis, vector-borne diseases,
and others have emerged as candidate biomarkers for monitoring treatment response
and chronic atrophic gastritis. Thus, exosome production, biogenesis, and release routes
represent a variety of roles in cellular processes and have the capacity to act as therapeutic
agents, promoting a variety of functions and employing indicators or therapy options for
several diseases, far from the perceived “junk.”

Table 1. The Relative Risk for the Prevalence and 4-Year Incidence of Macrovascular complica-
tions with Presence of Proliferative Diabetic Retinopathy (PDR; Adjusted for Age) in the Wisconsin
Epidemiologic Study of DR.

Relative Risk RR (95% CI)
Myocardial
Infarction Stroke Amputation of

Lower Extremity
Prevalence 3.5 (1.5–7.9) 2.6 (0.7–9.7) 7.1 (2.6–19.7)

T1D
Incidence 4.5 (1.3–15.4) 1.6 (0.4–5.7) 6.0 (2.1–16.9)

T2D on insulin
Prevalence 0.8 (0.4–1.4) 1.2 (0.6–2.4) 4.2 (2.3–7.9)
Incidence 1.2 (0.5–3.4) 2.9 (1.2–6.8) 3.4 (0.9–13.2)

T2D not on
insulin

Prevalence 0.3 (0.0–2.4) 2.9 (0.9–9.4) 5.2 (0.6–45.0)
Incidence 1.5 (0.2–12.5) 6.0 (1.1–32.6) 7.0 (0.8–64.4)

Adapted from: Klein R et al. [10], Diabetes Care 1992; 15(12): 1875–1891.
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Despite significant emerging research understanding the mechanistic underpinnings
of exosomal biogenesis, there are still unanswered questions related to the role of exosomes
in T1D. Exosomes helped answer burning questions at the immuno-molecular and cellular
levels. How were nucleic acids and proteins from parent cells able to have a paracrine
and even an endocrine effect on target cells? How were they able to remain stable and
escape the DNase, RNase, and proteinases present in body fluids or media? The mobility
of the exosomes and their clathrin-coated lipid-bilayer cum protein membrane provided
the answer [5,6]. Therefore, could a better understanding of exosomes and the crosstalk of
their cargo represent utility for prevention, halting, or changing the course of T1D and its
complications via early diagnosis, effective treatment, and management, thereby improving
outcomes? For example, exosomes promote both health and disease depending on their
content, which in turn varies with the cell type and environmental conditions. Through
interactions of the vesicles themselves or their cargo, could content be engineered, the
biogenesis of exosomes possessing a desired attribute be upregulated, or RNA interfer-
ence (RNAi)-based therapy using the exosomes as vehicles be used to alleviate, trigger,
attenuate, diagnose, or treat? More importantly, where are we in terms of the physio-
logical link between exosomes and T1D? This review will attempt to collate, be concise,
and present studies that have attempted to link exosomes and T1D and their potential for
therapeutic use.

The review encompasses recent literature using a comprehensive electronic literature
search. The search engines used were Google, Google Scholar, Medline/Pubmed, Exocarta.
The criteria used to select journal publications for the present study were that the studies
should target T1D and clearly mention the term exosome(s) or include the term extracellular
vessicles (EVs) in the size range 40–100 nm, and that exosomes were characterized using
standard markers. Articles on exosome(s) and other specific types (at times referred to as
Type-3 A to H) of diabetes/pancreatic cancers/whole pancreas/islet transplantation/stem
cell therapy were not included in the present study [3]. Original articles (experimental,
clinical trials) and reviews that matched the key words, were in the English language, were
available in full text, and were free were included in the review as relevant. We translated
one review article that was in Chinese using Google Translate as it was pertinent to the
current topic [15]. To ensure a comprehensive review of relevant literature, key words
used included exosome(s) and β-cells, exosomes and islets, and exosome(s) and T1D. The
particulars of the free articles available in full text based on the keywords used in our
search were as follows: exosome + β-cells: Full texts: 44 (Free: 32); Clinical Trial; Review:
18 (Free: 15); exosome + Islets: Full texts: 55 (Free: 34); Clinical Trial:-; Review: 12 (Free:6);
exosome+ T1D: Full texts: 54 (Free: 37); Clinical Trial:-; Review: 16 (Free: 10). In certain
instances, articles that were relevant to the current paper yet covered T1D and T2D, or
work on islets and stem cells, were included in our study. Pertinent articles on exosome
biogenesis and function, the current epidemiology of T1D and T2D, and their complications
were also included as appropriate.

