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Abstract: Biological membranes, primarily composed of lipids, envelop each living cell. The intricate
composition and organization of membrane lipids, including the variety of fatty acids they encompass,
serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifica-
tions in lipid composition coincide with consequential alterations in universally significant signaling
pathways. Exploring the various fatty acids, which serve as the foundational building blocks of
membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of
cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular
communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how
alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to
or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this
review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty
acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence
on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets
for various pathological conditions that may be ameliorated through dietary fatty acid supplements.
The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids.
Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution
of fatty acids across various fractions of membrane lipids. The last section highlights the functional
significance of membrane-associated fatty acids and their innate capacity to shape the various cellular
physiological responses.

Keywords: membranes; phospholipids; sphingolipids; fatty acid; de novo synthesis; desaturation;
oxygenation; bioactive lipids; physicochemical; very long polyunsaturated fatty acids

1. Introduction

The biological membrane, commonly referred to as the biomembrane, holds paramount
importance in both prokaryotic and eukaryotic cells. Its primary function lies in the selec-
tive regulation of molecular influx and efflux across the cellular boundary. Furthermore,
it plays a crucial role in modulating intercellular communication and is involved in a
vast array of complex processes, encompassing cell proliferation, differentiation, secretion,
migration, invasion, and phagocytosis. However, the term “biomembrane” extends beyond
the plasma membrane, as eukaryotic cells feature membranes within distinct cellular or-
ganelles [1,2], such as the endoplasmic reticulum (ER), mitochondria, nucleus, and various
intracellular organelles. Additional functions of biomembranes revolve around stabilizing
the consistency of cellular activities within the cell and organelles, controlling the traffick-
ing of micromolecules (including O2, CO2, H2O, H+, K+, HCO3

−, Mg2+, Ca2+, etc.) and
macromolecular compounds, and providing a surface where essential biological events
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take place. According to Janmey and Kinnunen [3], biomembranes represent heteroge-
neous, asymmetrical bilayers with complex structures that contribute to the maintenance of
cellular homeostasis and functionality. Hence, biomembranes’ systems exhibit considerable
structural and dynamic diversity, making them an enduring area of scientific exploration.

The concept of Langmuir films, initially proposed by Langmuir in 1917, represents
the earliest paradigm aimed at elucidating membrane systems [4]. Numerous subsequent
paradigms have been developed in an attempt to explain membrane systems. The semi-
fluid dynamics of biomembranes are merely determined by their intricate structure. The
so-called “fluid mosaic model”, one of the most renowned models in the biological domain,
is employed to illustrate the structure and function of membranes. Singer and Nicolson
introduced this model in 1972 [5], describing lipids, proteins, and carbohydrates as the
primary constituents of the membrane. In light of the fact that proteins do not actually dis-
solve in membrane lipids, this proposal has undergone several amendments. After 25 years
of Singer and Nicolson’s proposal, Simons and Ikonen [6] proposed the “lipid raft” model,
predicated on the clustering of sterols (namely, cholesterol in animals) and sphingolipids
(SLs) within membranes to form microdomains where membrane-associated proteins are
distributed. It has been established that these compartmentalized microdomains limit
membrane lateral mobility and actively engage in various cellular events based on their
structural arrangements [7]. Following the lipid rafts model, numerous other models
have been introduced, which are either focused on revising the fluid mosaic model [8] or
explaining the interaction between the similar [9] or distinct molecule classes [10] within
membranes. Generally, the complexity of membranes exceeds that of model membranes
due to the heterogeneous distribution of building molecules and their complex interactions.
The continuous advancement of technology empowers science to delve deeper into the
intricate structures of membranes, implying that the cell membrane model will invariably
evolve toward increasing complexity, mirroring the progression from initial notions of
membrane structure.

Lipids, proteins, and carbohydrates are pivotal biomolecules within biomembranes,
exhibiting heterogeneous dispersion across membranes’ structures (see Figure 1). Mem-
brane lipids, marked by diversity and possessing distinct properties either individually or
in conjunction with other moieties, contribute to bilayer development and serve essential
functions. Almost 50% of the membrane matrix is composed of proteins, which exist in
various structures such as including integral (embedded with lipid bilayers), peripheral
(associated with the membrane surface), and anchoring (not directly attached but rather
bound to lipid embedded with lipid bilayers) proteins. Hydrophobic forces or ionic inter-
actions mediate the binding of membrane proteins to membrane lipids, forming lateral
domains with certain functions such as environmental communication, adhesion, traffick-
ing, and signaling. Carbohydrates form covalent bonds with proteins or lipids within
membranes, which only occur at the outward surface of the plasma membrane, yielding
glycol-complexes [2,11]. The extant biotic assemblies within biomembranes are postulated
to have transited from thermodynamic reactions on analogous abiotic assemblies [12]. The
interaction between membrane lipids and proteins may modulate their individual qualities,
thereby altering membrane conformation.

Among the constituents of biomembranes, fatty acids comprising the lipid portion
have gained great focus due to their diverse functions in cellular processes. Understanding
the diversity and composition of eukaryotic biomembrane lipids, especially fatty acids, is
essential for elucidating the underlying mechanisms controlling cellular functions. Fur-
thermore, it sheds light on the potential roles that particular lipids and fatty acids may
play in various physiological and pathological processes, including inflammation and
metabolic disorders. The current review primarily focuses on a healthy organism, in-
tending to highlight the enormous diversity of biomembrane lipids and, as a secondary
objective, characterize the biological roles of distinct fatty acids embedded into the cellular
membranes. In addition, this review enhances our knowledge of fundamental cellular
processes and subtly underscores the potential for therapeutic strategies centered on the
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lipid composition and fatty acid metabolism of biomembranes, which are likely promising
foundations for further scientific inquiry.

Int. J. Mol. Sci. 2023, 24, 15693 3 of 62 
 

 
Figure 1. Schematic representation of biological compartments of the cell membrane and the molec-
ular structure of the different lipids available in membranes. The molecular structures of different 
lipids have been adapted from the PubChem database (an open database for the public, available at 
https://pubchem.ncbi.nlm.nih.gov, accessed on 27 October 2023). Abbreviation: Sn, stereospecific 
numbering in the glycerol;  and , chiral carbon centers. 

Among the constituents of biomembranes, fatty acids comprising the lipid portion 
have gained great focus due to their diverse functions in cellular processes. Understand-
ing the diversity and composition of eukaryotic biomembrane lipids, especially fatty ac-
ids, is essential for elucidating the underlying mechanisms controlling cellular functions. 
Furthermore, it sheds light on the potential roles that particular lipids and fatty acids may 
play in various physiological and pathological processes, including inflammation and 
metabolic disorders. The current review primarily focuses on a healthy organism, intend-
ing to highlight the enormous diversity of biomembrane lipids and, as a secondary objec-
tive, characterize the biological roles of distinct fatty acids embedded into the cellular 
membranes. In addition, this review enhances our knowledge of fundamental cellular 
processes and subtly underscores the potential for therapeutic strategies centered on the 
lipid composition and fatty acid metabolism of biomembranes, which are likely promising 
foundations for further scientific inquiry. 

2. Lipid Bilayer 
Lipids have gained recognition and have become a subject of considerable interest 

among scientists since the original publication of Chevreul�s work [13], which delineated 
the concept of fatty acids. Lipids are widely acknowledged for their crucial role in forming 
cellular structures and mediating various physiological and life-sustaining processes. The 
concept popularity of a lipid layer�s existence on the cell�s surface can be traced back to 
Overton�s reports between 1885 and 1899, although a comprehensive elucidation of the 

Figure 1. Schematic representation of biological compartments of the cell membrane and the molec-
ular structure of the different lipids available in membranes. The molecular structures of different
lipids have been adapted from the PubChem database (an open database for the public, available at
https://pubchem.ncbi.nlm.nih.gov, accessed on 17 September 2023). Abbreviation: Sn, stereospecific

numbering in the glycerol;

Int. J. Mol. Sci. 2023, 24, 15693 3 of 62 
 

 
Figure 1. Schematic representation of biological compartments of the cell membrane and the molec-
ular structure of the different lipids available in membranes. The molecular structures of different 
lipids have been adapted from the PubChem database (an open database for the public, available at 
https://pubchem.ncbi.nlm.nih.gov, accessed on 27 October 2023). Abbreviation: Sn, stereospecific 
numbering in the glycerol;  and , chiral carbon centers. 

Among the constituents of biomembranes, fatty acids comprising the lipid portion 
have gained great focus due to their diverse functions in cellular processes. Understand-
ing the diversity and composition of eukaryotic biomembrane lipids, especially fatty ac-
ids, is essential for elucidating the underlying mechanisms controlling cellular functions. 
Furthermore, it sheds light on the potential roles that particular lipids and fatty acids may 
play in various physiological and pathological processes, including inflammation and 
metabolic disorders. The current review primarily focuses on a healthy organism, intend-
ing to highlight the enormous diversity of biomembrane lipids and, as a secondary objec-
tive, characterize the biological roles of distinct fatty acids embedded into the cellular 
membranes. In addition, this review enhances our knowledge of fundamental cellular 
processes and subtly underscores the potential for therapeutic strategies centered on the 
lipid composition and fatty acid metabolism of biomembranes, which are likely promising 
foundations for further scientific inquiry. 

2. Lipid Bilayer 
Lipids have gained recognition and have become a subject of considerable interest 

among scientists since the original publication of Chevreul�s work [13], which delineated 
the concept of fatty acids. Lipids are widely acknowledged for their crucial role in forming 
cellular structures and mediating various physiological and life-sustaining processes. The 
concept popularity of a lipid layer�s existence on the cell�s surface can be traced back to 
Overton�s reports between 1885 and 1899, although a comprehensive elucidation of the 

and

Int. J. Mol. Sci. 2023, 24, 15693 3 of 62 
 

 
Figure 1. Schematic representation of biological compartments of the cell membrane and the molec-
ular structure of the different lipids available in membranes. The molecular structures of different 
lipids have been adapted from the PubChem database (an open database for the public, available at 
https://pubchem.ncbi.nlm.nih.gov, accessed on 27 October 2023). Abbreviation: Sn, stereospecific 
numbering in the glycerol;  and , chiral carbon centers. 

Among the constituents of biomembranes, fatty acids comprising the lipid portion 
have gained great focus due to their diverse functions in cellular processes. Understand-
ing the diversity and composition of eukaryotic biomembrane lipids, especially fatty ac-
ids, is essential for elucidating the underlying mechanisms controlling cellular functions. 
Furthermore, it sheds light on the potential roles that particular lipids and fatty acids may 
play in various physiological and pathological processes, including inflammation and 
metabolic disorders. The current review primarily focuses on a healthy organism, intend-
ing to highlight the enormous diversity of biomembrane lipids and, as a secondary objec-
tive, characterize the biological roles of distinct fatty acids embedded into the cellular 
membranes. In addition, this review enhances our knowledge of fundamental cellular 
processes and subtly underscores the potential for therapeutic strategies centered on the 
lipid composition and fatty acid metabolism of biomembranes, which are likely promising 
foundations for further scientific inquiry. 

2. Lipid Bilayer 
Lipids have gained recognition and have become a subject of considerable interest 

among scientists since the original publication of Chevreul�s work [13], which delineated 
the concept of fatty acids. Lipids are widely acknowledged for their crucial role in forming 
cellular structures and mediating various physiological and life-sustaining processes. The 
concept popularity of a lipid layer�s existence on the cell�s surface can be traced back to 
Overton�s reports between 1885 and 1899, although a comprehensive elucidation of the 

, chiral carbon centers.

2. Lipid Bilayer

Lipids have gained recognition and have become a subject of considerable interest
among scientists since the original publication of Chevreul’s work [13], which delineated
the concept of fatty acids. Lipids are widely acknowledged for their crucial role in forming
cellular structures and mediating various physiological and life-sustaining processes. The
concept popularity of a lipid layer’s existence on the cell’s surface can be traced back
to Overton’s reports between 1885 and 1899, although a comprehensive elucidation of
the membrane structure did not emerge until 1925 [14]. It was Gorter and Grendel who,
employing a Langmuir monolayer, initially identified the presence of a lipid bilayer within
blood chromocytes. Their discovery revealed a distinctive 2:1 ratio between the cellular
surfaces covered by lipids and the estimated total cell surface area [15]. Consequently, a
lipid bilayer emerges as a supramolecular matrix comprising two leaflets of lipid molecules
residing within the biomembrane. Each leaflet necessitates a specific lipid composition
characterized by certain physicochemical properties to finely modulate targeted functions.

Despite enduring exposure to changing conditions of temperature, pressure, and
solvents, the lipid composition of animal cell membranes remains relatively stable, indi-
cating a relatively confined capacity for drastic alterations in response to external stimuli.
Nonetheless, the layers of membranes remain far from static; elements can transfer within
(lateral diffusion) and between (vertical or flip-flop diffusion) leaflets. Lipid transporter

https://pubchem.ncbi.nlm.nih.gov
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proteins, namely, flippase, floppase, and scramblase, mediate the movement of lipids
across membrane layers. In contrast, the retrograde traffic is responsible for the backward
movement of lipids from membranes to organelles [2,16]. The ER, mitochondria, and
Golgi apparatus are responsible for biosynthesizing most of the lipid classes in biomem-
branes, including glycerophospholipids, cholesterols (CHOL), and SLs. Conversely, lipid
hydrolysis transpires within the lysosome, specifically the intralysosomal luminal vesicles,
where numerous water-soluble hydrolases are active [17–19]. Lipids are transported to
lysosomes through endocytic and autophagocytic pathways. The products generated from
lipid hydrolysis are either utilized within the cell or expelled via exocytosis at the plasma
membrane.

Thousands of lipid structures have been identified in mammals [20], with the coexis-
tence of hundreds within a single cell remaining a probable [21]. The chemical properties
of membrane lipids are characterized by distinctive features. These include the head-group
or backbone structure, hydrocarbon chain length, degree of unsaturation, the presence of
chirality, ionization, chelating power, and lipid concentration. Nevertheless, lipid classifi-
cation is not arbitrary and can be predicated on physical properties, chemical properties,
or biosynthetic qualities [22,23]. Within mammalian cell membranes, the preponderant
lipid class is glycerophospholipids, also known as phospholipids. Characterized by a
hydrophilic head group lining surfaces and a hydrophobic tail interposed in between,
this class constitutes the bulk of the membrane lipid matrix. Other minor lipid classes
recognized within biomembranes include glycolipids and sterols, with plasma membranes
distinctively characterized by a considerable abundance of sterols. A schematic repre-
sentation delineating the principal lipid classes identified in biomembranes is available
in Figure 1. It is well-established that the lipid composition of biomembranes exhibits
variations across organelles [24,25] and tissues; it dynamically adapts within the cell in
response to specific cellular activities. The distinctive biophysical state of membrane lipids
and the fatty acid composition may influence membrane rigidity, serve specific functions,
and reveal the cell’s physiological state.

2.1. Glycerophospholipids

In 1811, the pioneering work of Vauquelin led to the identification of phosphorus
in cerebral lipid extracts [26], and since then, phosphorus-containing lipids have become
an intriguing field of investigation. This class of polar lipids is commonly referred to
as ‘glycerophospholipids’ or simply “phospholipids”. It is the most prevalent lipid class
in mammalian membranes, accounting for 50–60 mol% of the overall membrane lipid
matrix [27]. The foundational structure of phospholipids closely resembles that of dia-
cylglycerol (DAG, featuring a glycerol backbone with two acyl (fatty acid) chains at sn-1
and sn-2 positions); it is further distinguished by the inclusion of a polar phosphorus
group at the sn-3 position. Hence, lipids within this class exhibit amphipathic properties,
which are characterized by the presence of a hydrophilic head group and two hydrophobic
fatty acids.

Over the past century, a multitude of phospholipid types have been identified, with
variations in lipid structure playing a profound role in the differentiation of phospholipid
varieties. The bulk of phosphate groups are attached to specific molecules or moieties, deter-
mining the exact type of phospholipid and its position within the lipid bilayer. Numerous
phospholipids have been identified in mammalian membranes, including phosphatidic acid
(PA), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylinositol (PI), diphosphatidylglycerol (DPG),
bis(monoacylglycero)phosphate (BMP), platelet-activating factor (PAF), and lysophospho-
lipids (LysoP).

2.1.1. Phosphatidic Acid

PA, often referred to as phosphatidate (see Figure 1), represents the simplest phospho-
lipid structure and tends to accumulate in membranes in relatively minor proportions, ow-
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ing to the activity of lipid phosphate phosphohydrolases [28,29]. It was initially identified
as a phosphorylated isomer of DAG [30]. PA, therefore, constitutes a non-bilayer lipid char-
acterized by a phosphate group esterified at the sn-3-hydroxyl of the glycerol backbone and
two fatty acyl chains occupying the remaining sn-positions. Multiple pathways contribute
to PA production (see Figure 2), including the dual acylations of glycerol-3-phosphate, phos-
pholipid hydrolysis pathway (especially involving PC), and DAG phosphorylation [31].
The synthesis of PA from DAG is a reversible process catalyzed by DAG kinase and PA
phosphatases (also referred to as lipins).
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CTP, cytidine 5′-triphosphate; DG, diacylgelycerol; DGAT, DAG acyltransferase; DGK, DAG kinase;
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methyltransferase; PG, phosphatidylglycerol; PGP, phosphatidylglycerophosphate; PGPP, phos-
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phohydrolase; PI, phosphatidylinositol; PIS, phosphatidylinositol synthase; PLA, phospholipase;
PLC, phospholipase C; PLD, phospholipase D; PS, phosphatidylserine; PSD, phosphatidylserine
decarboxylase; PSS, phosphatidylserine synthase; SA, sphinganine; SM, sphingomyelin; SMase, sph-
ingomyelinase; SMS, sphingomyelin synthase; SPT, serine palmitoyltransferase; TAG, triacylglycerol;
Tase, transacylase.