Rapid Glance at the Statistics on Type 1 Diabetes (T1D) [7–14].

• Impairment/Hallmark: Insulitis, Autoimmune Response, Progressive β-cell destruc-
tion resulting in frank hyperglycemia, Cytokine network.

• Worldwide estimates of annual incidence of T1D was 128,900 new cases (<20-year
age-groups) with corresponding prevalence of 1,110,100 for a Total Population (1000s)
of 2,582,088.

• Proportion of youth in the T1D Exchange Clinic Registry in 2013 failing to meet the
American Diabetes Association (ADA) and International Society for Pediatric and
Adolescent Diabetes (ISPAD) targets were: HbA1c (79%), Systolic and diastolic blood
pressure (SBP/DBP) (22%), LDL-cholesterol (LDL-C) (38%), Triglycerides (TG) (11%)
and Body mass index (BMI) (31%)

• The Diabetes Control and Complications Trial (DCCT) which randomized people
with T1D to receive intensive or standard insulin therapy; after 21 months 216 of
817 subjects had already experienced a severe hypoglycemic episode.
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• Prevalence of Diabetic Retinopathy (DR) in the Wisconsin Epidemiologic Study of
DR (WESDR) was 17% (<5 years duration of T1D) and 98% in those with (≥15 years
duration of T1D)

• Elevated albumin excretion 50% in T1D
• Prevalence of hypertension in youth with T1D: 4–7% compared to those without T1D:

1–5%
• In the SEARCH for Diabetes in Youth Research Group prevalence of diabetic kidney

disease was 6%, arterial stiffness 11% and hypertension 10% in youth with T1D (51).
Prevalence of overweight in T1D (age 3–19) was 22.1% compared to their nondiabetic
peers 16.1%)

2. Exosomes

Exosomes are 30–200 nm extracellular vessicles (EVs), density: 1.13–1.19 g/mL, se-
creted by all cell types, with a clathrin-coated lipid-bilayer cum protein membrane, im-
permeable to propidium iodide, formed via endocytosis [16–20]. Exosomes encapsulate
a diverse array of biomolecules, including proteins, lipids, nucleic acids (such as microR-
NAs and messenger RNAs), and metabolites. The cargo encapsulated within the exosome
is selectively sorted, reflecting the cell of origin’s physiological state. Currently, bone
marrow-derived mesenchymal stem cells (MSCs) and placenta tissue-derived cells are the
primary cell sources of exosomes for commercial products. In comparison, bone marrow-
derived MSCs have a much higher safety profile and yield higher-quality exosomes that
deliver a more favorable profile of signaling factors [21]. Exosomal composition and con-
centration depend on (a) their parent cell type, (b) the microenvironment (normal, stressful
(hypoxic/ER stress/hyperglycemic/ischemic), and (c) tumorigenic versus non-tumorigenic
versus normal status [16,17,21–29]. The unique characteristics of exosomes, including
their ability to encapsulate diverse cargo and traverse biological barriers, have sparked
considerable interest in their clinical applications. Exosomes hold promise as non-invasive
biomarkers for disease diagnosis, prognosis, and monitoring due to their stability in bodily
fluids. Additionally, exosomes are being explored as vehicles for targeted drug delivery, as
they can be engineered to carry therapeutic payloads and exhibit a propensity for homing
to specific cell types.

Standard methods to isolate and purify/concentrate exosomes include ultracentrifuga-
tion (100,000–200,000× g), filtration, density gradient immunoprecipitation size exclusion
chromatography, and commercial kits [30–32]. While quantification and size estimation of
exosomes are done via dynamic light scattering, nanoparticle tracking analysis, and surface
plasmon resonance [30–32], these methods represent acceptable methodological approaches
in the growing interest in identifying exosomal biomarkers. Among the membrane and
transmembrane proteins, major histocompatibility complex (MHC) molecules, tetraspanins,
adhesion molecules, and metalloproteinases are exosome sub-populations. Exosomes are
the subpopulations of EV that test CD9-, CD63-, and CD81-positive (tetraspanins) [20–22].
Exosomal markers include those associated with membrane transport and fusion (Rab
GTPases, Annexins), tetraspanins (CD63, CD9, and CD81), and MVB-biogenesis-associated
proteins (Alix and TSG101) [33].

3. Exosome Biogenesis, Secretion, and Communication/Interaction with Target Cell/s

Briefly, the early endosome (Figure 2) is formed by inward budding of the plasma
membrane. It in turn pinches inward, forming many intraluminal vesicles (ILVs) to trans-
form into a multivesicular body (MVB) [34]. The highly specific cargo sorting within the
ILVs is driven either by endosomal sorting complexes required for transport (ESCRT: 0,
I, II, and III) or by the ESCRT-independent ceramide-requiring pathway [5,34–40]. If the
MVB fuses with a lysosome, it is digested. However, if energy-dependent fusion with the
plasma membrane with the aid of Rab GTPases and SNARE proteins occurs, releasing the
ILVs into the extracellular medium, these ILVs are termed exosomes [5,36,41–45] (Figure 2).
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Circulating endosomes have a half-life ranging from 2–5 min to three hours in certain
cases [33,46–48].
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Exosomes influence cell-to-cell communication locally and systematically, thus exhibiting
both a paracrine and endocrine effect as they are carried by the environment into which they
are secreted (media, urine, blood, milk, plasma, lymph, and cerebrospinal fluid) [24,25,49].
This enables them to act as protective shuttles, carrying their precious cargo to the target
cells, which include growth factor receptors, transcription factors, regulatory proteins, and
functional RNA [5,42,49–52]. This cargo is protected from DNAses and RNAses by the
exosomal membrane, which in turn influence/change the behavior of the target cell, either
promoting health or activating pathogenesis following fusion [5,29,33,43,52–61]. Exosomes
are also capable of modifying target-cell phenotypic features [62,63] via the genetic material
they contain following fusion with the target cell via multiple mechanisms (Figure 2),
i.e., receptor-ligand interactions/direct fusion/endocytosis [64].
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(i) The exosome directly fused with the plasma membrane of the target cell, releasing its
contents into the cell [65].

(ii) Ligand (exosomal membrane)—receptor (target cell membrane) binding triggers
a cascading downstream effect [36,66–69].

(iii) Receptor-mediated endocytosis of the exosome or fusion with the plasma mem-
brane [33,36,66,70].

Horizontal transfer of genetic material is brought about following fusion with endo-
somes to affect entry into the cytosol of target cells. Once entry is gained into the target cell,
phenotypic and behavioral changes are affected by (i) direct stimulation via surface-bound
ligands, (ii) the transfer of activated receptors, and (iii) epigenetic reprogramming following
the transfer of functional proteins, lipids, and RNAs to the target cell [71].

4. Exosomes Represent a Potential Missing Link in T1D Therapy

T1D is a complex disorder emanating from the interplay of a myriad of variables,
both endogenous and exogenous. Indeed, the use of genome-wide association studies has
begun to enhance our understanding of the potential genetic basis of T1D, with ~60 risk
regions identified. Recent estimation suggests that approximately half of the risk factors
for T1D are genetic (Cerolsaletti, 2019 [72]), extending beyond the notion that susceptibility
to developing T1D is influenced by carrying specific high-risk haplotypes of class II human
leukocyte antigens (HLA). Notwithstanding, 50% of the risk therefore includes an intricate
interaction and homeostatic regulation integrating environmental factors, collectively
inducing β-cell stress as the mechanistic underpinning. It is well established that the
mechanisms of T1D are initiated significantly prior to clinical manifestation. The prevailing
dogma suggests T1D is a complete loss of functional β-cells; however, some T1D patients
can produce insulin; nevertheless, the functional β-cell mass is still decreased to the level of
insulin dependency. As is well-reported in type 2 diabetes, T1D also may have a “pre-T1D”
phase, yet as the immune-mediated destruction of β-cells amasses, the autoimmunity
associated with T1D initiates an uncompensated chronic inflammation, further promoting
disease progression, β-cell apoptosis, and ultimately T1D. The past century has been met
with significant treatment and management options for T1D.