Int. J. Mol. Sci. 2023, 24, 15693 6 of 64

PA is a negatively charged anionic lipid involved in cellular signal transduction and
capable of reacting with divalent ions such as Ca2+. Furthermore, its presence within
mammalian cells is vital, as it acts as a mediator for phospholipid metabolism, a regulator
for glycerolipid metabolism, neuroendocrine cell exocytosis, protein kinases, small G-
proteins, and a modulator for membrane fusion and fission machinery [32–36]. Therefore,
any alterations in PA levels may indicate disruptions in cellular homeostasis and the onset
of metabolic and health-related consequences, as evidenced by Tanguy et al. [31], who
linked the high accumulation of PA in cells to metabolic disorders.

2.1.2. Phosphatidylglycerol

When alcohol glycerol esterifies with a phosphate within a phospholipid, the resulting
lipid structure is referred to as ‘PG’. Benson and Maruo identified this lipid structure in
1958 [37]; it is characterized by two free hydroxyl groups. Basically, it comprises a glycerol
backbone linked with two fatty acyl chains and phosphoglycerol. Within mammals, PG is
synthesized in the mitochondria through multiple pathways: (1) it originates from imported
PA, which undergoes a series of enzymatic reactions involving intermediates within the
cytidine diphosphate-diacyl glycerol pathways in the inner mitochondrial membrane, and
(2) from dephosphorylated phosphatidylglycerolphosphate catalyzed by the mitochondrial
phosphatase enzyme [38].

Though PG does not constitute a substantial proportion of mammalian membranes
(1–2% of membrane polar lipids), it accounts for up to 7–15% of the lipid composition
in lung surfactants [39,40]. This heightened presence of PG in the lungs, where it ranks
as the second most prevalent phospholipid in the lungs, underscores its crucial role in
surfactant activity. Beyond the lung, the PG functionality extends to lipid–protein and
lipid–lipid interactions, along with its influence on membrane rigidity. The PG molecular
structure relatively resembles that of DPG and BMP, with all of them featuring more
than glycerol in their structures. Furthermore, the molecular structure of PG in specific
tissues has been considered to be a functional analogue of PI (having an inositol group
rather than glycerol) [41]. Thus, these phospholipids may manifest similar activities, such
as the inhibition of phosphatidylcholine-dependent kinase activity in swine brain [42].
Elevated levels of PG have been associated with viral infection, as PG can integrate into
viral membranes during replication [43–45]. In contrast, some reports suggest that PG is
involved in regulating innate immunity and suppressing viral infection [46–48], potentially
including COVID-19 infection [49]. Therefore, further studies are imperative to ascertain
the significant biological roles of PG in various mammalian species.

2.1.3. Phosphatidylcholine

The PC, also known as lecithin, was the first isolated phospholipid in 1850, with
choline (a source of the methyl group) serving as the polar head [50]. Herein, it is very self-
evident that the PC structure is not entirely endogenous, as choline is an essential nutrient
for mammals. PC is a ubiquitous presence in all cell membranes, spanning prokaryotic
cells (e.g., bacteria) and eukaryotic cells (i.e., cells of plants and animals). Structurally,
PC exhibits two major linkage types in tissues: diacyl-PC (ester bond; most abundant in
eukaryotes) and alkyl-PC (featuring an ether bond) [51]. Additionally, the less common
isomer of PC is alkenyl-PC (vinyl ether bond), which is referred to as choline plasmalogens
and plasmenylcholine. These lipids typically comprise two fatty acids linked to glycerol
through ether and ester bonds at sn-1 and sn-2, respectively [52,53].

PC represents the most abundant phospholipid class (constituting nearly 50% of all
phospholipids within bilayers), particularly in the pulmonary surfactant, where dipalmitoyl-
PC predominates [54–57]. As a fundamental building block of the membrane bilayer, PC
occupies the outer leaflet [58]. Remarkably, approximately 80 to 90% of the lipids in the
plasma membrane’s outer leaflet consist of PCs. The preponderance of PC synthesis oc-
curs in the ER, where cytidine 5′-triphosphate (CTP):phosphocholine cytidylyltransfease
(PCT) (generally known as CCT) [59,60] catalyzes the rate-limiting step in the cytidine 5′-
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diphosphocholine (CDP-choline, citicoline or Kennedy) pathway [61]. This CDP moiety is
not only involved in PC biosynthesis [62] but in all other phospholipids, with the exception
of PA, depending on which moiety replaces choline. A distinctive pathway for PC biosyn-
thesis exclusively takes place in the liver, where PC is generated from PE via sequential
methylation [63], facilitated by the phosphatidylethanolamine N-methyltransferase (PEMT)
that is found in the mitochondrial-associated membranes (MAM).

It has been believed that PC’s relatively neutral molecular properties (having positive
and negative charges but lacking net charge) and its predominance play an essential role
in maintaining biomembrane integrity and functionality. Unlike other phospholipids, PC
does not exhibit negative charge repulsion. PC serves as a precursor for sphingomyelin
(SM) due to its choline molecule [64]. In addition, it acts as a precursor for other polar lipids,
such as PA, lysophosphatidylcholines (LysoPC), PS, and PAF. PC plays a crucial part in
cell signaling processes and impacts the concentration of circulating lipoproteins [56,65,66].
Furthermore, it is integral to membrane trafficking and molecule transportation. LysoPC
composed of C22:6 (at the sn-2 position) has been demonstrated to be more effective than
C22:6-free fatty acids in crossing the blood–brain barrier [67].

2.1.4. Phosphatidylethanolamine

Following PC, the second most prevalent phospholipid in mammalian tissues is PE,
formerly known as “cephalin”. It was the second discovered phospholipid in cerebral tissue
by Thudichum in 1884 [68], constituting approximately 15–25% of the total phospholipids
in mammalian cell membranes [69]. In neural tissues, PE can reach even higher levels,
up to 45% [70], pointing out its essential role in this tissue. It is profoundly abundant in
mitochondrial membranes and is exclusively localized in the cytosolic leaflet of the plasma
membrane, in contrast to PC [58]. The structure of PE involves the esterification of the
phosphatidyl group to the hydroxyl group of an amino group (namely, the ethanolamine),
resulting in a small reactive head group. PE does not form a bilayer independently (on its
own) but exhibits an inverted hexagonal phase. This class of lipids features various linkages,
including diacyl, alkyl, and alkenyl configurations (see Figure 3). Ethanolamine plasmaolo-
gens, also known as plasmenylethanolamine, are more abundant than plasmenylcholine in
many tissue types, except for the heart and smooth muscle [52].

Int. J. Mol. Sci. 2023, 24, 15693 11 of 62 
 

amino position of the sphingoid base [148], setting them apart from their parental struc-
ture. Long ago, LysoP isomers were considered intermediates in phospholipid biosynthe-
sis or fragments of disrupted cells. Nevertheless, they display distinct properties and func-
tions compared to parental phospholipids. LysoP contributes to cellular homeostasis by 
engaging in bilayer remodeling and rigidity. Furthermore, specific LysoP molecules can 
function as ligands for various G-protein-coupled receptors [149], underscoring their in-
volvement in cellular signaling. 

While the current review does not emphasize this category due to its limited preva-
lence and identification in studies, the most abundant LysoP class is lysophosphatidyl-
cholines/lysolecithins (LysoPC). LysoPC is generated through the hydrolysis PC, mainly 
catalyzed by PLA2. LysoPC possesses physical properties distinct from PC, forming mi-
celles rather than bilayers. It is typically found in minute proportions and plays a role in 
the mechanism of the autoimmune response [150]. The accumulation of LysoPC within 
cells has been associated with metabolic irregularities [150] and phospholipid peroxida-
tion [151,152]. Lysophosphatidic acid (LysoPA), the simplest structure within the LysoP 
category within mammalian membranes, is biosynthesized in most cells through the ac-
tivity of lysophospholipase-D on LysoPC or via the actions of phospholipases (phospho-
lipase A1 (PLA1) and PLA2) on PA [153]. LysoPA serves numerous functions, including 
the regulation of cellular differentiation, growth, proliferation, migration, and apoptosis. 
In the context of inflammation and cancer, it has gained significant attention, focusing on 
its structural features and the extent of accumulation [154,155]. 

 
Figure 3. (A) Site activities of different phospholipases on membrane lipids. (B) Different linkage 
types in phospholipids. Abbreviations: 1, phospholipase A1; 2, phospholipase A2; 3, phospholipase 
C; 4, phospholipase D; 5, ceramidase; 6, lipid phosphate phosphatase; 7, sphingomyelin deacylase; 
8, sphingomyelinase; R, fatty acid; X, head group. 

2.2. Sterols 
This category of membrane lipids is named according to its primary constituent, sterol. 

Alternatively, it can be referred to as steroid alcohol, distinguishing it from phospholipids. 
Sterols are characterized by a rigid, always trans tetracyclic hydrocarbon ring, a 3β-hydroxyl 
group, and a flexible side fatty acyl chain as a tail [156]. Thus, sterols possess both hydrophilic 
properties (represented by the hydroxyl group) and hydrophobic properties (attributed to the 
ring and fatty acyl chain). Notably, variations in the floppy tail of sterols account for the struc-
tural diversity observed across different biological kingdoms. Sterols are primarily found in 
membranes of animals (cholesterol), plants (stigmasterol or β-sitosterol), and fungi (ergoste-
rol). It is important to note that most bacterial membranes are devoid of sterols. Among mam-
malian membranes, CHOL is the most commonly encountered sterol and recognized struc-
ture. Despite its widespread presence in various organisms, it is noteworthy that certain insect 
species lack the genes responsible for its biosynthesis [157]. 

  

Figure 3. (A) Site activities of different phospholipases on membrane lipids. (B) Different linkage
types in phospholipids. Abbreviations: 1, phospholipase A1; 2, phospholipase A2; 3, phospholipase
C; 4, phospholipase D; 5, ceramidase; 6, lipid phosphate phosphatase; 7, sphingomyelin deacylase; 8,
sphingomyelinase; R, fatty acid; X, head group.

In eukaryotes, the biosynthesis of PE is an outcome of multiple pathways, notably, the
de novo synthesis of PE through CDP-ethanolamine [61] and the salvage pathway involving
the decarboxylation of PS by phosphatidylserine decarboxylase (PSD) in the mitochon-
dria [71]. Additional pathways involved in the remodeling of PE, which are also identified
in bacteria and plants, include the following: (1) the base-exchange pathway between PE
and PS [72]; (2) the degradation of sphingosine-P via sphingosine-P lyase [73]; and (3) the
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reacylation of Lyso-PE at MAM [74]. Notably, despite the structural resemblance of PE and
PC, PE exhibits distinct chemical and biological properties. PE stands apart from PC due to
its smaller head group, which manifests less affinity to water. Consequently, PE can form
compact aggregation and displays a heightened thermostability [75,76]. These attributes
significantly contribute to membrane rigidity, making PE an indispensable component of
the membrane’s architecture, permeability, and fluidity.

In terms of membrane rigidity, PE often mimics the behavior of CHOL, particularly
in insects [77]. In light of these findings, the PC/PE ratio is likely to exert a substantial
influence on the functionality, fluidity, stability [78], and permeability of the membrane.
Furthermore, PE plays a vital role in upholding membrane integrity and participating
in cellular signaling. Studies have revealed that PE is implicated in various processes,
including membrane-to-membrane fusion [79], DAG generation through the involvement
of phospholipase C (PLC), and the modification of membrane proteins through the me-
diation of reactive aldehydes [80]. PE has also been observed to induce negative curva-
ture in biomembranes [81], which is primarily attributed to its diminutive conical head
group. In addition, PE serves as a precursor for various other lipids, including N-acyl-
phosphatidylethanolamine (NAPE), which serves as a crucial precursor during the biosyn-
thesis of certain essential biological compounds in the brain (e.g., anandamide) [82,83].

2.1.5. Phosphatidylserine

Folch and Schneider identified serine in cephalin components in 1941 [84], marking
the beginning of the discovery of PS. PS is a minor class of phospholipids in mammalian
cells (2–15% of total phospholipids), which demonstrates a pronounced tendency for accu-
mulation within the cerebral cortex [85,86]. It has also been detected in the membranes of
organelles such as mitochondria and ER, where it serves as a substrate for the production
of PE. Notably, the distinguishing feature of the PS structure, setting it apart from other
phospholipids, is the attachment of the serine residue to the phosphatidyl group, resulting
in the formation of a negatively charged head group. This characteristic renders it excep-
tionally reactive with divalent metals. In contrast to PC and PE, PS exclusively exists in a
diacyl isomer, with sn-2 being markedly unsaturated [85].

In contrast to plants [87], yeasts, and prokaryotes [88], mammalian cells lack the
de novo CDP-DAG biosynthetic pathway for PS biosynthesis. The biosynthesis of PS in
mammalian cells transpires both in the MAM and in the cytosol of the ER and is facilitated
by a calcium-dependent base exchange. This pathway is catalyzed by PS synthase-1 and -2
(PSS1 and PSS2, respectively), utilizing PC (catalyzed by PSS2) and PE (catalyzed by PSS2)
as the primary precursors at both sites [89]. Subsequent to its production, a fraction of PS
translocates to the plasma membrane via passive diffusion. This lipid primarily localizes to
the cytosolic leaflet of the plasma membrane [90], although its migration to the outer leaflet
is notable during programmed cell death [91] and cancer progression [92].

The externalization of PS on the cell’s outer layer serves as a molecular signal, prompt-
ing neighboring cells, including macrophages, to engulf and phagocytose the dying cell.
Beyond this role, PS plays a multifaceted biological role within cellular functions. It con-
tributes to the recognition and communication mechanisms between cells. PS existence
is crucial during PE biosynthesis, acting as a source pool [71]. Furthermore, PS has been
observed to interact with SLs, resulting in elevated interdigitation under the influence
of CHOL [93]. PS is also vital for the maintenance of plasma membrane integrity within
mammalian cells, exerting modulation over membrane fluidity and permeability, both of
which are essential for the regular function of membrane-bound proteins.

PS has been implicated in the activation of protein kinase, prothrombinase, and
neuroinflammation signaling pathways, as well as being an essential element of lipid–
calcium–phosphate complexes [94–97]. Consequently, PS facilitates a range of membrane-
bound signaling processes, including apoptosis, activation of enzymes, immune regulation,
coagulation cascade, and mineral deposition during bone regeneration.
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2.1.6. Phosphatidylinositol

The earliest documented report of phosphatidylinositol (PI) traces back to the year
1930 when inositol was initially identified within a lipid extract [98]. It was not until nearly
three decades later, in 1959, that Pizer and Ballou elucidated the precise structure of PI [99].
PI, an anionic phospholipid, features a distinctive inositol head group, characterized by a
hexa-hydroxy-ring consisting of six carbon atoms. Within the realm of inositol-containing
phospholipids (phosphoinositides), PI represents the most elementary form, with the other
seven isomers constituting phosphorylated derivatives of the PI structure [100]. In eu-
karyotic organisms, three primary forms of phosphoinositides prevail: (1) PI, formerly
recognized as monophosphoinositide, in which 1′-myo-inositol is linked to PA; (2) PI4P,
where a phosphate group esterifies position 4 of inositol, formerly referred to as diphospho-
inositide; and (3) PI5P, featuring a phosphate esterifies position 5 of inositol. In eukaryotes,
the phosphorylation of positions 2 and 6 of PI is impeded due to steric hindrance. PI
can constitute up to 10% of total phospholipids and is ubiquitously present in the cytosol
of all cellular membranes and certain organelles (e.g., endoplasmic reticulum and Golgi
apparatus) [101,102]. PI of eukaryotic organisms is primarily biosynthesized from PA via
a de novo pathway and is catalyzed by the CDP-DAG synthase (which serves as a rate-
limiting enzyme [103]) and CDP-DAG myo-inositol 3-phosphatidyltransferase [104]. These
enzymes are localized in the ER, where they facilitate the formation of intermediates from
PA and the attachment of myo-inositol to these intermediates, respectively. Mammalian
cells possess the capability to synthesize inositol de novo from glucose-6-phosphate. Other
marked three biosynthetic pathways have been identified in plants and prokaryotes, with
the most recent discovery occurring a decade ago [105].

Though PI’s initial discovery was nearly a century ago, our understanding of the
biological functions of PI has markedly advanced over the past three decades. PI is not
merely a component of bilayer lipids; it is involved in various metabolic processes [106].
Its significance extends to the brain, where it serves critical functions. In addition, it serves
as the primary pool of the C20:4 n6 fatty acyl chain in animal cells, frequently occupying
the sn-2 position [107–109]. This specific acyl chain is of paramount importance for the
biosynthesis of eicosanoids, including prostaglandins [101,110]. The enzyme phospholipase
A2 (PLA2) is responsible for the removal of C20:4 n6 from PI, resulting in the formation of
LysoPI (see Figure 3). Consequently, an accumulation of LysoPI indicates heightened PLA2
activity, implying metabolic alterations and, potentially, the progression of cancer [111].

Furthermore, PI constitutes the major substrate of the signaling DAG in mammalian
cells, a process catalyzed by the PLA2 and PLC enzymes. Thus, PI emerges as a dynamic
lipid that participates in intracellular signaling, inflammation, and immune regulation. PI
also contributes to the formation of glycosyl bridges that facilitate the binding of multiple
proteins (known as glycosyl-phosphatidylinositol (GPI)-anchored proteins) to the cellular
membrane surface [112]. PI has been shown to engage in regulating protein activities at
the cellular interface. The various phosphoinositides, including PI3P, PI4P, PI5P, PI(4,5)P2
(the most abundant PI-phosphorylated structure in mammalian membranes), PI(3,4)P2,
PI(3,5)P2, and PI(3,4,5)P3, while accumulating in very low concentrations (1%), significantly
contribute to membrane organization. An in-depth discussion has been reviewed by Posor
et al. [113]. For instance, PI(4,5)P2 functions as a cofactor for phospholipase D (PLD), an
enzyme responsible for the production of PA, which serves as a signaling molecule.

2.1.7. Diphosphatidylglycerol

The DPG, also known as cardiolipin (CL), was initially isolated from bovine hearts by
Pangborn in 1942 [114], and the nomenclature “cardio” reflects its association with cardiac
tissues. This uncommon tetra-acylated phospholipid is exclusively confined to the inner
and outer mitochondrial membranes, with the production site on the matrix side of the
mitochondrial inner leaflet [115]. Basically, it can be described as PG with additional phos-
phatidate groups esterified to glycerol, resulting in two negative charges. The biosynthesis
of CL primarily proceeds from the PA substrate [116], which is subsequently transformed
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into PG within the mitochondria. The conversion of PG species into CL through condensa-
tion is facilitated by cardiolipin synthase (CLs). It is postulated that the biosynthesis of CL
in eukaryotic cells has evolved from prokaryotic ancestors [117].