Recently, transplantation of the pancreas or islet β-cells to prevent or slow compli-
cations and progression has evolved. As an alternative to pancreas transplantation, islet
β-cell transplantation, in which donor islets are infused into the liver via the portal vein,
has also emerged as a therapeutic strategy. Islet transplantation does not replace the entire
β-cell mass; it is less invasive than a pancreas transplant while still providing the potential
to restore normal glycemic function, re-establish hypoglycemia awareness, and minimize
severe hypoglycemic responses. As these advances continue to emerge, there are several
pieces of evidence that indicate that exosomes have utility in the preservation and survival
of pancreatic islet cells prior to complete destruction.

5. Exosomes in Autoimmune Type-1 Diabetes (T1D)

Ironically, positivity to glutamic acid decarboxylase (GAD65), tyrosine phosphatase-like
protein (IA-2), proinsulin/insulin (IAA), and zinc transporter 8 (ZnT8) (autoantibodies) can
signal a risk for T1D, yet many testing positive neither develop insulitis nor T1D [73–75].
T1D develops only when balance and control within the innate and acquired immune
systems are destroyed following exposure to exogenous triggers (environment, diet, viruses,
infections, toxins) and/or epigenetic changes induced [73–75]. In a recent study, Horiguchi
et al. reported exosome degeneration in T1D adipose-derived stem cells [76].

Due to molecular mimicry between β-cell auto-antigens and viral antigens, on expo-
sure, autoreactive T-lymphocytes are activated, unleashing a cascade of events culminating
in insulitis. Briefly (Figure 3), during early insulitis, local antigen-presenting cells (APC)
are activated, which recruit CD4+ helper T-cells from the pancreatic lymph nodes, which re-
lease chemokines/cytokines [73–75]. CD4+ helper T-cells induce APCs to secrete cytokines
and nitric oxide and to induce the endothelial cells to secrete chemokines, activating CD8+
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cytotoxic T-cells (Figure 3) [73–75]. β-cells secreting chemokines in response to a viral
infection or cytokines further stimulate and activate immune cells, resulting in Fas path-
way and granzyme/perforin system (mitochondrial pathway) activation, which induces
β-cell apoptosis. In addition, the cytokines interleukin-1β (IL-1β), tumor necrosis factor α
(TNFα), and interferon γ (IFN-γ) directly bind to their respective β-cell surface receptors,
and apoptosis is induced (Figure 3) [73–75].
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Among several theories of how exosomes participate in immunomodulatory and/or
communication pathways, exosomes from MIN6 cells and islet-associated MSC–like cells
activate T cells and B cells in prediabetic non-obese diabetic (NOD) mice [59,77–81]. Au-
toantigen presentation to activate T lymphocytes via exosomes is either (a) indirect: first via
APCs activating naïve T cells followed by APC co-stimulatory molecules activating T lym-
phocytes, (b) the exosome is engulfed by APC, following which its complex peptide/MHC
is exposed, or (c) direct activation [82].

Autoantigen GAD65, IA-2, and proinsulin/insulin containing primary human and
rat islet-derived exosomes activated APCs with the T1D DRB1*0401 haplotype. In parallel,
Th1 cytokines IL-1β and IFN-γ secreted by inflammatory cells induced ER stress in β-cells,
which in turn released the proinflammatory ER chaperone proteins calreticulin, Gp96, and
ORP150 that promote phagocytosis [59,77–81]. ER stress-inducing cytokine treatment of
mouse islets increased proinflammatory ER chaperone proteins in INS-1E cells [59,77–81].
Exosomes from T- lymphocytes containing microRNAs (miR-142-3p, miR-142-5p, and
miR-155) when transferred to rodent and human pancreatic β cells triggered genes coding
for chemokines (Ccl2, Ccl7, and Cxcl10) in pancreatic β-cells, promoting apoptosis and
defects in insulin secretion following activation of nuclear factor κB (NF-κB) [82]. The
expression patterns and functions of microRNA were similar between human umbilical
cord blood-derived MSC and MSC-derived exosomes [83]. In addition to microRNAs,
plasma-derived exosomal circular RNA, long non-coding RNA, and messenger RNA all
play roles in T1D pathogenesis and need further exploration [84–86].