CL plays a pivotal role in mitochondrial activity, which is evident through its substan-
tial concentration (15–20%) among the total polar lipids of the mitochondria [118]. Thus,
it dynamically contributes to the respiratory chain, interacts with adenosine diphosphate
(ADP)/adenosine triphosphate (ATP) and imported complex III and IV proteins, regulates
mitochondrial fission and fusion, and controls the release of apoptotic factors [119–121].
Therefore, variations in CL concentrations may be associated with mitochondrial dysfunc-
tion disorders [119].

2.1.8. Bis(monoacylglycero)phosphate

The BMP is a unique lipid involved in cellular trafficking due to its enrichment in
the intracellular membranes of the late endosomes [122,123] and lysosomes [124]. Body
and Gary were the first to isolate it from pig lungs in 1967 [125]. While it was initially
misidentified as “bisphosphatidic acid” or “lysobisphosphatidic acid”, BMP’s accurate
structural characterization was reported by Brotherus and Renkonen in in vitro cultured
hamster kidney fibroblast cells [126]. BMP is a negatively charged structural isomer of
PG, featuring an unusual sn-1-glycerophospho-sn-1′-glycerol configuration. This lipid
structure is related to polyglycerophospholipids, which also encompass PG and DPG [85].
In fact, PG has been identified as the substrate for BMP production [127–129], though the
precise mechanisms of their production and metabolism continue to be subjects of ongoing
research. PG is a fundamental component of mitochondria and ER, and it reaches the
lysosome (the BMP biosynthesis site) via autophagy. Herein, the phospholipases are less
effective towards BMP, preventing the lysosomal membranes from autodigestion.

The production of BMP involves multiple reactions, including the acylation of fatty
acid to glycerol’s hydroxyl moiety and the esterification of phosphoric acid to ethanolamine.
Despite BMP constituting a minor fraction of cellular polar lipids, comprising less than
1% of the total [130], elevated levels have been detected in rat splenic tissue [131] and
alveolar macrophages [132]. Elevated BMP concentrations have been associated with lipid
storage diseases and drug-induced lipidosis [132–134]. Studies on BMP have consistently
increased over the past 14 years. This interest is attributed to its role in the metabolism
of glycosphingolipids (GSLs) and CHOL [19,135], which, in return, influence cellular
signaling, vesicle fusion, and membrane integrity.

2.1.9. Platelet-Activating Factor

The PAF is a unique bioactive ether phospholipid with a structural composition of
1-alkyl-2-acetyl-sn-glycero-3-phosphocholine structure, notably lacking the conventional
phospholipid sn-1 ester bond [136]. It was initially introduced by Benveniste et al. [137]
from rabbit platelets, making PAF the earliest identified phospholipid capable of inciting
an inflammatory response. The biosynthesis of PAF occurs within the ER through two
primary pathways: the de novo pathway from PC transferred to alkyl acetyl glycerol [138]
and a biomembrane remodeling process that involves the substitution of the sn-2 fatty
acyl chain with an acetyl group [139]. The latter pathway is catalyzed by PLA2 and
acetyltransferase/transacylase.

The accumulation of PAF exhibits variations among cell types, typically representing
a negligible fraction of the total phospholipids. This characteristic poses challenges in
its precise quantification. The heightened accumulation rate of PAF observed in various
tissues correlates with inflammatory responses [140], projecting its major involvement in
the regulation of inflammatory and immune responses, as well as physiological processes
such as platelet aggregation and thrombosis. In addition, PAF has been documented
to exert influence over the activities of multiple physiological systems, including the
cardiovascular, nervous, respiratory, excretory, and reproductive apparatuses [141–143].
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However, alterations in PAF concentrations have been associated with certain diseases,
syndromes, and skin cancer [144,145], albeit without serving as a direct mediator.

2.1.10. Lyso-lipids

Shifting the focus to lyso-lipids, this class is alternatively referred to as hydrolyzed
lipids. This lipid class is constituted by various isomers originating from the enzymatic
cleavage of acyl chains from phospholipids or SLs, which are catalyzed by phospholipase
and deacylase enzymes, as illustrated in Figure 3. Thus, lyso-lipids of membranes can
be categorized according to their original backbone and further classified into lysoglyc-
erophospholipids (LysoPs) and lysosphingolipids (LsoSLs), respectively. Generally, LysoPs
are amphipathic molecules carrying either an alkyl or acyl chain [146,147]. On the other
hand, the LysoSLs are distinct due to the absence of the amide-linked fatty acid at the 2-
amino position of the sphingoid base [148], setting them apart from their parental structure.
Long ago, LysoP isomers were considered intermediates in phospholipid biosynthesis or
fragments of disrupted cells. Nevertheless, they display distinct properties and functions
compared to parental phospholipids. LysoP contributes to cellular homeostasis by engag-
ing in bilayer remodeling and rigidity. Furthermore, specific LysoP molecules can function
as ligands for various G-protein-coupled receptors [149], underscoring their involvement
in cellular signaling.

While the current review does not emphasize this category due to its limited preva-
lence and identification in studies, the most abundant LysoP class is lysophosphatidyl-
cholines/lysolecithins (LysoPC). LysoPC is generated through the hydrolysis PC, mainly
catalyzed by PLA2. LysoPC possesses physical properties distinct from PC, forming mi-
celles rather than bilayers. It is typically found in minute proportions and plays a role in
the mechanism of the autoimmune response [150]. The accumulation of LysoPC within
cells has been associated with metabolic irregularities [150] and phospholipid peroxida-
tion [151,152]. Lysophosphatidic acid (LysoPA), the simplest structure within the LysoP
category within mammalian membranes, is biosynthesized in most cells through the activ-
ity of lysophospholipase-D on LysoPC or via the actions of phospholipases (phospholipase
A1 (PLA1) and PLA2) on PA [153]. LysoPA serves numerous functions, including the
regulation of cellular differentiation, growth, proliferation, migration, and apoptosis. In
the context of inflammation and cancer, it has gained significant attention, focusing on its
structural features and the extent of accumulation [154,155].

2.2. Sterols

This category of membrane lipids is named according to its primary constituent,
sterol. Alternatively, it can be referred to as steroid alcohol, distinguishing it from phos-
pholipids. Sterols are characterized by a rigid, always trans tetracyclic hydrocarbon ring, a
3β-hydroxyl group, and a flexible side fatty acyl chain as a tail [156]. Thus, sterols possess
both hydrophilic properties (represented by the hydroxyl group) and hydrophobic prop-
erties (attributed to the ring and fatty acyl chain). Notably, variations in the floppy tail of
sterols account for the structural diversity observed across different biological kingdoms.
Sterols are primarily found in membranes of animals (cholesterol), plants (stigmasterol or
β-sitosterol), and fungi (ergosterol). It is important to note that most bacterial membranes
are devoid of sterols. Among mammalian membranes, CHOL is the most commonly
encountered sterol and recognized structure. Despite its widespread presence in various
organisms, it is noteworthy that certain insect species lack the genes responsible for its
biosynthesis [157].

Cholesterol

CHOL is a sterol isoprenoid characterized by a semi-rigid tetracyclic ring composed
of three six-membered rings and one five-membered ring. It features a polar 3β-hydroxyl
group and an 8-carbon chain attached to the carbon-17 position, while its side acyl chain
exhibits conformational flexibility [158,159]. The polar nature of the CHOL group alone
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prevents CHOL from forming bilayers. However, when synthetic CHOL is combined with
a PC head moiety, bilayer formation occurs [160]. Within bilayers, CHOL is asymmetrically
distributed, with the majority of sterols (60–70%) located in the inner leaflet [161,162].
CHOL was initially discovered in gallstones by de La Salle in 1858, but it took another
decade for researchers to identify it [163].

CHOL can be obtained from the diet or synthesized by the liver (which contributes
50% to total CHOL synthesis) and the ERs of other cells. The biosynthesis of CHOL is
regulated by sterol-responsive element binding protein 2 (SREBP2)-cleavage-activating
protein, which senses intracellular CHOL and modulates nuclear transcription. Impor-
tantly, cells can also import CHOL from the vascular system, where lysosomes recycle the
low-density lipoprotein by transferring CHOL to the ER. The CHOL biosynthesis path-
way involves a series of enzyme-catalyzed reactions generating a series of intermediate
compounds. Typically, over 20 enzymes are involved in the CHOL biosynthesis pathway,
using acetyl-CoA as a substrate. Though animal cholesterol is synthesized in the ER, a
relatively higher proportion is found in cellular plasma membranes than in the ER [2,164].
Notably, the plasma membrane contains a significant amount of CHOL (making up to 50%
of membrane lipids, primarily in the cytosolic leaflet) as compared to other subcellular
organelles [162,165]. In the cytosolic leaflet, the hydroxyl group and the aliphatic chain are
oriented towards the aqueous phase and the bilayer’s interior, respectively.

CHOL plays an important role in modulating dynamic membrane activities [156]. Its
fused ring structure (exhibiting amphiphilic properties) imparts greater membrane rigidity.
Thus, CHOL levels critically influence membranes’ rigidity, fluidity, and
permeability [166,167]. The incorporation of CHOL into membranes reduces permeabil-
ity to non-polar molecules while increasing the hydrophobic barriers to polar molecules.
CHOL also has a condensing effect on hydrocarbon chains, thereby reducing the surface
area occupied by lipids [168]. Additionally, CHOL participates in the formation of lipid
rafts through interactions with various phospholipids, with a notably favorable interaction
observed with saturated phospholipids [169]. The solubility of CHOL in membranes de-
pends on the degree of unsaturation of the phospholipids. A high number of unsaturated
double bonds has been shown to reduce CHOL solubility [170,171]. Remarkably, even
among saturated phospholipids, CHOL affinity was shown to be different. CHOL’s affinity
to other lipid complexes relies on various factors, such as the head group tilt structure [172],
hydration [173], acyl chain order [174], possible interdigitation of acyl chains [175], and the
presence of hydrogen bond acceptor and donor groups [176].

CHOL serves a wide range of signaling functions through its interactions with various
cellular molecules and receptors. A recent study indicated that the interaction between
cholesterol and lipid-mediated innate immune memory triggers cytokine cascades as associ-
ated with COVID-19 [177]. Conversely, an imbalance in membrane-CHOL levels may likely
pose severe metabolic consequences, including cancer progression [178,179]. CHOL also
serves as a precursor for the biosynthesis of bile acids and steroid hormones [180,181], which
mediate crucial roles in biological processes, such as carbohydrate metabolism [182–184].
Furthermore, CHOL esters play a critical role in transporting fatty acyl chains via lipopro-
teins in the bloodstream, and these esters are integral components of amphiphilic plasma
lipoproteins [185].

2.3. Sphingolipids

SLs constitute a class of lipids that are present in cells in relatively lower proportions,
typically accounting for about 10–20% of total cellular lipids. Despite their relatively lower
abundance, SLs exhibit significant signaling activities [27]. The bio-functional roles of SLs
can be broadly categorized into three areas: firstly, they modulate the physical properties
of biomembranes; secondly, they serve as signaling molecules, acting as second messen-
gers or secreted ligands for cell-surface receptors; and thirdly, they mediate interactions
between cells and their external environment [186]. Hence, variations in the ratio of SLs
can have a substantial impact on cellular activities and overall cellular survival. The initial
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identification of SLs can be attributed to Thudichum [68], while the elucidation of their
structure, namely, the sphingosine (SO) component, was achieved by Carter [187]. Unlike
phospholipids, which are glycerol-based, SLs consist of a long-chain sphingoid base as a
backbone, with an amide-linked acyl chain attached instead of an oxygen ester. Notably,
the hydrophobic chains (fatty acid) in sphingosine (SO) are structurally constant and non-
hydrolyzable, distinguishing SLs from the variable and hydrolyzable fatty acids found
in phospholipids. Numerous distinct SL structures have been identified, with structural
differences primarily based on variations in backbone structure, hydrophobic chain length,
and the level of unsaturation.

2.3.1. Sphingoid Bases

Among the most well-known backbone structures are sphinganine (SA) and SO bases,
which serve as the primary reservoir for SL biosynthesis. In the cytosolic side of the ER,
serine palmitoyltransferase (SPT) catalyzes the condensation of palmitoyl-Coenzyme A
with L-serine, resulting in the formation of 3-ketosphinganine [188]. Subsequently, under
the influence of 3-ketosphinganine reductase, 3-ketosphinganine is transformed into SA (as
shown in Figure 4). SPT, a pyridoxal 5′-phosphate-dependent enzyme, is the rate-limiting
enzyme for SA production [189]. It is worth noting that SPT is not limited to serine alone as
a substrate; studies have shown that it can also employ alanine and glycine [190], leading
to the production of structures known as 1-deoxysphingolipids. On the other hand, SO is
biosynthesized during ceramide (Cer) production or hydrolysis, a process catalyzed by
delta-4-desaturase (∆4-desaturase, or D4D) and SPT enzymes, and ceramidase (CDase),
respectively. However, it is important to highlight that free SO is not produced via the de
novo pathway; rather, it is generated from the hydrolysis of Cer by CDase.
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SA and SO kinases can phosphorylate SA and SO, generating their respective 1-
phosphate forms/derivatives. This pathway is reversible, and sphingoid-1-phosphate
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produced in this manner can undergo dephosphorylation through sphingoid-1-phosphate
phosphatases. Sphingoid-1-phosphate remarkably differs in its activities from free sph-
ingoid bases, serving not only as second messengers but also as first messengers [191].
Sphingoid-1-phosphate also serves as a substrate for phospholipid synthesis, as well as
having a universal cellular survival signal [192] that is mediated by its binding to specific G
protein-coupled cell surface receptors [193]. Sphingosine phosphate lyase has the capacity
to cleave sphingoid-1-phosphate into phosphatidylethanolamine [194,195].

On the other hand, free sphingoid bases are essential secondary mediators, medi-
ating various cellular processes, including growth, proliferation, DNA synthesis, and
Cer biosynthesis [196]. These bases can readily traverse membranes, suggesting their
potential involvement in stimulus-induced changes in membrane permeability. However,
pinpointing the exact signaling functions of sphingoid bases is likely challenging due to
their various signals and immense interaction with numerous cellular molecules, such
as CHOL, phospholipids, and proteins [197–200]. It is necessary to highlight that dietary
SLs have a proportional direct impact on their detected levels in cellular membranes and
tissues [201]. In addition, a number of compounds, such as fumonisin (FUM) mycotoxins
and Alternaria toxins [202], share structural similarities with free sphingoid bases, enabling
them to interfere with sphingolipid metabolism and alter cellular signaling.

2.3.2. Ceramide

Cer is a non-bilayer-forming lipid characterized by its composition of a sphingosine
base and a single acyl chain bonded to an amide group, thus lacking a distinct head group,
illustrating its hydrophobic nature. The simple structure of Cer bears a resemblance to
DAG. Cer serves as one of the simplest SLs and functions as the core building block for
more complex SLs [198,203,204], which have larger molecular dimensions. Cer can be
synthesized through multiple pathways: (1) de novo synthesis from SA substrate in the ER
(a process catalyzed by N-acyl transferase/ceramide synthase (CerS)) and dihydroceramide
desaturase [194]; (2) in vivo turnover of complex SL found in plasma membranes and
lysosomes catalyzed by enzymes such as sphingomyelinase (SMase) or non-lysosomal
glucosylceramidase) [205]; and (3) the salvage pathway in lysosomes that involves the
re-acylation of SO to produce Cer [206].

The key enzyme responsible for de novo Cer generation is CerS, a family of six
integral membrane proteins (CerS1–6) located in the ER of mammalian cells and regulated
by corresponding six genes situated at distinct chromosomes [207]. The expression of
these protein isoforms varies among different tissues [208], leading to variations in Cer
proportion and acyl chain lengths. The CerS enzyme is responsible for the formation of
dihydroceramide (DCer), which is an intermediate in Cer synthesis. In this step, DCer is
formed by acylating a fatty acid to SA, followed by a desaturation reaction catalyzed by
DCer desaturase to produce Cer. A decade ago, DCers were commonly considered to be
quiescent intermediate metabolites, but recent research has unveiled their distinct functions
compared to Cer [209]. Though de novo Cer production takes place in the ER [210], it has
been suggested that long-chain bases are acylated in hepatic mitochondria. However, under
specific events such as type 2 diabetes and FUM exposure, 1-deoxy-Cer and 1-deoxy-DCer
are generated [211,212].

Cer plays a critical role in cellular signaling, regulating cell growth and apoptosis
depending on the length of its acyl chain. Specific Cer species, like C16-Cer, have been
proposed to be associated with apoptosis rates [213], while C18-Cer has been linked to
growth arrest and a proportional decrease during cancer progression [214]. In addition, the
ratio between C16 and C24:0/C24:1 Cer species has been identified as a factor in signal-
ing induction, with C16 inducing apoptotic effects and C24:0/C24:1 exhibiting protective
effects [215]. Therefore, alterations in the length of the Cer chain may potentially modify
signaling, resulting in diverse metabolic effects. Recent review articles have highlighted the
connections between Cer acyl chain length and cognitive functions [216] and intracellular
lipid regulation [208]. Cer is also known for its ability to cluster apart from membranes,
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forming ceramide-rich domains with gel-phase properties. These domains are believed to
act as platforms for protein–lipid interactions, selectively recruiting or excluding certain
membrane components from small transit rafts. Cer-rich domains cluster these components
in a stable manner, impeding their in-plane diffusion [217]. Therefore, the high hydropho-
bicity and complex polymorphic phase behavior of Cer [218] make Cer an important unit
in lipid raft formation.

2.3.3. Complex Sphingolipids

In mammals, complex SLs are present in two isomers: phosphosphingolipids (PSLs)
and GSLs. Complex SL consists of Cer bonded to complex phosphoryl or carbohydrate
moieties, located either in the lumen or at the cytosolic surface of the Golgi apparatus. The
transport of Cer between the ER and Golgi organelles is regulated through vesicular and
non-vesicular mechanisms, which involve Cer transfer protein [219,220]. This process is
primarily coupled by complex SL migrations across membrane leaflets [221] and acts as a
rate-limiting factor in the production of complex SLs.