6. Exosomes in Health, and T1D Prevention as Therapeutics

Exosomes promote cell/tissue health by regulating oxidative stress, apoptosis, prolif-
eration, angiogenesis, inflammatory responses, and tissue repair [87,88]. One example of
the dualistic property of exosomes is that low cytokine concentrations stimulated neutral
ceramidase (NCDase) release, preventing the concentration-dependent effect of inflam-
matory cytokines apoptosis via the NCDase-S1P-phosphate-S1P receptor 2-dependent
mechanism. At high cytokine concentrations, NCDase release was inhibited in rat β-cell
line INS-1 cells, and apoptosis occurred [89].

An example of the dualistic immunomodulatory property of the exosome is that MSCs-
derived exosomes from healthy donors (from bone marrow) suppress TNF-α and IL-1β (pro-
inflammatory factors) but increase TGF-β (anti-inflammatory factors) in vitro [15,74,80,90].
MSCs-derived exosomes also induce T-helper type-1 (Th1) cells to convert to T-helper
type-2 (Th2) cells, thus preventing their conversion into interleukin-17-producing effecter
T-cells (Th17) [15,74,80,90]. Exosomal MSCs also inhibit autoimmunity, preventing T1D by
inhibiting Th1 and Th17 cells but increasing the expression of IL-10, an immunosuppressive
cytokine [15,74,80,90]. Exosomes derived from adipose tissue-derived MSCs have shown
ameliorative effects on T1D by increasing the population of regulatory T-cells and their
products without altering the proliferation index of lymphocytes [91]. This makes them
more effective and practical candidates. In terms of the potential of exosomes in T1D
treatment, exosomes from β-cell lines increased survival time at high doses (H-STZ, 200
mg/kg) STZ-mice alleviated glucose intolerance in low doses (L-STZ, 140 mg/kg). STZ-
treated C57BL/6J mice showed increased CD31 expression and decreased macrophage
infiltration, indicative of their neovascularization and immuno-modulatory ability [92].

The crosstalk between islets and endothelial cells was studied bi-directionally. Hu-
man islet exosomes containing angio miRs (miR-27b, miR-126, miR-130, and miR-296) and
mRNAs of genes associated with angiogenesis (eNOS and VEGFa) when incubated with
islet endothelial cells (IEC) induced the expression of pro-angiogenic genes (angiopoietin1,
VEGFa, VEGFR1, and VEGFR2) while repressing anti-angiogenic thrombospondin1. They
prevented apoptosis by promoting anti-apoptotic factors (BCL-2) while repressing pro-
apoptotic Bcl-2 agonists of cell death (BAD) [93]. The supernatant of human endothelial
progenitor cells (EPC) promotes insulin release and β-cell survival, induces IEC prolifer-
ation and migration, and facilitates the formation of capillary-like structures called islet
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grafts [94]. Sharma et al. [83] discovered that in T1D mice, the MSC-derived exosomes
attenuated hyperglycemia and pancreatic injury while promoting the proliferation of islet
cells and insulin production. However, the relevant pathways were different from those ob-
served in MSC therapy. Sabry et al. [95] treated T1D rats with either MSCs or MSC-derived
exosomes. To assess the regeneration of pancreatic beta cells, insulin, pancreatic and duode-
nal homeobox 1, Smad 2, Smad 3, and transforming growth factor beta (TGFβ) genes were
measured. Histopathological and immune-histochemical examinations were performed to
confirm pancreatic tissue regeneration. The results indicated that MSC-derived exosomes
demonstrated superior therapeutic and regenerative effects compared to MSCs alone [95].

Among studies on the biomarker potential of exosomes, one study by Lakhter et al. [96]
evaluated the biomarker potential of miR-21-5p, found to be elevated and resulting in
increased β-cell apoptosis in rodent and human models in vitro, in vivo, and via a clinic
study [59,96–101]. For the in vitro studies, β-cell lines (MIN6 and EndoC-βH1) and human
islets were exposed to cytokines (IL-1β, IFN-γ, and TNF-α) to mimic autoimmune T1D.
The supernatant was assayed for miR-21-5p levels and showed a 1.5 to 3-fold increase in
miR-21-5p levels with a 3 to 6-fold increase in EV miR-21-5p. NOD mice that spontaneously
develop T1D were used for in vivo studies from 8-weeks until the onset of diabetes, and
serum was collected on a weekly basis [96]. A positive correlation was found between EV
miR-21-5p levels and the onset of diabetes in NOD mice, especially three weeks prior to the
onset of diabetes [96]. For the clinic study, sera from 19 children with T1D and 16 healthy
controls were evaluated, and levels of miR-21-5p from serum EVs were found to be 3-fold
higher than in nondiabetic individuals, while total serum miR-21-5p was lower in subjects
with T1D [96]. Long non-coding RNAs (lncRNAs) involved in transcriptional, epigenetic,
and post-transcriptional gene regulation functions were upregulated in pre-diabetic NOD
mouse islets and in exosomes of MIN6 cells following pro-inflammatory cytokine pre-
treatment. Exosomes have also been identified as biomarkers of diabetic complications
in T1D. Kalani et al. [102] reported that urinary exosomal Wilm’s tumor-1 protein in T1D
patients could serve as an early non-invasive marker for diabetic nephropathy. In addition,
C5b-9 levels in serum astrocyte-derived exosomes may be used as a marker of cognitive
impairment in T1D patients [103].

Among studies on complications due to T1D, exosomes from human urine-derived
stem cells prevented T1D nephropathy via the transfer of transforming growth factor-
β1, angiogenin, and bone morphogenetic protein-7 [104]. Ebrahim et al. [105] showed
that MSC-derived exosomes significantly improved diabetic nephropathy by inducing
autophagy through the mechanistic target of the rapamycin (mTOR) signaling pathway in
a T1D rat model.

In terms of studies attempting to prevent T1D onset, in a landmark study, Guay
et al. retraced the pathway via which β-cell apoptosis and diabetes occurred in NOD
mice [82,106–108]. They found that miR-142-3p, miR-142-5p, and miR155, which are
generally at lower levels under normal cell homeostasis in β-cells, upon their transfer by
exosomes from T lymphocytes, induced recipient cell death. Pathway analysis indicated
that this transfer in turn upregulated genes involved in cytokine and chemokine signaling
(Ccl2, Ccl7, CXCL10, and IFN-γ) and eosinophil-associated ribonuclease family members
(Ear1, Ear2, and Ear12), which in turn was associated with a nuclear translocation of
NF-kB [82]. Similar results were also observed in human islets exposed to exosomes
released by activated human CD4+ T cells. Inactivation of the proapoptotic microRNAs
(miRNAs) miR-142-3p, miR-142-5p, and miR-155 via the injection of a “miRNA Sponge”
they engineered into four-week-old NOD mice prevented exosome-mediated apoptosis
and in turn prevented T1D development [82].

Can investigation of exosomal interactions related to complications due to T1D be
applied to type 2 diabetes (T2D)? Indeed, exosomes induce glucose and lipid metabolism
and uptake and significantly impair gluconeogenic. Further, the cell-to-cell interactions
adversely affect autophagy, thereby impairing the therapeutic restoration of homeostatic
processes in T2D. In T2D, the progressive damage to the millions of β cells is adversely
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affected by T2D (and obesity). The interesting point is the β cell mass in obese individuals.
In the T2D compensatory hyperinsulinemic, β cell destruction begins to parallel that of
T1D over time. Accordingly, insights into the contribution of exosomes in improving T2D
complications, including nephropathy and cardiovascular disease, may also be an area of
exciting potential.

Recent investigations have revealed that exosomes induce AMP-activated protein
kinase (AMPK) to stimulate autophagy, promoting glucose uptake and lipid metabolism
in diabetic rats [29], and AMPK has interactions with the mammalian target of rapamycin
(mTOR) signaling in autophagy regulation, as observed in other animal models of in-
flammation associated with cardiovascular anomalies [97]. Cardiomyocyte apoptosis and
necrosis underlie cardiovascular complications in both T1D and T2D. Cardiomyocytes
demonstrate a capacity in the synthesis and secretion of exosomes that promote glucose
transport via mediating the levels of GLUT1 and GLUT4 to elevate glucose uptake. In turn,
exosomes secreted by cardiomyocytes promote lactate dehydrogenase (LDH) activity to in-
duce the glycolytic process of reducing glucose levels. Collectively, accumulating evidence
supports a relationship between exosome and beta-cell function loss in younger-onset T1D;
the degree of insulin secretion in T2D, with potential therapeutic regenerative application
in childhood-onset long diabetes duration; and relationships between C-peptide levels
and circulating miRNA. Further exosomes exhibit transporters involved in communication
in glucose uptake and enzymes in impaired gluco- and lipid-regulatory conditions that
overlap with T1 and T2D.