Phosphosphingolipids

In the realm of PSLs, Cer binds to a phosphate group with a polar head group, forming
a polar head group mainly composed of choline, ethanolamine, or glycerol. This structural
distinction sets PSLs apart from PC in that they not only act as hydrogen bond acceptors
but also as hydrogen bond donors. The PSL class includes various subtypes, such as
Cer-1-phosphate (Cer1P), DCer-1-phosphate (Dcer1P), Cer phosphoethanolamines (CerPE),
sphingomyelins (SM), dihydrosphingomyelins, and LysoPSLs (lacking an attached fatty
acyl chain). Among PSLs, SM stands out as the most studied and highlighted class of
PSLs in cellular membranes. This review primarily focuses on SM, omitting detailed
discussions of other PSLs. However, Cer1P is the simplest PSL with its structure involving
the esterification of Cer with the phosphate group. Cer1P serves crucial roles in the
regulation of eicosanoids by activating the PLA2 enzyme [198,222].

Sphingomyelin

SM, also referred to as Cer-1-PC, is primarily of animal origin and constitutes a major
fraction of SLs in the plasma membrane, accounting for approximately 15% of cerebral
lipids [64]. SM is essential for the transmission of nerve impulses. It was initially isolated
and described by Thudichum in 1884 [68]. SM is composed of Cer linked to a phospho-
choline group [223], a process catalyzed by sphingomyelin synthase (SMS) [224]. Therefore,
the overall configuration of SM closely resembles that of PC. SMS is comprised of multiple
isomers, including SMS1 and SMS2, each with distinct active sites, with SMS1 situated
in the lumen of the Golgi apparatus and SMS2 located on the plasma membrane [225].
SMS is not solely involved in SM production; it also modulates the generation of DAG
during de novo synthesis, occurring simultaneously with SM synthesis. SM can also be
produced from LysoSM through fatty acid acylation or the straightforward transmission of
phosphocholine to Cer [226]. However, the specific enzymes involved in the latter event
have yet to be identified.

Similar to PC, SM is primarily located in the outer leaflet of membranes, but it has
also been detected in the nuclear envelope membrane [227], mitochondria [228], and liver
chromatin [229]. Vesicular transport is the mechanism that facilitates the migration of
SM from the Golgi apparatus to the plasma membrane [230], where possible degradation
by sphingomyelinase (SMase) may occur, resulting in the generation of Cer. Remarkably,
SMS2 catalyzes a contrasting mechanism for SM synthesis in the plasma membrane [224].
Elevated activity of SMase in the plasma has been associated with metabolic dysfunctions
and diseases [231]. However, intracellular levels of SM are not exclusively determined by
SMS and SMase activities but are also influenced by the dietary uptake of SM. A review by
Yang and Chen [232] delves into potential aspects of SM utilization as a dietary supplement.
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SM stands apart from PC, despite sharing the same PC head group. Its distinctive
characteristics result from a higher proportion of saturated acyl chains and enhanced inter-
molecular hydrogen bonding capabilities. Unlike PC, SM serves not only as a hydrogen
bond acceptor but also as a hydrogen bond donor. Consequently, SM is capable of being
involved in various cellular signaling processes, encompassing functions related to prolifer-
ation, migration, and apoptosis [233,234]. Previous studies have elucidated how SO and
LysoSLs can modulate protein kinase activities [235,236]. Furthermore, both Cer and SM
play a role in modulating the uptake of cholesterol esters from high-density lipoprotein
(HDL) particles by the target cells [237]. SM also plays a major role in the formation of
lipid rafts, engaging in interaction with CHOL to form membrane microdomains [238–240],
wherein roughly 70% of the cellular total SM is concentrated [241]. This favorable interac-
tion between SM and CHOL can be attributed to the specific attributes of SM molecules,
including their elongated saturated chains and reactivity properties (hydrogen donor and
acceptor).

Glycosphingolipids

This lipid class closely resembles SM due to their shared origin from Cer. It is com-
monly referred to as GSL as it distinguishes itself from SM by replacing the complex
phosphoryl group with a carbohydrate moiety. GSLs are largely derived from glucose
moiety, resulting in the formation of glucosylceramide (GlcCer). In addition, GSLs can also
be synthesized from a galactose moiety under the activity of galactosyltransferase, leading
to galactosylceramide (GalCer) formation. It is essential to highlight that GSLs vary in
their carbohydrate acylation locations. GlcCer is primarily produced at the cytoplasmic
surface of the Golgi apparatus, whereas GalCers is made on the luminal side of the ER and
is subsequently transported to the Golgi apparatus for further structural modifications to
generate various GSLs [242,243]. Within cellular membranes, GSLs are believed to exhibit
a preference for partitioning into lipid rafts and are involved in communication with the
surrounding environment.

Hundreds of complex GSL structures are currently identified in biological systems,
the vast majority of which are gangliosides, which are primarily composed of sialic acid
and oligosaccharides [244]. Due to the intricate nature of this lipid class, in-depth clas-
sification and discussion have been deliberately avoided. However, two of the simplest
GSL structures are glucosylceramide (GlcCer) and GalCer, often referred to as ‘cerebro-
sides’, featuring either a glucose moiety or a galactose moiety, respectively. The crucial
translocation of GlcCer to the luminal leaflet of the Golgi apparatus is an essential step
for its subsequent conversion into LacCer, an irreversible pathway involving the addition
of a galactose molecule. In addition to these, there exist other GSL complexes such as
sulfatides (containing sulfate) and globosides (featuring two or more sugar moieties, typ-
ically D-glucose, D-galactose, or N-acetyl-D-galactosamine), which have been identified
as GSL derivatives in cellular contexts [245]. For the sake of simplification, scientists have
categorized GSLs into two main groups: (1) neutral GSLs, which are characterized by
glycosyl groups devoid of acids and remaining unsubstituted, and (2) acidic or amphoteric
GSLs, whose glycosyl groups contain one or more sialic acids or a sulfate or phosphate
group [246,247].

GlcCer and GalCer function as precursors for numerous complex GSLs, some of which
possess additional carbohydrate groups numbering as high as 20 [248]. The addition of
these carbohydrate moieties takes place in the Golgi luminal leaflet following the flip-flop
translocation of simple GSLs. Majorly, GSLs serve two distinct functions [249]. Firstly, they
act as cell receptors to their binding ligands, thereby acting as antigens while facilitating
cell adhesion. Secondly, they function as signaling modulators by interacting with other
membrane constituents, particularly growth factor receptors. Thus, GSLs play an essential
role in immune-cell functions, with a large number of GSL molecules serving as tumor-
associated antigens [250–253].
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3. Fatty Acids of Biomembranes

Within the context of biomembranes, the matrix comprises an array of complex
molecules, with fatty acids serving as fundamental building blocks. Fatty acids exist
typically in two forms: saturated and unsaturated monocarboxylic acids, whereas both
are characterized by a terminal carboxyl (-COOH) group and a terminal methyl (-CH3)
group designated as carbon 1 (∆) and omega (ω or n), respectively. Over the past cen-
tury, numerous nomenclature systems have been proposed, including trivial, systematic,
∆x, n − x, and lipid numbers [22,23]. The trivial nomenclature, though prevalent, lacks
systematic patterns. In contrast, the systematic nomenclature adheres to a more regular
and structured approach, based on the nomenclature of parent hydrocarbons. It involves
adding the suffix “oic” to the hydrocarbon name after removing the terminal “e”. This
nomenclature also encompasses the identification of the position of the first double bond
from the (n), with the series of fatty acids being named accordingly (e.g., n-3, n-6, n-7, and
n-9 series). These distinctions among n-fatty acids lead to variations in their properties,
consequently influencing the structure and function of biomembranes [254].

Concerning complex lipids, phospholipids, and SLs addressed in this review, fatty
acids play a central role as their primary constituents. Therefore, it is essential to provide a
concise overview of their biosynthesis, incorporation into complex molecules, and their
biological functions in mammals.

3.1. Synthesis of Fatty Acids

Fatty acids can either be derived from the diet or biosynthesized within the cytosol
and ER through an indigenous pathway known as de novo fatty acid synthesis. This
synthesis is a complex process influenced by several determinants, including species, tran-
scription genes, dietary composition, age, gender, stored lipids, and both endogenous
(metabolic and interactive molecules) and exogenous (environmental) factors. A multitude
of genes regulate the synthesis of fatty acids, which can vary among different species.
In eukaryotic organisms, nearly 5% of the overall genes are responsible for a significant
proportion of lipid structures [255]. Remarkably, the liver X factor (LXR) contributes to the
regulation and synthesis of saturated, mono-, and polyunsaturated fatty acids by targeting
their transcriptional genes [256]. It also indirectly influences encoding factors involved in
lipogenesis, such as sterol regulatory element-binding protein 1c (SREBP1c) [257], peroxi-
some proliferator-activated receptor gamma (PPAR-γ) [258], and carbohydrate response
element-binding protein (ChREBP) [259].

Numerous organisms can produce a wide variety of fatty acids, but only a limited
number of molecular structures are synthesized in significant quantities at the natural
physiological rate [260,261]. Generally, the synthesis activity of fatty acids is relatively
low in normal adult cells, with the exception of certain tissues, including the brain, liver,
adipose, and lungs [262,263]. The liver, known as a lipogenic organ, is predominantly
responsible for the de novo pathway, although the white adipose tissue (which consists of
lipogenic cells) and mammary glands in animals and humans also possess the capability
to produce fatty acids through de novo lipogenesis [264–267]. Under conditions of energy
equilibrium, the liver takes up a remarkable proportion (30–50%) of free fatty acids contin-
ually absorbed from the diet. These assimilated lipids are either directly incorporated into
phospholipids and triglycerides (TAGs) or subjected to modifications (including elongation
and/or desaturation) to produce new/modified fatty acids.

Lipogenic cells can synthesize fatty acids endogenously from non-fat molecules, such
as glucose or amino acids (see Figure 5). In this process, pyruvate, a metabolite of glucose,
enters the mitochondria, where it undergoes oxidative decarboxylation through the pyru-
vate dehydrogenase complex to form acetyl-CoA. Within the mitochondria, acetyl-CoA can
also be derived from the degradation of ethanol, proteins (deamination and oxidation), and
fatty acids undergoing β-oxidation. Subsequently, these produced acetyl-CoA enter the
tricarboxylic acid cycle (TCA, citrate cycle, or Szent–Györgyi–Krebs cycle). This event is
very crucial since mitochondrial acetyl-CoA molecules are not permeable to mitochondrial
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membranes. Thus, they are initially located within the mitochondria, whereby they endure
a condensation reaction with oxaloacetate to form citrate, a process catalyzed by citrate syn-
thase during TCA [268,269]. The citrate molecule is then expelled from the TCA cycle to the
inner mitochondrial membrane, and subsequently to the cytosol. This citrate transporting
event requires a dicarboxylate antiporter solute carrier family 25 (SLC25A1) [270].
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Figure 5. Schematic depiction of eukaryotic fatty acid biosynthesis and modification pathways,
with emphasis on enzyme involvement (in italics). In this schematic, mitochondria are denoted by
the red box, while proteasome/ribosome components are indicated by the orange box. However,
light orange text delineates the elongation pathway for diverse saturated fatty acids. Within the
diagram, both green and blue hues, accompanied by corresponding colored arrows, elucidating
the discrete pathways for n3 and n6-fatty acid synthesis, respectively. On the other hand, text with
color spectrum transitioning from pink to red designates the pathways for the synthesis of various
monounsaturated fatty acids. The green “X” indicates the unattainability of this pathway in mammals,
particularly higher eukaryotes, owing to the absence of a specific enzyme. ELOVL8 is a fish-specific
elongase. Abbreviations: 1, condensation; 2, reduction; 3, dehydrogenation; 4, reduction; 5, aerobic
conditions; 6, hypoxia or anaerobic conditions; 7, aerobic conditions; ACC, acetyl-CoA carboxylase;
ACP, acyl carrier protein; ACPT, acyl carrier protein transacylase; ACS1, acetyl-CoA synthetases-1;
ACS2, acetyl-CoA synthetases-2; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase;
ACO2, aconitase; β, beta oxidation; CHOL, cholesterol; CIT, citrate synthase; Clyase, citrate lyase;
CPT-I, carnitine-palmitoyl transferase-I; CTP, citrate transporter protein, EAR, enoyl-ACP reductase;
ETC, electron transport chain; GDH, glutamate dehydrogenase; GS, glutamine synthetase; HACD,
β-hydroxyacyl-ACP dehydrase; IDH, isocitrate dehydrogenase; KAD, keto acid dehydrogenase;
KAR, β-ketoacyl-ACP reductase; KAS, β-ketoacyl-ACP synthetase; MACPT, malonyl-CoA:ACP
transacylase; MDH, malate dehydrogenase, MI, malic enzyme, PCase, pyruvate carboxylase; PCC,
propionyl-CoA carboxylase; PDH, pyruvate dehydrogenase; ROS, reactive oxygen species; TCA,
tricarboxylic acid cycle; TER, trans-enoyl-ACP reductase; O, oxaloacetate; *, citric acid).

In the cytosol, citrate can undergo distinct metabolic pathways to generate various
metabolites (see Figure 5). For instance, ATP-citrate lyase enzymatically cleaves citrate into
acetyl-CoA, which leads to the carboxylation of acetyl-CoA and the formation of malonyl-
CoA. Within cellular cytoplasm, acetyl-CoA (an active form of acetate) and malonyl-CoA



Int. J. Mol. Sci. 2023, 24, 15693 19 of 64

serve as the primary substrates that initiate the process of carbon chain elongation. It is
worth noting that propionyl and short-branched acyl units for priming can also be utilized
in specific cases. This occurs, for instance, when adipose tissue contains monomethyl-
branched fatty acids [271]. Additionally, the elongation process during the synthesis
of branched fatty acids in specific glands requires the incorporation of methylmalonyl
units [272].

It is imperative to emphasize the critical role played by the acyl carrier protein (ACP),
which binds to acetyl-CoA and malonyl-CoA, a process catalyzed by malonyl-CoA:ACP
transacylase. This integration event facilitates cytosolic elongation in higher eukaryotes by
sequentially transferring these substrates from one enzyme/enzyme domain to another
throughout sequential biosynthetic cycles. This active participation of ACP is vital for fatty
acid biosynthesis and the functions of fatty acid synthase (FAS), which is a multi-enzyme
system regulated by the encoded FASN gene. This cytosolic de novo pathway comprises
a series of reactions catalyzed by acetyl-CoA carboxylase (ACC) and FAS, which serve as
rate-limiting enzymes [273–275]. These reactions include ATP-dependent carboxylation
of acetyl-CoA to form malonyl-CoA, Claisen condensation to extend malonyl-ACP and
form 3-oxobutanoate, ketoreduction to yield 3-hydroxybutanoate, dehydration to yield
butenoate, enoyl reduction to yield butanoate, and repeating elongation reactions (see
Figure 5). This process results in the elongation of carbon chains up to the length of C16 or
C18 in the cytosol [276–278].

ACC, the rate-limiting enzyme in the de novo pathway, facilitates the irreversible
decarboxylation of acetyl-CoA through the addition of CO2 to produce malonyl-CoA. The
resulting malonyl-CoA attaches to ACP and also serves as a two-carbon donor within a
cyclic sequence of reactions facilitated by FAS, leading to the generation of a variety of fatty
acid species. The end products (acyl-ACP) of cytosolic de novo synthesis are primarily
palmitic acids (C16:0), with lower extents of myristic (C14:0) or stearic (C18:0) acids origi-
nating from acetyl-CoA. The determination of chain length during cytosolic de novo biosyn-
thesis involves three enzymes: acyltransferases, ketosynthases, and thioesterases [279]. It
is essential to highlight that there are two ACC isoforms: ACC1 (also known as ACCα),
which is highly expressed in adipose and hepatic tissues, and ACC2 (also known as ACCβ),
which is highly expressed in the heart and skeletal muscles [280]. The mechanism for the
conversion of acetyl-CoA to malonyl-CoA by ACC is suggested to differ depending on the
ACC type due to their different expression locations [281]. ACC1 is a cytosolic enzyme,
whereas ACC2 is located in the outer mitochondrial membrane. On the other hand, FAS
enzymes are exclusively cytosolic and can catalyze the formation of C16:0 from acetyl-ACP
(substrate) and malonyl-ACP (2-carbon donor) [274,275]. FAS comprises numerous large-
multifunctional protein domains (type I FAS) in eukaryotic and specific bacteria, while
a monofunctional polypeptide domain is present in the case of major bacteria (type II
FAS) [279,282–285].

In animals, the FAS pathway undergoes termination through a process involving
a thioesterase, resulting in the liberation of the free fatty acid as the final product. The
termination of the repeating elongation process exhibits the greatest degree of variation in
fatty acid biosynthesis. Nevertheless, the conversion of the cytosolic elongated product
to the CoA-ester is vital for further biosynthetic pathways that generate new fatty acid
structures.

3.1.1. Elongating Fatty Acids through Non-Cytosolic Mechanisms

Generally, the incorporation of the product into lipid structures or its involvement
in subsequent elongation and/or desaturation processes is contingent upon the specific
requirements of the organism at a given time. Further elongation pathways are not ex-
clusive to fatty acids derived from de novo fatty acid synthesis in the cytosol; they also
act on fatty acids derived from the diet, further extending and/or desaturating them to
produce longer saturated, monounsaturated, or polyunsaturated fatty acids that are vital
for all biomembranes. Following the production of palmitic acid in the cytosol, further
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modifications of this fatty acid may occur within cell organelles. In mammals, these modifi-
cations involve elongation (chains of 18 carbons or longer) and/or desaturation (formation
of monenoic/monounsaturated fatty acids).

The ER and mitochondria regulate the modification (elongation) of fatty acids [278]
in order to provide sufficient specific signals and functions. Already existing saturated
fatty acids are elongated by the sequential addition of two carbon atoms, resulting in the
formation of new fatty acids [286]. The principal fatty acid elongation pathway at the
cytosolic side of the ER involves a series of four independent reactions: (1) condensation,
(2) reduction, (3) dehydration, and (4) a final reduction step [287]. Major enzymes involved
in the elongation process include 3-ketoacyl-CoA synthases (elongase enzymes or ELOVLs
for reaction 1), 3-ketoacyl-CoA reductase (for reaction 2), hydroxyacyl-CoA dehydratase
(for reaction 3), and trans-2,3-enoyl-CoA reductase (for reaction 4). The ELOVL family,
sometimes referred to as type III FAS, serves as the rate-limiting enzyme family in the
elongation pathway. This family consists of seven subtypes in mice, rats, and humans, and
their regulation is governed by ELOVL-encoded genes.

ELOVLs catalyze the condensation of acyl-CoA and malonyl-CoA, which is responsi-
ble for elongating fatty acids and determining their carbon chain length, thereby influencing
the cell’s fatty acid composition and signaling. ELOVLs exhibit variation in substrate speci-
ficity, tissue distribution, and regulation [288]. Based on their final products (see Figure 5),
ELOVLs are classified into groups: ELVOLs that elongate saturated and monounsaturated
fatty acids (ELOVL1, 3, 6, and 7), ELVOLs that produce very long-chain polyunsaturated
fatty acids (ELOVL2 and 4), ELVOL5, which acts on a wide range of substrates with carbon
chains ranging from 16 and 22, and ELOVL8, which acts on a wide range of substrates with
carbon chains ranging from 16 to 20. ELOVL8 is a distinct subtype that has been recently
discovered but is believed to be specific to fish [289]. It is widely acknowledged that these
genes are primarily regulated at the transcriptional level; however, additional regulatory
mechanisms may exist, including allosteric inhibition. In mammals, ELOVL4 is the sole
enzyme capable of catalyzing the formation of fatty acids with more than 26 carbons [290].
These polyunsaturated fatty acids with more than 28 carbon atoms are primarily found in
the retina, brain [291–294], testis [295,296], spermatozoa [297], epidermis [298], meibomian
gland [299,300], and Vernix caseosa [301].

An additional pathway for elongating fatty acids occurs in non-cytosolic fatty acid
synthesis, especially in the mitochondria. Both animals and yeasts possess mitochon-
dria that contain FAS II enzymes (mtFAS II), which appear to interact with ACP-linked
molecules [302,303]. It should be noted that the ACC enzyme has not been identified in the
mitochondria of most mammalian species, including humans. However, a recent isoform
of ACC1 has been identified in the mitochondria of mice [304]. Thus, isoforms of ACC1,
and potentially mitochondrial propionyl-CoA carboxylase [305], are believed to regulate
the decarboxylation of acetyl-CoA to yield malonyl-CoA within mammalian mitochondria.
Nevertheless, these reactions occur at a limited rate, suggesting that imported malonate
may play a role in mitochondrial fatty acid synthesis.

Mitochondrial fatty acid elongation relies on nicotinamide adenine dinucleotide phos-
phate (NADPH)-dependent enoyl-ACP reductase, with acetyl-ACP and acyl-ACP serving
as substrates [306]. This pathway appears to be energetically unfavorable and represents a
minor pathway in eukaryotes [278], primarily contributing to the generation of fatty acids
used in the lipogenesis of mitochondrial membranes and cellular respiration. Unlike ani-
mals, where thioesterase-mediated termination is involved, mitochondrial termination en-
tails channeling the mitochondrial acyl-ACP into the lipid biosynthetic pathway [307]. The
primary generated product of mtFAS II activity is an octanoyl chain, which serves as a sub-
strate for lipoic acid synthesis—a vitamin that acts as a scavenger for free radicals [308–310]
and enhances energy metabolism as a cofactor [311]. Although this pathway can also
generate medium and long fatty acids [312], their exact biological roles remain uncertain.
However, studies by Nowinski et al. [264] and Angerer et al. [313] have suggested that
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these mitochondrial long-chain fatty acids are involved in the electron transport chain
(ETC) complex assembly.

Furthermore, a similar pathway for fatty acid elongation is proximal fatty acid elon-
gation, which is characterized by reversible β-oxidation. In this pathway, acetyl-CoA acts
as the carbon donor, and peroxisomal trans-2-enoyl-CoA reductase substitutes acyl-CoA
dehydrogenase to facilitate a thermodynamically favorable reaction [314]. It is important
to emphasize that CoA is implicated in the fatty acid catabolism of the reversible pathway,
while ACP plays a role in mitochondrial fatty acid elongation. However, the precise func-
tions of fatty acid elongation within peroxisomes remain insufficiently characterized from
a scientific standpoint. In practice, the extent of elongation is typically assessed using the
elongase estimated index, which is determined by the ratio of C16:0 to C18:0.

3.1.2. Desaturation of Fatty Acids

Within the context of de novo fatty acid synthesis, a process characterized by the
removal of two hydrogen atoms to create a double bond often intersects with the fatty
acid elongation pathway. This synergy ensures the production of long-chain and very
long-chain unsaturated fatty acids, both mono- and polyunsaturated. Notably, the enzymes
responsible for fatty acid desaturation, known as fatty acid desaturases, are ubiquitous
across all domains of life with the exception of archaea, where they are notably absent [315].
However, it is of significant importance to underscore that the synthesis of polyunsaturated
fatty acids can also occur independently of the classical series of desaturase and elongase
enzymes. Several studies, including those conducted by Smith and Tsai [316], Kaulmann
and Hertweck [317], Napier [318], and Metz et al. [319], have extensively documented
an alternative pathway for the biosynthesis of long-chain polyunsaturated fatty acids in
both prokaryotes and lower eukaryotes. This alternative route relies on semi-fatty acid
synthesis systems, specifically known as polyketide synthases (PKS). PKS employs the
same four fundamental reactions as FAS. However, the PKS cycle is frequently condensed,
resulting in the formation of highly modified carbon chains featuring numerous keto and
hydroxy groups, along with trans-configured double bonds that exhibit various functional
roles [320,321].

Among the plethora of desaturase families found in different species, researchers have
categorized them into three distinct types, as described by Cerone and Smith [322]. The
first family, acyl-acyl carrier protein desaturase, is exclusive to plastids of higher plants.
The second family, acyl-lipid desaturases, is found in the ER membranes of higher plants
and cyanobacteria. The third family is the family of acyl-CoA desaturases, which can be
present in both eukaryotes and prokaryotes, and these enzymes use a cytochrome b5-like
system during oxygen reactions [323]. Within the context of this review, with a primary
emphasis on mammals, the discussion will be specifically on the acyl-CoA desaturase
families. In mammals, a critical in vivo biosynthetic route for the production of long-chain
polyunsaturated fatty acids is known as the ‘Sprecher pathway’ [324]. This pathway relies
on two fatty acid desaturase enzymes, two ELOVLs, and a peroxisomal β-oxidation process.

The desaturase pathway encompasses diverse enzyme families, such as stearoyl-CoA
desaturase (SCD) [325] and fatty acid desaturase enzymes (FADS) [326]. Each of these
enzymes acts on distinct substrates. For example, FADS primarily targets polyunsaturated
substrates, while SCD predominantly acts on saturated substrates. SCD, also referred to as
delta-9 desaturase (∆9-desaturase, or D9D), is an ER enzyme that catalyzes the formation
of monounsaturated fatty acids, including palmitoleic (C16:1 n7) and oleic (C18:1 n9) acids,
from saturated fatty acids, such as palmitic and stearic acids, respectively. These enzymes
exhibit varying specificities and can work on a range of fatty acids with different carbon
chain lengths, from 16 to 26 carbon chains. This variation hinges on the specific isoform
present, with some species harboring multiple homologues of D9D. For instance, two
homologues (D9D-1 and D9D-2) have been identified in marine copepods [327].

Basically, within the D9D reaction, a double bond is introduced at the 9th position from
the carboxyl group of the fatty acid. In addition, a multitude of desaturase enzymes present
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in plants, bacteria, and insects perform the initial double bond introduction on saturated
fatty acids at various positions, including ∆3, ∆5, ∆7, and ∆11 [328–332]. The activity of D9D
is modulated by dietary fatty acid intake and is subject to up-regulation by the expressions
of SCD gene isoforms [333]. Since Bloch’s 1960 pioneering discovery of SCD [315], a
plethora of gene isoforms have come to light. In mice, the SCD exhibits four distinct
isoforms (SCD-1–4) [334], whereas in humans, only two isoforms (SCD-1 and SCD-5) have
been identified [335]. These gene isoforms can vary in substrate preference, ∆ position, and
double bond conformation [336]. SCD-1 is the most studied isoform among them [325].
The importance of the SCD pathway is underscored by its involvement in cellular stress,
lipid metabolism, inflammation, and autoimmunity. Among the isoforms, SCD-1 is the
most extensively studied and is associated with various physiological processes [337–342].

Fatty acids featuring a ∆9 double bond are eligible for elongation, but it is important
to note that these fatty acids may also be derived from the diet. However, D9D activity is
indirectly determined by assessing the ratio between C18:0 and oleic acid. Notably, the de
novo elongation of oleic acid results in the formation of longer chains of monounsaturated
fatty acids. Furthermore, oleic acid, in particular, may undergo a desaturation process
often followed by elongation, where the double bond is introduced before the ∆9 position.
Nevertheless, unlike in plants and a limited number of animal species, mammals lack the
enzymatic capability to catalyze the introduction of the second double bond in oleic acid,
particularly not after the ∆9 position.

Fatty acid desaturase genes (FADs) comprise a gene family responsible for encoding
a variety of desaturase enzymes. These enzymes play a significant role in catalyzing the
synthesis of polyunsaturated fatty acids by introducing multiple double bonds at positions
within fatty acids. Among the genes involved in fatty acid desaturation, mammals have
been identified with four distinct FADs [335]: (1) FAD-1, (2) FAD-2, (3) FAD-3, and (4)
FAD-6. Each of these FAD types tends to have alternative transcriptions [343–345], which
can express distinct desaturase activities at different ∆-positions. Generally, FAD enzymes
can be categorized into FAD-1, responsible for generating omega-3 (n3) fatty acids; FAD-2,
involved in generating omega-x (nx) fatty acids; and FAD-3, which contributes to the
formation of omega-6 (n6) fatty acids. While little is known about the substrates of FAD-6
and their major roles have not yet been defined, it appears to be homologous to human
FAD-2 [346–348] and likely plays a role in the synthesis of polyunsaturated fatty acids.

The transcription factor FAD-6 has been described to possess ∆4-, ∆5-, and ∆8-
desaturation activities, with a notable impact on docosahexaenoic acid (C22:6 n3, or
DHA) synthesis from n3-docosapentaenoic acid (C22:5 n3, or DPA-n3) in golden pom-
pano fish [349]. On the other hand, Park et al. [345] detailed the existence of nine alternative
transcriptions for FAD-3, potentially arising from splicing events. Initially identified
through cloning efforts by Marquardt et al. [350], FAD-3 has been traditionally classi-
fied as a non-polyunsaturated desaturase, primarily due to its limited substrates, namely,
vaccenic acid (C18:1 trans-11) and sphingoid bases. In this regard, it should be noted that
FAD-3 may facilitate the unanticipated ∆13-desaturation of trans-vaccenate [351]. These
limited substrates give rise to the production of 11E,13Z-octadecadienoic acid [352] and
4E,14Z-sphingodienine [353], respectively.

In contrast to FAD-3, FAD-1 and FAD-2 are the principal contributors to the biosynthe-
sis of polyunsaturated fatty acids in mammals. Nevertheless, mammals lack two crucial
desaturases, namely delta-12 desaturase (∆12-desaturase, or D12D) and delta-15 desaturase
(∆15-desaturase, or D15D) [354–356]. These enzymes are often referred to as “methyl-end
desaturases” due to their ability to introduce a new double bond between an existing
unsaturated bond and the methyl terminus (–CH3) of the fatty acid. Thus, mammals are de
novo incapable of introducing a new double bond after the ∆9 position of oleic acid. Hence,
mammals must obtain polyunsaturated fatty acids from their diet, leading to the concept
of essential fatty acids. These essential fatty acids, such as linoleic acid (C18:2 n6, or LA)
and α-linolenic acid (C18:3 n3, or ALA), cannot be endogenously synthesized by mammals
and must be sourced from dietary intake [357–359]. Nonetheless, the enzyme activities of
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FAD-1 (∆5-desaturase, or D5D) and FAD-2 (∆6-desaturase, or D6D) have been identified in
mammals. These enzymes are responsible for introducing double bonds at the ∆5 and ∆6
positions, respectively [360,361]. Notably, both D6D and D6D are highly expressed in the
liver, with D6D exhibiting particularly high expression levels [362].

In mammals, dietary LA, ALA, and other unsaturated fatty acids, whether from the
diet or synthesized endogenously, serve as substrates for the generation of polyunsaturated
fatty acids characterized by an increased number of double bonds and longer carbon chains.
The enzyme D6D plays a crucial role in the initial steps of synthesizing arachidonic acid
(C20:4 n6, or AA), eicosapentaenoic acid (C20:5 n3, or EPA), and DHA by catalyzing the
conversion of LA and ALA into γ-linolenic acid (C18:3 n6) and stearidonic acid (C18:4
n3), respectively [362]. However, the biosynthesis of AA and EPA, in particular, involves
an additional desaturase enzyme, delta-5 desaturase (D5D), which utilizes the substrates
dihomo-γ-linolenic acid (C20:3 n6, or DGLA) and eicosatetraenoic acid (C20:4 n3) to
yield AA [360] and EPA [363], respectively. According to Vagner and Santigosa [364],
the substrate affinities of D6D appear to exhibit contrasting and debatable characteristics.
Consequently, further investigations are imperative to substantiate a definitive conclusion.
It is essential to emphasize that the distinctive substrate affinities of D6D play a critical role
in determining the ratio of n6- to n3-polyunsaturated fatty acids (referred to as n6/n3 or
n6:n3). The role of FAD-6 in determining the ratio of n6/n3-polyunsaturated fatty acids
and its influence on the metabolic flux of these fatty acids have been highlighted [365,366].

Remarkably, D6D and D5D are also involved in the synthesis of n9-polyunsaturated
fatty acids, specifically, Mead acid (C20:3 n9), which is produced in the absence of LA and
ALA [367], when only monounsaturated fatty acids are available as substrates. Elevated lev-
els of Mead acid are matched with the proportional depletion of n6- and n3-polyunsaturated
fatty acids and serve as a biomarker for LA and ALA deficiency in diets. For instance, the
ratio between trienoic and tetraenoic acids (such as Mead acid:AA) functions as a biomarker
for the lack of dietary essential fatty acids [368,369]. Park et al. [370] have identified two
pathways for Mead acid production, involving D6D and D5D. These pathways vary in
substrates of D6D, which can either utilize oleic acid or gondoic acid (C20:1 n9) to yield
C18:2 n9 and C20:2 n9, respectively. D5D catalyzes the direct conversion of C20:2 n9 into
Mead acid by introducing a double bond at the ∆5 position. Furthermore, authors have
also reported the novel activity of ∆7-desaturase (D7D, regulated by FAD-1), leading to the
formation of C20:2 n9 from C20:1 n9.

Notably, AA, EPA, and DHA are biologically essential fatty acids with enormous
contributions to membrane phospholipids. In the Sprecher pathway, the primary fatty
acid synthetic pathway in mammals, the biosynthesis of DHA from EPA is not direct but
rather involves a series of reactions: (1) elongation to a 24-carbon chain, (2) desaturation
via D6D, and (3) peroxisomal β-oxidation for chain shortening. However, the synthesis
of n6-docosapentaenoic acid (C22:5 n6, or DPA-n6) and DHA in eukaryotes also occurs
through ∆4-desaturase (D4D) pathways, depending on the species. In lower eukaryotes,
marine vertebrates, and humans, D4D (encoded by the FAD-2 gene), which is expressed
to a lesser extent, plays an essential role in introducing a double bond at position ∆4,
directly producing DPA-n6 and DHA from docosatetraenoic acid (C22:4 n6, or adrenic acid)
and DPA-n3 substrates, respectively [371–374]. It is noteworthy that this reaction bears
resemblance to that facilitated by FAD-6 expression, suggesting the possibility of FAD-6
up-regulating D4D activities.

A further marked expression of FAD-2 identified within mammalian cells is ∆8-
desaturase (D8D). This enzyme establishes an autonomous pathway distinct from D6D,
introducing an additional double bond to substrates like ALA, LA, and their elongated
polyunsaturated fatty acids, resulting in the formation of very long-chain polyunsaturated
fatty acids [375,376]. For instance, the emergence of D8D was observed when DGLA and
eicosatetraenoic acid were derived from eicosadienoic acid (C20:2 n6) and eicosatrienoic
acid (C20:3 n3), respectively [377]. In a study conducted on mouse liver, D8D expressed
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low activity, which is primarily associated with n3-unsaturated fatty acids, such as eicosate-
traenoic acid (C20:4 n3), EPA, DPA-n3, DHA, and nisinic acid (C24:6 n3) [375].

In general, more than a hundred FAD-2-related desaturase enzymes have been identi-
fied in various animal species, although they are notably absent in mammals. For instance,
the ∆17 (17-desaturase, or D17D) and ∆19 (19-desaturase, or D19D) desaturases have been
identified in lower animal families (excluding mammals) and algae [378,379]. These en-
zymes play an essential role in the production of EPA and docosapentaenoic acid-n3 (C22:5
n3, or DPA-n3) from AA and adrenic acid, respectively. The activities of enzymes involved
in lipogenesis are subject to intricate regulation by a matrix of genes and exogenous fac-
tors. Notably, polyunsaturated fatty acids have been shown to inhibit the transcription of
hepatocellular genes responsible for encoding lipogenic enzymes [380,381]. It is a common
practice to assess desaturase enzyme activity indirectly by determining their coefficients
based on the ratio of the fatty acids generated to the substrates utilized.

Desaturase enzymes exhibit a broader scope of activities beyond their involvement
with fatty acid substrates incorporated into phospholipids, as they are also active in
SLs. Ordinarily, SLs are characterized by their predominantly very long saturated or
monounsaturated nature. The determination of fatty acid chain length within SLs is in-
tricately governed by the activities of the CerS type [382]. However, it is worth noting
that polyunsaturated fatty acids show a slight accumulation in SLs within testes and
spermatozoa [383,384] as compared to phospholipids within the same tissues. The classi-
fication of desaturases responsible for introducing double bonds into Cer structures has
been presented by Nachtschatt et al. [385]. This classification delineates three distinct
categories of desaturases: (1) α-hydroxylases [386], (2) D4D and C4-hydroxylases [387],
and (3) D8D [388]. These desaturases play a pivotal role in diversifying the composition
of SLs, particularly in terms of the introduction of double bonds, which contribute to the
functional and structural heterogeneity of these important lipid molecules.