Potential future applications of exosomes as nanotherapeutics. The pathogenesis of
T1D involves a complex crosstalk between insulin-secreting pancreatic β-cells and immune
cells, which is partially mediated by exosomes. β-cells secrete several exosomal miRNAs
that stimulate monocytes and macrophages. In turn, signals from antigen-presenting
cells activate T cells, leading to the synthesis and release of several miRNAs that induce
apoptosis in β-cells. This vicious cycle is terminated only after the destruction of most of
the β-cell mass. As such, the miRNA component represents a potential key contributor
to the dialogue between pancreatic endocrine cells and the immune system. Although
the function of many of the miRNAs have not yet been elucidated, data to date suggest
potential contributions to pathogenic mechanisms during the development of T1D [82,109].
Crosstalk (i.e., dialogue between pancreatic endocrine and immune cells via RNA cargo of
exosomes that is also functionally transferred to β-cells) between immune cells, especially
macrophages, pancreatic endocrine cells, and insulin-target tissues occurring in T1DM
underlies the emerging link between exosomes and T1D. To date, the miRNA up-expression
of the TLR7/8 pathway in monocytes and subsequent NK and T cell proliferation and
apoptosis [109] have demonstrated binding to TLR7 in innate immune cells [110]. In
addition, up-expression of miRNA in T1D has been shown to induce Ccl2, Ccl7, and Cxcl10
expression in β-cells through the translocation of NF-κB [82]. Conversely, downregulation
of miRNA has been shown to inhibit β-cell apoptosis targeting CXCL10 and promote
adipogenesis via HDAC9 [111]. Collectively, results demonstrate that exosomes and/or
the miRNAs present contribute to β-cell dismay and the pathogenesis of T1D. However,
full characterization of the role of miRNAs and other exosomal RNAs released by immune
cells in β-cell survival and function is still needed.

Further, the wide range of chemical compositions of exosomes have been shown to
mediate tissue regeneration in a variety of diseases, including neurological, autoimmune,
and inflammatory cancer, ischemic heart disease, lung injury, and liver fibrosis. With the
capacity to modulate the immune response by interacting with immune effector cells due
to the presence of anti-inflammatory compounds, exosomal involvement in intercellular
communication through various types of cargo highlights the potential future applications
of nanotherapeutics.
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7. Conclusions

Since the discovery of exosomes as the fourth key player in cell-to-cell signaling, much
has been discovered regarding the role they play in health and in diseases like autoimmune
T1D. A lot has been achieved in understanding the cell-to-cell signaling mechanisms, the
immune response, and the cytokine cascade activated in T1D. Prevention of T1D has
been achieved in animal models. However, several aspects will need to be addressed
and multiple strategies applied before we can look to exosome engineering and RNA
interference (RNAi)-based therapy to early diagnose, treat, cure, or even prevent T1D at
the clinical level. RNAi therapies have the potential to ameliorate the inflammatory status
of macrophages by inhibiting the secretion of inflammatory factors, downregulate the
iLPS-triggered development of T1D [112], and therefore predict a pro-inflammatory state
that potentially underlies the etiology. Further, depending on their cargo, the exosomes can
suppress insulin resistance in T2D. Exosomes can enhance the metabolism of glucose and
lipids in T2D. The enrichment of RNAi in exosomes and the underlying determination of the
function of exosomes in T1D and T2D represent an auspicious area of further investigation.
New technologies for the association of a specific marker with an exosome subtype and
the exosome subtype with a particular function and/or group of functions warrant further
investigation. In sum, exosomes represent a class of extracellular vesicles with significant
roles in intercellular communication, biomolecule transport, and disease pathogenesis.
Their intricate composition and versatile functions highlight the need for further scientific
inquiry, holding potential for diagnostic, therapeutic, and regenerative applications across
diverse fields of medicine and biology.
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