3.2. Incorporation of Fatty Acids into Lipids of Biomembranes

Fatty acid synthesis and their subsequent incorporation into biomembranes represent
critical processes in the life of all organisms. The one exception to this rule is the archaea
domain, which employs isoprenoids as membrane lipid side chains rather than fatty
acids [389]. Understanding how fatty acids are incorporated into membrane lipids is of
paramount importance. Fatty acids may become part of phospholipids either through
acylation of glycerol-3-phosphate during the biosynthesis of phospholipids or through the
action of lysophosphatidic acyltransferases and phospholipases that remodel the structure
of pre-existing phospholipids [390,391] (which can be seen in Figure 6).

The vital nature of these processes is underscored by the coexistence of diverse fatty
acid structures within complex biomembrane lipids [392]. This structural diversity arises
from various factors, including the preferences of sn-positions for particular fatty acids, the
substrate preferences of biosynthetic enzymes, and the dynamic lipid remodeling program.
Notably, studies by Shindou et al. [393] and Coleman et al. [394] have elucidated the
preferences of specific enzymes for distinct fatty acids. For instance, acyl-CoA synthetase
long-chain family members 3 and 4 demonstrate preferences for AA and EPA, while 1-
acylglycerol-3-phosphate O-acyltransferase-α prefers myristic acid, palmitic acid, and LA.
Meanwhile, 1-acylglycerol-3-phosphate O-acyltransferase-β exhibits a preference for AA.
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ploys color coding to symbolize distinct metabolic pathways. The yellow box designates the fatty 
acid pool, signifying its integration into diverse membrane lipids. The brown shade denotes pro-
cesses related to non-membrane and non-polar lipid formation. The red color represents the meta-
bolic routes responsible for sterol production. Additionally, the green color signifies the integration 
of fatty acids into various phospholipids, while the blue hue corresponds to the incorporation of 
fatty acids into diverse sphingolipids. 
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cific structural configurations required for the generation of particular cellular signals. In 
this pathway, phospholipases initiate cleavage (deacylation) of fatty acids from phospholip-
ids, resulting in the formation of free fatty acids and lysophosphatidate. On the other hand, 
acyltransferases function in a contrasting manner, acylating the requisite fatty acids into 
lysophosphatidate to generate phospholipids. This process is CoA-dependent, which is pri-
marily due to the extensive utilization of CoA intermediates as substrates. Other remodeling 
pathways include the CoA-independent transacylation pathway and the direct transacyla-
tion pathway, which are specifically suited for highly unsaturated fatty acids such as AA, 
EPA, and DHA. In these pathways, transacylases catalyze the migration of fatty acids be-
tween molecular species of phospholipids. Remarkably, these remodeling pathways exhibit 
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In the context of lipid remodeling, the replacement of fatty acids within existing phos-
pholipids plays a central role. For instance, the incorporation of C20 fatty acids generally
takes place post-de novo synthesis, necessitating the employment of the remodeling path-
way [395]. Hence, this process involves the conversion of one distinct phospholipid into
another [85], highlighting the importance of the Lands cycle in this process. The Lands
cycle [396,397] is a central component of the remodeling process, enabling the attainment of
specific structural configurations required for the generation of particular cellular signals.
In this pathway, phospholipases initiate cleavage (deacylation) of fatty acids from phospho-
lipids, resulting in the formation of free fatty acids and lysophosphatidate. On the other
hand, acyltransferases function in a contrasting manner, acylating the requisite fatty acids
into lysophosphatidate to generate phospholipids. This process is CoA-dependent, which
is primarily due to the extensive utilization of CoA intermediates as substrates. Other
remodeling pathways include the CoA-independent transacylation pathway and the direct
transacylation pathway, which are specifically suited for highly unsaturated fatty acids
such as AA, EPA, and DHA. In these pathways, transacylases catalyze the migration of
fatty acids between molecular species of phospholipids. Remarkably, these remodeling
pathways exhibit substantial variability across different tissues [395], as comprehensively
reviewed [390].

Additionally, it is noteworthy that fatty acids are predominantly incorporated into
SLs by the rate-limiting enzyme CerS. However, a remodeling mechanism can also come
into play, modulating specific signaling and functional roles. For example, the work
of Markham et al. [398] suggests that the accumulation of very long-chain fatty acids
contributes to the formation of microdomains through increased hydrophobicity, membrane
leaflet interdigitation, and the transition from a fluid to a gel phase. These structural
transformations have significant implications for cellular function and signaling within
membranes.

The movement of membrane phospholipids between bilayers involves the activities
of various transmembrane lipid transporter proteins, namely, flippase, floppase, and
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scramblase. These proteins play distinct roles in the translocation of lipids and exhibit
differential mechanisms of action. For instance, flippase facilitates the translocation of lipids
from the exo-leaflet to the inner-leaflet, contrasting with the activity of floppase, which
operates in the opposite direction, moving lipids from the inner-leaflet to the exo-leaflet.
Notably, both flippase and floppase depend on ATP as an energy source for their functions.
Conversely, scramblase functions as an ATP-independent transporter and orchestrates the
bidirectional movement of lipids across membranes in a non-specific manner, allowing for
the concurrent translocation of lipids from the inner to the outer leaflet and from the outer
to the inner leaflet. Comprehensive insights into these membrane fatty acid transporters
have been provided by the extensive reviews conducted by Samovski et al. [399] and Glatz
et al. [16]. These reviews offer a detailed discussion of the mechanisms and significance of
these proteins in lipid translocation processes within biological membranes.

3.3. Fatty Acid Composition in Biomembranes

The fatty acid composition of biomembranes plays a critical role in maintaining cellular
homeostasis and ensuring proper functionality. It is worth noting that this composition
is not static but can be modified/remodeled in response to homeoviscous adaptation.
This process was initially described in algae [400] and has been later extended to non-
homeothermic animals. In contrast, mammals are generally considered to have stable
biophysical properties and lipid order within cellular membranes, but they can respond
to changes in their dietary fatty acid compositions. Furthermore, certain mammalian cells
potentially exhibit a lower degree of homeoviscous adaptation in response to the membrane
curvature elastic stress [401]. The fact that there is not a single standardized composition for
fatty acids in biomembranes should not be viewed as a flaw but rather as an indication of
the intricate and dynamic nature of biological systems. The complexity and adaptability of
fatty acid composition in biomembranes underscore the potential evolutionary advantage
conferred by the ability to alter lipid structures.

The available literature, which will be discussed in subsequent sections, provides
extensive data regarding the proportions of specific fatty acids in various lipid complexes
within biomembranes. This section merely focuses on the major fatty acids identified in
phospholipids and SLs, as these fractions are the central aspects of this review. Regardless,
the length and degree of saturation of fatty acyl side chains in CHOL-esters can vary
between different cells. This variation is primarily influenced by dietary factors and cell
metabolism, and it has a direct impact on the stability and fluidity of the cellular membrane.

3.3.1. Fatty Acid Profile of Phospholipids

Commonly, the acyl chains of phospholipids found at the sn-1 and sn-2 positions of
the glycerol backbone are typically composed of a saturated fatty acid (such as C16:0 or
C18:0) and an unsaturated fatty acid (with carbon chains of 18, 20, 22, or 24), respectively.
Furthermore, these acyl chains exhibit variations in terms of their length, the number
of double bonds, and the position of hydrogen atoms adjacent to these double bonds
(whether in cis or trans configuration). It is important to note that trans-double bonds
are relatively rare within mammalian membranes, while cis-double bonds are frequently
abundant. In fact, the occurrence of trans-double bonds in mammals is far less frequent
than in bacteria [402,403]. In some instances, identical acyl chains can be found at both
sn-1 and sn-2 positions of glycerol [404,405]. It is worth highlighting that even when the
number of carbons is the same, a slight mismatch may occur due to the sn-positions. This
mismatch is a consequence of the sn-2 chain bending perpendicular to the membrane’s
plane [406,407].

In the case of PA, the composition of the two fatty acids can vary across different cell
types and constituents. Typically, dietary fatty acids and metabolic disorders play a sub-
stantial role in determining the composition of these acyl chains. PA is primarily composed
of saturated and monounsaturated fatty acids, with carbon chains ranging from 14 to 24.
Concerning PG, this class exhibits variations in the length and number of unsaturation of
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its fatty acids, depending on the cell type and the dietary fatty acids involved. In the PG
of rat lungs, palmitic acid is the most abundant fatty acid, with unsaturated fatty acids
constituting a smaller portion [408]. PG is unique among phospholipids due to its higher
degree of unsaturation, with unsaturated fatty acids more likely to occupy the sn-1 position.
Research by Xie et al. [409] suggests that the degree of unsaturation in PG may have varying
effects on mouse keratinocyte proliferation.

Commonly, the fatty acid composition of PCs is typically determined post-synthesis,
with various events, such as deacylation and reacylation, taking place during its remodel-
ing [396,397]. These events, part of the Lands cycle, can also impact the composition of other
phospholipids due to homeostatic mechanisms or metabolic implications [410]. Generally,
PC exhibits variations in its fatty acid composition across species and cell types [411–416].
Saturated fatty acids, like palmitic or stearic acids, are typically abundant at the sn-1 posi-
tion, while C18 unsaturated chains or longer polyunsaturated fatty acids like AA and DHA
are more prevalent at the sn-2 position.

The fatty acid composition of PE is highly dependent on the particular cell, tissue,
and physiological conditions. In contexts like chicken egg, rat liver, and brain, palmitic
and stearic acids tend to occupy the sn-1 position, while AA, oleic, and DHA are more
common at the sn-2 position [411,412,417]. Notably, PE in the erythrocyte membrane
exhibits a greater tendency for the accumulation/recruitment of polyunsaturated fatty acids
compared to PC [418]. Consequently, PE in this context contains more polyunsaturated
fatty acids, primarily AA and DHA, at the sn-2 position, despite its diacyl structure bearing
similarities to that of PC.

The composition of fatty acids in PS differs depending on the tissue type. Nonetheless,
lipid remodeling and selective insertion of fatty acids are common processes that occur
along the biosynthetic pathway. Therefore, the fatty acid composition of newly synthesized
PS differs from that of its precursors, PE and PC. When PS was isolated from rat liver
and cow brain and analyzed regiospecifically [412,414], it was observed that stearic acid
was more abundant at the sn-1 position, while the proportion of palmitic acid was lower
here. These data underscore the distinct fatty acid incorporation pattern exhibited by PS
in comparison to PC and PE. Furthermore, the acylation of fatty acids at the sn-2 position
has been shown to be tissue-specific, with high proportions of AA and DHA in the livers
of rats and the brains of bovines, respectively. Similar findings regarding DHA in brain
regions of mice and rats have been reported by Kim et al. [419] and Hamilton et al. [420].
However, stearic acid was the most abundant fatty acid at the sn-1 position in these cases.
Remarkably, the incorporation of these unsaturated fatty acids into PS appears to be more
extensive than in the case of PC, as revealed by these studies. The fatty acid composition of
PS at its sn-positions plays a crucial role in determining its functional properties to varying
degrees [93,421].

In mammalian cells, the composition of PI is characterized by the presence of stearic
acid and AA in the sn-1 and sn-2 positions, respectively, as consistently demonstrated in
various studies [411,412,422,423]. These two fatty acids collectively account for a substantial
portion of PI acyls, typically ranging from 50% to 80% in the brain and liver. Additionally,
oleic acid is frequently identified as the third most abundant fatty acid in the rat brain, while
palmitic acid and DHA exhibit lower levels of acylation in this phospholipid. However,
it is worth noting that Ulmann et al. [424] reported a distinct fatty acid composition in
the rat brain, where oleic acid was the most prevalent, followed by stearic and palmitic
acids. This variability in PI composition across studies may be attributed to a range of
factors, including dietary influences and genetic variations. In general, PI exhibits a strong
preference for AA in its acyl composition. Remodeling processes can lead to the deacylation
of pre-existing PI, resulting in the formation of lyso-PI via the action of phospholipases. The
incorporation of AA into lyso-PI is facilitated by lysophosphatidylinositol acyltransferase
1 [425].

The structure of fatty acids within CL greatly influences its shape and properties. Satu-
rated chains tend to produce lamellar forms of CL, whereas unsaturated chains contribute
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to non-lamellar structures [38]. Thus, the distinctive fatty acid composition of CL is believed
to play a critical role in its diverse biological functions across different cellular and subcel-
lular membranes. CL remodeling is an essential process for CL formation, during which
LA and DHA are primarily incorporated, influencing susceptibility to oxidation [426–429].
LA has been reported as the majority of CL fatty acids, often accounting for 80–90% of
the composition [430]. Although C18 polyunsaturated fatty acids are the predominant
constituents of CL, dietary fatty acid intake can influence its composition. Increased dietary
supplementation levels of C20 polyunsaturated fatty acids and DHA have been shown to
elevate their proportions in mammalian CL, as indicated by Berger et al. [431] and Wolff
and Entressangles [432].

The structure of BMP exhibits variations in chain length and the degree of fatty
acid unsaturation. Oleic acid is frequently identified as the most abundant fatty acid in
BMP [126,132,433]. However, in certain cell types, polyunsaturated fatty acids such as LA
and/or EPA and DHA have been reported to be highly accumulative [434–437]. In alveolar
macrophages, for instance, Holbrook et al. [438] noted that oleic acid predominates along
with either AA or DHA.

In intact tissues (e.g., neural tissue), palmitic acid typically represents the most abun-
dant fatty acid within the alkyl group of PAF. Stearic and oleic acids may also be present
but to a relatively lesser extent. The sn-2 position of PAF is often esterified with the acetyl
group or other short-chain fatty acids [439]. However, in rat nervous tissue, sn-2 is predom-
inantly occupied by unsaturated fatty acids, primarily AA and adrenic acid (C22:4n6) [440],
indicating the profound impact of sn-2 composition on PAF activities. These longer n6-type
fatty acids serve as potent precursors for eicosanoids.

3.3.2. Fatty Acid Profile of Sphingolipids

In general, SLs exhibit a prevalent composition of very long-chain saturated and/or
monounsaturated fatty acids, typically ranging from 18 to 34 carbon chains. Notably,
some sphingolipid structures have been reported to contain odd-numbered fatty acid
chains [201,441], suggesting a possible proportional elevation of these chains in the tissues
of ruminants and coprophagous species. Despite the fact that the enzyme SPT utilizes
palmitoyl-Coenzyme A to produce SA, it has the capability to utilize various other fatty-
CoA substrates as well [442]. Sphingoid bases within SLs predominantly feature saturated
aliphatic chains, with some instances of mono- and di-unsaturated chains. SO possesses
a fixed trans-double bond between carbons 4 and 5. The chain length of sphingoid bases’
fatty acids typically falls within the range of 14 to 32 carbons [443].

Within the context of Cer, the variability in chain length is attributed to the diversity
of CerS isoforms. In most scenarios, CerS5 and CerS6 predominantly provide chains
with 14–18 carbons, CerS1, CerS4, and CerS2 contribute chains with 18–24 carbons, and
CerS3 supplies chains with up to 34 carbons [382]. Cer features an acyl chain linked to
an amide that is frequently saturated and considerably longer compared to those found
in SLs containing sugar moieties [240]. The length of the Cer fatty acid is determined by
ER elongase and desaturase complexes, rather than the Golgi apparatus, which produces
complex SLs. Cer and SM are primarily acylated by palmitoleic and oleic acids, in addition
to long and very long-chain fatty acids. In most organisms, including mammals, Cer can
contain 2-hydroxylated fatty acids [444,445], which is a characteristic favoring interaction
with SMS2 over SMS1 [446].

SM structures are characterized by long fatty acids with relatively high chain length
inequality, leading to their interdigitation sensitivity. The cause of interdigitation is not
fully understood but may involve the regulation and/or induction of proteins in response
to specific fatty acids within SM under certain membrane constituents. In comparison to
PC, SM typically contains more saturated and longer acyl chains, typically ranging from
16 to 24 carbons [415,447], and may include odd-numbered fatty acids [448]. The palmitic,
stearic, behenic (C22:0), lignoceric (C24:0), and nervonic (C24:1 n9) acids are among the
most frequently occurring fatty acids in SM [415,447–450]. Mammalian germ cells, in
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particular, are abundant in very long-chain fatty acids with up to 34 carbons [297,451],
some of which may exist in a 2-hydroxylated form in certain mammals [452]. Double bonds
are relatively rare in SM fatty acids, and, when present, they are often located at a distance
from the membrane–water interface [447].

GSLs exhibit a greater variation in the chain length of their fatty acids compared to
phospholipids, with some GSLs containing fatty acids with more than 16 carbons [453].
Although it is challenging to detect long and/or unsaturated fatty acids in GSL, a few
studies have reported the presence of high proportions of long and very long fatty acids. For
instance, stearic acid has been found to be more dominant than palmitic acid in the GSLs
of the mouse brain [454]. Furthermore, the majority of GalCer in the brain is composed of
very long fatty acids [455]. In gangliosides, lignoceric acid (C24:0) is the most abundant
acyl chain, constituting up to 70% of total fatty acids in myelin [456], while stearic acid is
the predominant component, making up 80% of total fatty acids in the human brain [457].

4. Fatty Acids and Cellular Functionality

The different chemical structures, physicochemical properties, and physiological
functions of various fatty acids exhibit remarkable diversity. These distinctions have led
to various categorizations, depending on the specific scientific focus. Traditionally, fatty
acids have been recognized for their dual biological functions: as structural components
of biomembranes and as sources of energy. However, contemporary perspectives on
fatty acids have expanded to encompass their roles as bioactive molecules that contribute
significantly to overall health. Pioneering work by Burr and Burr [458] and von Euler [459]
underscored the diverse biological functions of fatty acids, particularly LA and ALA,
highlighting their crucial roles in cellular signaling processes. This section focuses on
fatty acids’ impact on membrane properties and avoids delving into their role in energy
provision via β-oxidation (primarily relies on TAGs), which is a subject beyond the scope
of this review.

4.1. Influence of Fatty Acids on Bilayer Properties

Fatty acids play an essential role as constituents in cellular membrane assembly, pro-
foundly influencing the physicochemical attributes of these membranes. Biomembranes
exhibit a discerning preference for incorporating specific fatty acids, particularly favor-
ing long and very long polyunsaturated fatty acids that contribute to the formation of
fluidic membranes. A study by Rodriguez-Estrada et al. [460] has associated long-chain
lipid metabolites derived from LA and ALA with the preservation of membrane prop-
erties. Sensor proteins typically monitor and regulate the physicochemical properties of
membranes [7,461,462]. Fatty acids exhibit variations in chain length and degree of unsat-
uration across different cellular contexts, catering to specialized functions. For instance,
the study of Matveyenka et al. [463] has highlighted the correlation between the rate of
insulin aggregation and the length and degree of the unsaturation of fatty acids. Therefore,
maintaining equilibrium among various fatty acid species (saturated, monounsaturated,
and polyunsaturated) within membranes holds a position of critical importance, as any
deviations from this equilibrium could lead to modifications in membrane integrity and
cellular metabolic signaling. Notably, Baccouch et al. [464], Hashimoto et al. [465], and
Ibarguren et al. [466] have reported the effects of fatty acid composition on various aspects
of membrane behavior, including fluidity/viscosity/rigidity, thickness, permeability, phase
transitions, fusion, lateral pressure, flip-flop dynamics, and structural integrity.

The optimal functionality of membrane-bound enzymes, ion channels, and receptors
is intrinsically linked to membrane rigidity and permeability, influencing the diffusion of
biomolecules within the lipid bilayer. Incorporating higher proportions of long saturated
fatty acids enhances membrane rigidity, as these fatty acids are notably stable, having higher
melting points than unsaturated fatty acids [467], and tend to form close clusters [468],
particularly at physiological temperatures, resulting in heightened membrane rigidity. In
contrast, polyunsaturated fatty acids contribute to greater conformational flexibility in
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membranes, which is a trait dependent on their chain length, degree of unsaturation, and
the positioning of hydrogen atoms relative to the double bond. The presence of unsaturated
fatty acids introduces curves/bends (also known as “kinks”) in the hydrocarbon chains,
leading to the formation of less densely packed lipids and more fluidic membranes [469].
However, the influence of polyunsaturated fatty acids on membrane fluidity may vary,
particularly in different bilayer states [470]. For instance, EPA and DHA have demon-
strated negligible effects on fluidity in liquid-crystalline states [471]. In contrast, within
different membrane models, polyunsaturated fatty acids with four or more double bonds,
specifically AA, EPA, n6-DPA, and DHA, have been reported to decrease membrane thick-
ness [464,472–474], increase the tilt angle [472], and elevate membrane fluidity [475,476].
The degree of rigidity contributed by double bonds within fatty acids is contingent on
various factors, including their conformation (cis or trans), the degree of unsaturation, and
their relative positioning concerning the carboxyl group. According to Roach et al. [477],
the membrane properties of fatty acids associated with cis-unsaturated fatty acids were
markedly different from those of saturated and trans-unsaturated fatty acids. Typically,
cis-isomers exhibit greater polarity and possess relatively higher boiling points compared to
trans-isomers, although not as high as those of saturated fatty acids. Notably, the position
of the double bond exerts a more substantial impact on boiling points than the number
of double bonds [478]. Cis-double bonds have been identified as expanding the spatial
area occupied by the fatty acid, thereby increasing membrane fluidity [479,480] and perme-
ability. Moreover, phospholipids containing long-chain n3-fatty acids have shaped more
disordered and flexible membrane structures compared to LysoPLs containing n6-fatty
acids, underscoring the significant role of n3-fatty acids in shaping membrane integrity.

Unsaturated fatty acids influence biomembrane rigidity not only through their intrinsic
molecular structure but also by modifying the proportions of other membrane constituents
that contribute to rigidity. For instance, Schumann et al. [481] and Stillwell [482] investi-
gated the role of polyunsaturated fatty acids in modulating raft characteristics, including
size, stability, and distribution. Notably, polyunsaturated fatty acids have a reduced affinity
for cholesterol (CHOL) compared to their saturated counterparts. Consequently, an in-
creased incorporation of unsaturated fatty acids within biomembranes can result in loosely
packed lipid structures. This, in turn, leads to the displacement of raft-associated proteins
and the removal of SM and CHOL from lipid rafts. These alterations result in shifts in
membrane rigidity and permeability [483–492]. Therefore, the degree of unsaturation
plays a crucial role in modulating the flip-flop rate and the asymmetry/distribution of
membranes. Cheng et al. [493] and Armstrong et al. [494] have substantiated a positive
correlation between the trans-membrane flip-flop rate and the proportion of unsaturated
fatty acids. In assessing membrane rigidity, ratios such as phospholipid/CHOL, PC/PE,
and PC/SM (the unsaturation index) have been routinely employed.

It is rational to posit that membranes characterized by inadequate lipid packing corre-
spondingly exhibit elevated permeability. Indeed, a considerable body of research has estab-
lished a link between polyunsaturated fatty acids and heightened membrane permeability,
reflecting the rate at which molecules traverse biomembranes. It has been observed that the
incorporation of long and very long polyunsaturated fatty acids, such as ALA, AA, EPA,
and DHA, increases the permeability and elasticity of biomembranes [464,469,495–500].
This augmentation facilitates the translocation of ions and molecules across the membrane.
Mondal et al. [469] attribute the elevated membrane elasticity to the disruption of the robust
hydrogen-bond network surrounding the charged lipid head groups by the polyunsatu-
rated fatty acids. The effects of polyunsaturated fatty acids, particularly EPA and DHA, on
elasticity (and consequently permeability) can exhibit variability within the same cell [501],
depending on the presence of other cellular constituents. Notably, the presence of CHOL
can modulate membrane properties [495]. DHA, in particular, elevates permeability more
significantly than its precursor, ALA [502], underscoring the pivotal role of the degree
of unsaturation and its elevated incorporation levels in the functions of vital cells. DHA
promotes heightened hydration within the head group and inter-chain regions, thereby in-
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creasing permeability. This is primarily attributed to the elevated number of double bonds.
As elucidated by Mitchell and Litman [503], the presence of water within the hydrocarbon
bilayer region exhibits a positive correlation with the high number of double bonds.

In addition to its effects on membrane rigidity and permeability, the incorporation of
DHA profoundly impacts various aspects of biomembrane dynamics. DHA remarkably
alters lipid packing, phase behavior, curvature, elasticity, interleaflet lipid flip-flop rates,
lipid phase separations, membrane fusion, and vesicle formation [464,494,504–508]. Ac-
cording to Mitchell and Litman [509], the packing-free volume increases in the following
order: 16:0-18:1PC has a lower relative abundance than 16:0-22:6PC, which, in turn, has
a lower relative abundance than 22:6-C22:6PC. The potential effect of highly unsaturated
fatty acids on phospholipids, which are characterized by loose packing, appears to be
closely linked with the promotion of membrane elasticity, vesicle exfoliation (the formation
of “blebs”), fusion, and flip-flop processes. In this regard, fatty acids actively participate
in the processes of cell fusion and modulate cell phase behavior. During cell fusion, two
distinct lipid bilayers merge, resulting in the formation of a continuous bilayer structure
and the mixing of the internal contents of the lipid bilayers. Consequently, alterations in
fusion processes have been associated with curvature stress in membranes [510,511]. The
impact of the degree of unsaturation on membrane fusion has been previously demon-
strated by Ahkong et al. [512], Meers et al. [513], Ehringer et al. [502], and, more recently,
Li et al. [504]. The configuration of double bonds plays a critical role in determining the
extent of biomembrane fusion. According to Creutz [514], AA and oleic acid are particularly
effective fusogens, whereas saturated and trans-unsaturated fatty acids exhibit negligible
fusogenic activity.

In terms of phase behavior, different fatty acid compositions contribute to various
phase transitions, including gel-to-fluid, hexagonal, and liquid phases. Short-chain sat-
urated fatty acids and mono- and polyunsaturated fatty acids result in lower viscosities,
contributing to the formation of more fluid membranes compared to long-chain saturated
fatty acids [466]. The impact of unsaturated fatty acids is particularly evident in thermal
hysteresis, especially the transition between the fluid and hexagonal phases in PE, which is
reportedly impeded by oleic acid, LA, and ALA [515,516]. Stearic acid and hydroxylated
fatty acids induce a modest shift toward a higher melting temperature (the gel-to-fluid
phase transition temperature) in bilayers containing C14:0/C14:0-PC [517]. On the other
hand, PCs containing DHA exhibit higher melting points than those containing ALA and
AA [518]. Despite DHA’s loose packing property [507], the presence of a saturated fatty
acid at the sn-1 position in a PC molecule may affect its packing stability by altering both
intra- and intermolecular van der Waals interactions.

4.2. Relative Functional Significance of Polyunsaturated Fatty Acids

The multifaceted role of fatty acids within various membrane lipids, particularly
n3-fatty acids, has been documented over the past century. Diets rich in n3-fatty acids have
been extensively associated with elevating the proportions of n3-fatty acids in biomem-
branes, thereby contributing to the maintenance of cardiovascular, vascular, and neural
health [519,520]. Moreover, these dietary choices have shown promise in ameliorating
conditions such as atherosclerosis, hypercholesterolemia, and cancer [487,521,522]. Fatty
acids exhibit a multitude of physicochemical properties that serve diverse purposes by mod-
ifying the characteristics of bilayer lipids, thus influencing signal transduction. Notably,
the length of a fatty acid exerts a marked influence on cellular signaling and metabolic pro-
cesses. For instance, SLs containing short-chain fatty acids have been observed to augment
susceptibility to apoptosis [523]. Membrane lipids enriched with monounsaturated fatty
acids also play specific functional roles. Cao et al. [524] have reported that palmitoleate
can function as a lipid-regulating hormone, often referred to as a ‘lipokine’, by enhancing
sensitivity to glucose and inhibiting lipogenesis and hepatic inflammation. Furthermore,
the well-documented antitumor and apoptotic properties of C18-monounsaturated fatty
acids in carcinoma cells [525] underscore their potential utility in anticancer medications.
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The acyl chain length of SLs, particularly Cers, significantly influences TAG accu-
mulation and the hepatic uptake of fatty acids, which is attributed to the disruption of
CD36/FAT expression [526]. This discovery underscores the role of CerS2 in catalyzing the
generation of very long-chained Cers. In a cardiac context, long-saturated and polyunsat-
urated fatty acids have been shown to up-regulate voltage-dependent calcium release in
cardiac myocytes [527], implicating their involvement in cardiac damage. Sassa and Kihara
(2014) have presented a comprehensive review detailing the metabolism of very long-chain
fatty acids and their contributions to the health and pathophysiology of various tissues,
including the skin, meibum, retina, testis, and brain. The extensive body of available
literature underscores the remarkable significance of polyunsaturated fatty acids, which
have been the subject of substantial research due to their diverse bio-functional roles across
various cell types.

The essentiality of LA and ALA in mammals transcends their role as diet-derived
fatty acids; they are also fundamental precursors for the synthesis of long and very long
polyunsaturated fatty acids. However, it is imperative to note that not all absorbed dietary
LA and ALA are available for elongation and desaturation processes, as a fraction of these
fatty acids are utilized for generating the energy source ATP during the β-oxidation process.
Therefore, a prolonged deficiency in LA and/or ALA can lead to severe consequences,
often manifesting as clinical symptoms [528–532]. LA, specifically, serves as a critical
substrate for the biosynthesis of arachidonic acid (AA) and adrenic acid, both of which
play crucial roles in early brain development [533–535]. Furthermore, LA is indispensable
for the formation of n-hydroxyceramides, which covalently bond with epidermal proteins,
thereby curtailing water loss and bolstering the skin’s barrier function [536]. In addition,
it has been demonstrated that LA exhibits antibiotic-like properties, manifesting as an
antibacterial effect that inhibits microbial adhesion to cells, a characteristic shared by
numerous polyunsaturated fatty acids [537–540].

In general, polyunsaturated fatty acids exert substantial influence over the epidermis
and its barrier properties. Notably, dietary supplementation of γ-linolenic acid has demon-
strated anti-inflammatory properties [541] and has proven effective in enhancing skin
characteristics in a dry skin model by reinforcing the skin’s barrier function and limiting
dehydration [542]. Similar observations have been made with the supplementation of
EPA and DHA [543], where an increase in the production of specific Cer families with
anti-inflammatory properties was evident. It is worth noting that the effects of these fatty
acids varied across distinct skin regions, including the epidermis, dermis, and hypoder-
mis [543]. It is of particular interest that, among n6-fatty acids, γ-linolenic acid and DGLA
have gained recognition for their anti-inflammatory attributes, similar to those of EPA and
DHA (n3-fatty acids). Notably, γ-linolenic acid is found in inflammatory cells at relatively
modest concentrations, and increasing its dietary intake does not necessarily lead to a
proportional increase in its intracellular levels [544,545]. Given the efficient conversion of
γ-linolenic acid to DGLA in mammals, it is conceivable that DGLA-derived lipid mediators
play a role in mediating the anti-inflammatory effects associated with γ-linolenic [546].

The essentiality of ALA initially became apparent through observations of its ability to
alleviate symptoms related to LA deficiency [547]. Its significance grew further when it was
established that ALA serves as a precursor for EPA and DHA [548,549]. These C20 and C22
n3-polyunsaturated fatty acids are known to constitute a significant portion of the mem-
brane lipids in critical tissues such as the brain [550], retina [551], and testis [552], reflecting
their involvement in neurotransmission, visual excitation, and spermium maturation. The
implications of n3-polyunsaturated fatty acids, especially DHA, on these tissues have been
extensively documented in numerous studies [467,553–566]. These studies have proposed
numerous biological functions for n3-polyunsaturated fatty acids, including the modulation
of membrane proteins, gene expression, neurogenesis, enhancement of microcirculation,
learning processes, and cellular protection. Notably, in neural tissue, the selectivity of
PS declines under DHA deficiency [420]. The role of n3-fatty acids incorporated into PS
in improving memory [567] and protecting against age-related lipid metabolic disorders,
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especially in the presence of DHA-enriched PC [567], is well acknowledged. For instance,
DHA inhibits the production of amyloid-beta (Aβ) peptides associated with cognitive
impairments, thereby mitigating amyloidogenesis, oxidative stress, and apoptosis [520].
The overall impact of polyunsaturated fatty acids on oxidative stress remains a subject of
debate, as Shefer-Weinberg et al. [568] found that exposure to polyunsaturated fatty acids
elevated oxidative stress biomarkers levels. In this context, it is plausible to hypothesize
that the diverse polyunsaturated fatty acids may elicit distinct effects. Nonetheless, DHA
has been reported to enhance the fluidity of the synaptic plasma membrane and induce
the expression of other memory-related proteins [465]. Consequently, n3-fatty acids, par-
ticularly DHA, have gained significant scientific interest, leading to the development of
nutraceuticals in the form of dietary supplements that incorporate these fatty acids.

In the preceding sections, the various roles of DHA in the physicochemical prop-
erties of membranes have been described. However, DHA also has crucial biological
functions within membranes. DHA-enriched membranes have been suggested to influence
membrane proteins by inducing curvature stress [569–571], affecting membrane thick-
ness [473,570,572], and modulating fatty acid packing free volume [565]. These alterations
in membrane properties can lead to modifications in the activity of most cellular proteins,
affecting signal propagation. For instance, unsaturated fatty acids have been reported to
interact with various proteins, including rhodopsin, ion channels (L-type Ca2+ and Na+),
protein kinase C (PKC), apoptosis-associated proteins, PPAR-γ, nuclear receptor Nur77,
G-protein coupled receptor 40, mitogen-activated protein kinase, toll-like receptors, and
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [573–585]. However,
the major relationships between DHA and cellular protein activities remain ambiguous due
to the vast diversity of proteins, the complexity of protein interactions, and the limited num-
ber of studies. Despite being highly unsaturated (with six double bonds), DHA exhibits
antioxidant properties in the liver [586], brain [587,588], and skeletal muscles [465]. This
property is of particular significance for fertility, as Roqueta-Rivera et al. [589] observed
that DHA supplementation effectively restored impaired spermatogenesis in male mice.

Both EPA and DHA have demonstrated the ability to counteract pro-inflammatory
cytokines by down-regulating the NF-κB signaling pathway [590–592], a transcriptional
pathway that regulates both innate and adaptive immune responses. In contrast, AA levels
have been found to correlate positively with lipid peroxidation [593] and activation of the
NF-κB signaling pathway [594], thereby promoting pro-inflammatory stimuli. AA can
also up-regulate SMase activity [595], leading to increased levels of Cers, molecules that
trigger apoptotic signals, which are derived from SM hydrolysis. Thus, AA is a biologically
essential fatty acid, contributing to a wide array of functions either directly or through its
bioactive metabolites. Hashidate-Yoshida et al. [596] demonstrated that AA facilitates the
transportation of triglycerides to the lumen of the ER in hepatocytes and enterocytes.

The ratio between fatty acids within cellular membranes serves as a reflection of
universal cellular signaling and inflammatory responses. Notably, EPA and DHA exhibit
distinct signaling profiles compared to AA. Consequently, the ratio of EPA and DHA
to AA can serve as an indirect indicator for assessing the inflammatory response and
lipid peroxidation. It is worth emphasizing that these fatty acids serve as precursors for
numerous bioactive mediators, contributing to a wide array of physiological functions.
However, it is also important to recognize that many of the reported findings are likely
attributed to the direct alterations of membrane physicochemical properties and membrane-
associated proteins [481], along with the unidentified bioactive metabolites they generate.
Polyunsaturated fatty acids can undergo chemical reactions with various molecules and
cellular components, resulting in the formation of novel compounds with biological activity.
Heshmati [597] has described interactions between n3-fatty acids and specific transcription
factors in genes. Furthermore, an intriguing observation is the interaction of nitric oxide
(NO) with polyunsaturated fatty acids, leading to the formation of nitroalkene derivatives.
These plasma-identifiable derivatives have been demonstrated to promote vascular relax-
ation, inhibit neutrophil cell degranulation and superoxide production, and hinder platelet
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activation [598–600]. Nitroalkene derivatives possess inherent PPAR ligand activity and
are known to degrade into NO in the bloodstream. These observations underscore the
capacity of polyunsaturated fatty acids to engage in reactions with other non-lipidous
cellular constituents, resulting in the formation of novel compounds with specific biological
activities.

4.3. Bioactive Lipid Mediators Derived from Fatty Acids

Numerous classes of lipids, including LysoP, SLs, PA, DAG, inositol phosphate, N-
acylethanolamine, fatty acids, and oxylipins, are renowned for their bioactive intracellular
and extracellular signaling properties, acting as messengers/mediators. On the other hand,
certain functions of polyunsaturated fatty acids necessitate their conversion into lipid
mediators. These mediators serve as signaling molecules that modulate various biological
processes, including the inflammatory response, gene transcription, and signal transduction
pathways. For instance, the tissue hormone-like lipids referred to as “eicosanoids”, which
were initially identified in the prostate [601], possess the ability to regulate the function of
various transcription factors, thus inducing alterations in gene expression. To comprehend
the mechanisms underlying the generation of lipid mediators derived from fatty acids, this
section elaborates on the cleavage mechanism of membrane fatty acids, the oxygenation
mechanisms of deacylated fatty acids, and the biological functions of lipid mediators
derived from fatty acids.

4.3.1. Enzyme-Mediated Cleavage of Fatty Acids from Membranes

Polyunsaturated fatty acids are abundant in biomembranes but can be enzymatically
cleaved from sn-positions and N-acyl linkages of membrane lipids by lipase-type enzymes.
These enzymes encompass PLA2, phospholipase B (PLB, an enzyme with both PLA1 and
PLA2 activities), diacylglycerol lipase [602,603], CDase [604], glucosylceramide deacy-
lase [605,606], and sphingomyelin deacylase [605,607]. Other phospholipase enzymes,
such as PLA1, PLC, and PLD, play a lesser role in the generation of polyunsaturated fatty
acid-derived mediators, as they cleave the highly saturated chains at the sn-1 position [608],
the phosphate group at the sn-3 position [609], and the head group from the phosphorus
group [610], respectively.

Among these enzymes, PLA2 has received considerable attention due to the biological
importance of its substrates. Over recent decades, six isoforms of PLA2, which hydrolyze
the ester bond at the sn-2 position, have been identified [611]. Each of these isoforms exhibits
selectivity for specific fatty acids on phospholipids. For example, cytosolic PLA2α (cPLA2α)
acts on phospholipids rich in AA [612], calcium-independent PLA2β (iPLA2β) acts on
phospholipids rich in DHA [613,614], and secretory PLA2 (sPLA2) acts on phospholipids
containing various fatty acids, including AA, EPA, and DHA [615,616]. On the other hand,
PLB possesses both hydrolase activity, cleaving ester bonds on the sn-1 and sn-2 positions
of phospholipids, and acyltransferase activity, acylating fatty acid to form LysoP, and, as a
result, may contribute less to the production of oxylipins compared to PLA2. Following the
removal of fatty acids from complex membrane lipids, various events, including reacylation
and/or oxidation, may occur.

4.3.2. Fatty Acid Oxygenation

CHOL and liberated polyunsaturated fatty acids can undergo oxidation through
enzymatic processes and non-enzymatic agents, such as reactive oxygen species (ROS). This
oxidative transformation leads to the production of oxysterols and oxylipins, respectively.
Notably, these compounds may also originate from dietary sources. It is of particular
significance that polyunsaturated fatty acids frequently engage in metabolic competition
with each other, a phenomenon specifically mediated by enzymes such as PLA2 and
oxidative enzymes. The extent of competition among different fatty acids depends on
their respective concentrations within the cell and their relative affinities for oxidative
enzymes and reactive molecules [617,618]. These oxidized lipid metabolites serve as
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pivotal mediators in cell signaling. For instance, oxysterols have the capacity to interact
with nuclear receptors and, as a consequence, modulate gene expression [619,620]. This
section primarily focuses on the enzymatic pathways involved in generating these bioactive
lipid mediators.

Numerous bioactive oxylipins have been identified as products of enzymatic path-
ways, including those facilitated by cyclooxygenase (COX) and subsequent synthases,
lipoxygenase (LOX), and cytochrome P450 (CYP) mixed-function oxidase enzymes [621].
These oxylipins are further categorized based on the chain length of their respective sub-
strates (see Figure 7), resulting in octadecanoids (derived from C18 fatty acids), eicosanoids
(derived from C20 fatty acids), docosanoids (derived from C22 fatty acids), and elovanoids
(derived from C32 or C34 fatty acids).
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epoxy-docosapentaenoic acid; EECTA, epoxy-ecosatetraenoic acid; EEDA, epoxy-eicosadienoic
acid; EETA, epoxy-eicosatrienoic acid; ELV, elovanoids; EOCA, epoxy-octadecenoic acid; EODA,
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In mammals, COXs, also known as housekeeping enzymes, comprise three isoforms
as follows: COX-1, COX-2, and COX-3 isoforms [622], with COX-3 being considered a
variant of COX-1 [623]. These enzymes are heme-containing and possess the dual capacity
to function as both oxygenases and peroxidases. Notably, these enzymes are constitutively
expressed and are subject to modulation by inflammatory signals. Their main role involves
catalyzing the oxygenation of various unsaturated fatty acids, culminating in the genera-
tion of bioactive end-products collectively referred to as prostanoids. These prostanoids
encompass the prostaglandin series (PGD, PGE (dinoprostone), PGF (carboprost), and PGI
(prostacy-clins)), thromboxanes, hydroxy fatty acids, resolvins (series 13), and oxo-fatty
acids [624,625].

LOXs, which comprise six genes within the human genome, represent a class of non-
heme iron-containing dioxygenases. These enzymes possess the capability to oxygenate a
broad range of unsaturated fatty acids. It is noteworthy that LOX enzymes typically exist
in an inactive form at their base state, necessitating activation facilitated by hydroperoxides.
Subsequently, they act on a diverse array of substrates and engage in various modes of
action, including dioxygenase activity, functioning as catalysts in processes characterized
by the involvement of free radicals [626,627]. These catalytic actions lead to the formation
of bioactive end-products recognized as hydroperoxyl fatty acids and their metabolites,
including leukotrienes, lipoxins, resolvins, protectins, maresins, and elovanoids [628,629].
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On the other hand, CYPs are enzymes encoded by an extensive set of up to 57 genes
within the human genome, representing a class of monooxygenases widely distributed in
mammals. These enzymes exhibit elevated activity levels in numerous tissues, including
but not limited to the liver, brain, kidneys, and lungs [629,630]. CYPs are renowned for their
involvement in various modes of action, including hydroxylation, heteroatom oxidation, al-
lylic oxidation reactions, group migration, and various other enzymatic reactions [631–633].
They display the capability to act on a diverse range of unsaturated fatty acids and
sterols [629], thereby generating a wide array of lipid mediators. In particular, these
lipid mediators consist of hydroxyl and epoxy fatty acids, which play critical roles in the
induction of various signaling pathways.

4.3.3. Functions of Bioactive Lipid Mediators

Bioactive lipid mediators go beyond being inert components of cellular membranes.
Instead, they serve as dynamic signaling agents and are capable of modulating a wide range
of signaling pathways, gene regulation, and immune responses. The unique characteristics
and functions of these mediators have led to extensive research efforts aimed at harnessing
their therapeutic potential for developing innovative treatment/preventive approaches.
Therefore, comprehending the functions of bioactive lipid mediators holds great importance
in the domains of biological and medical research.

Octadecanoids

Essential fatty acids and their extended metabolites have well-documented diverse
biological effects and implications in various disease mechanisms. The effects of lipid
mediators can vary depending on the type of cells and metabolic factors, leading to both
beneficial and detrimental metabolic outcomes (see Figure 8).
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LA and ALA play an essential role in the generation of lipid mediators. As essential
fatty acids, dietary levels of LA and ALA contribute to their proportions within cellular
membranes, potentially playing a crucial role in modulating the extent/degree/severity
of inflammation development. Epoxy-octadecadienoic acid and hydroxy-octadecatrienoic
acid are lipid mediators derived from ALA through the enzymatic actions of LOX and CYP,
respectively [624]. However, further research is needed to fully comprehend the bioactive
functions of octadecanoids derived from ALA. Notably, Kumar et al. [634] have suggested
that these mediators primarily exert anti-inflammatory effects. On the other hand, oxidized
LA metabolites, including hydroxy, trihydroxy, and epoxy fatty acids, are produced under
the effects of LOXs and CYPs [546,624]. These metabolites have been implicated in various
biological pathways, including brain dysfunction [635], the inhibition of platelet adhesion
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in endothelial cells [636], the induction of inflammation signals [637–639], the maintenance
of skin barrier integrity [536], the inhibition of pain thresholds [640,641], and the promotion
of metabolic syndromes and cancer [638,642]. Consequently, these LA-derived mediators
may greatly contribute to the inflammatory processes and the progression of diseases.

Both LA and ALA serve as essential fatty acids and precursors for extended polyun-
saturated fatty acids. Thus, their dietary concentrations can alter the levels of long and very
long chain polyunsaturated fatty acids within cellular biomembranes. However, the extent
of this influence may vary depending on the specific substrate and metabolic pathways.
Notably, a high dietary intake of LA tends to not significantly elevate the proportion of AA
or the associated inflammatory cascades in humans [643]. In contrast, a high dietary intake
of ALA has been shown to increase EPA and DHA concentrations [644]. Nevertheless,
it is essential to recognize that the de novo pathways for elongating essential fatty acids
exhibit variations among species. For instance, the conversion rate of ALA to its extended
polyunsaturated fatty acids is lower in humans [645] than in marine species. These find-
ings underscore the potential variability in the biological functions of ALA, with specific
implications in distinct species to fulfill particular physiological functions.

Eicosanoids

Eicosanoids are bioactive lipid mediators primarily derived from unesterified fatty
acids and are characterized by their autocrine/paracrine hormone activities. They mediate
local signals and reactions, including processes related to homeostasis, inflammation, and
anti-inflammation. Eicosanoids comprise various structures, such as PGs, thromboxanes,
leukotrienes, lipoxins, and resolvins. Despite the fact that most mammalian cells are capable
of synthesizing eicosanoids, the specific pathways and responses can vary by cell type [646].
DGLA, rapidly extended from γ-linolenic acid, serves as a substrate for enzymes such
as COX, which yields series 1 prostaglandins and thromboxanes, 15-LOX, which yields
5-hydroxyeicosatrienoic acid, and CYP, which yields epoxy-eicosadienoic acid. Eicosanoids
derived from DGLA are generally considered to be anti-inflammatory [647,648].

On the other hand, beyond the role of AA as a polyene fatty acid, it is unquestion-
ably crucial in biomembranes as it is the primary target for most membrane-modifying
effects. The activation of the PLA2 enzyme, which is responsible for cleaving AA from
membrane phospholipids, often leads to membrane injury. According to Samuelsson [649],
this enzyme rapidly (within seconds to minutes) responds to acute stimuli, releasing AA
from membrane lipids. Liberated AA can be utilized as a precursor for the production of
eicosanoids under the effects of COX (generating series 2 prostaglandins, prostacyclins, and
thromboxanes), LOX (generating leukotrienes, lipoxins, eoxins, hepoxilins, and trioxilins),
and CYP (generating hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acid) [546,624].
AA-derived eicosanoids, often referred to as arachidonate or eicosanoid cascades, are
involved in multiple systems, including vascular, inflammatory, renal, and neuronal sig-
naling, as well as angiogenesis [650]. For instance, AA-derived eicosanoids have been
shown to increase the permeability of the blood–brain barrier in humans [651], revealing
the potential for drug modulation of this barrier.

Eicosanoids derived from Mead acid have displayed anti-inflammatory properties.
For instance, oxygenated products of Mead acid via 5-lipoxygenase are produced dur-
ing inflammation, providing potent activities [652]. However, the exact roles of this
fatty acid are not yet clearly defined [652–655], necessitating further research. On the
other hand, LOXs oxidize EPA to produce resolvins [656], which are renowned for their
anti-inflammatory properties. EPA can also undergo oxygenation via COXs (yielding
hydroxy-eicosapentaenoic acid and epoxy-eicosatetraenoic acid) and CYPs (yielding series
3 prostaglandins and leukotrienes) [624,657]. Overall, EPA-derived eicosanoids exhibit
anti-inflammatory stimuli, such as the inhibition of platelet aggregation [658].

Eicosanoids play a remarkable role in the regulation of inflammatory responses by
modulating pro-inflammatory cytokines, chemokines, and other signaling molecules. They
have the potential to influence the recruitment, activation, and function of immune cells.
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However, it is essential to recognize that eicosanoids can exhibit both pro-inflammatory
and anti-inflammatory effects, with the ultimate effect determined by various factors,
including mediator concentrations, timing of production, and the sensitivity of targeted
cells/tissues [460,659]. Commonly, eicosanoids derived from different fatty acids, such as
AA, Mead acid, and EPA, exhibit strikingly distinct biological effects, despite their closely
resembling molecular structures.

Eicosanoids derived from n3-fatty acids are well-recognized for their anti-inflammatory
properties, while those originating from n6-fatty acids are generally considered to be pro-
inflammatory [660,661]. However, it is important to note that not all n6-fatty acids exert
pro-inflammatory effects. Some prostanoids (PGs and thromboxanes), n6-fatty acid-derived
lipoxins, as well as mediators derived from γ-linolenic and DGLA, along with adrenic
acid, have been found to express anti-inflammatory properties and cytoprotective ac-
tions [662–669]. Imbalances in the production of eicosanoids have been implicated in
numerous pathological processes, including inflammation, autoimmunity, allergy, cancer,
atherosclerosis, and metabolic and degenerative diseases [650], by disrupting the normal
lipid signaling pathways. In light of this, strategies that involve the suppression of COX,
LOX, and CYP enzymes, which are responsible for the synthesis of active lipid mediators,
may hold therapeutic potential for the management of disease-related inflammation and
oxidative stress.

Docosanoids

DHA, likely the reason for the biological necessity of ALA, is a very long polyunsat-
urated fatty acid that accumulates abundantly in crucial tissues such as the brain, retina,
and testis. Though EPA is known to produce pre-resolving mediators (resolvins), it is
DHA that serves as the major precursor for these compounds [656,670]. Specialized pro-
resolving mediators (SPMs), known as docosanoids, are primarily derived from the LOX
oxidation of DHA and DPA-n3 [670–673]. However, COX activity on DPA-n3 can also
generate SPMs [672], and CYP activity on DHA yields hydroxy-docosapentaenoic acid
and epoxy-docosapentaenoic acid [624]. The pre-resolving family comprises various struc-
tures, including resolvins, docosatrienes, maresins, and protectins, all of which exhibit
anti-inflammatory and pro-resolving properties, countering the effects of pro-inflammatory
cascades [659,666,667,671–682]. These docosanoids, which are derived from DPA-n3 and
DHA, play pivotal roles in the regulation of leukocyte trafficking, suppression of cytokine
expression, inhibition of brain ischemia-reperfusion injury, maintenance of cellular home-
ostasis, mitigation of potential DNA oxidation, normalization of brain-derived neurotrophic
factor levels, and promotion of the clearance of apoptotic cells and cellular debris by phago-
cytes. Thus, these mediators represent a promising therapeutic approach for resolving
cellular inflammation and associated diseases.

Furthermore, EPA and DHA are known to limit pro-inflammatory cytokines and
reduce inflammation, potentially by increasing peroxisome proliferator-activated receptor
alpha (PPAR-α) mRNA and protein activities [683]. Remarkably, alternative lipid mediators
with resembling impacts to resolvins have been identified. According to Dalli et al. [684],
DPA-n3, an intermediate fatty acid during DHA synthesis, is transformed into novel
immunoresolvents similar to resolvins in mice and human leukocytes during inflammation.
However, it is important to acknowledge that the resolution of inflammation mediated by
docosanoids is characterized by its complexity in restoring cellular homeostasis [656].

Elovanoids

In response to unmitigated oxidative stress, elovanoids exhibit a remarkable ability
to enhance the intracellular synthesis of pro-survival signals, owing to their distinctive
molecular structures. This class of bioactive lipids, initially discovered by Bazan’s research
group in the retinal pigment epithelium in 2017 [685], is derived from mono-hydroxyl-
very long polyunsaturated fatty acids formed through the enzymatic activity of ELVOL4
and LOX. It is important to emphasize that very long polyunsaturated fatty acids are
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prominent constituents of critical tissues such as the brain, testis, and spermatozoa [686].
This observation suggests the potential formation of elovanoids in these tissues, where they
might serve as mediators of specific signals. However, while the retina has been a focal point
of research on elovanoids, studies examining neural signaling are comparatively limited.

Elovanoids play an indispensable role in the functions of the retina and neural sig-
naling [290,685,687–691]. The protective effects of elovanoids in these tissues are most
likely attributed to their role in mitigating the effects of oxidative stress. In events where
oxidative stress remains unresolved, elovanoids serve as critical survival signals [685].
These authors have reported that dihydroxylated derivatives of C32:6n-3 and C34:6n-3
effectively protect retinal pigment epithelial cells from apoptosis induced by hydrogen
peroxide. These derivatives have been shown to up-regulate the expression of pro-survival
proteins, including Bcl-2 and Bcl-xL, while concurrently down-regulating the expression of
pro-apoptotic proteins, such as Bax, Bim, and Bid. These findings underscore the ability of
elovanoids to mitigate the cytotoxic effects of ROS on photoreceptor cells and contribute to
their survival.

5. Conclusions and Future Perspectives

This review intends to provide an in-depth overview of the lipids of eukaryotic cell
membrane lipids, with a particular emphasis on fatty acids. It introduces the extensive
array of lipids present in biomembranes and delves into their composition within healthy
organisms, thereby illustrating the intricate nature of lipid metabolism and its fundamental
role within cells. This perspective underscores the remarkable adaptability and flexibility
inherent in the fatty acid profiles of biomembranes, enabling organisms to rapidly respond
to various stimuli, including alterations in environmental temperature, dietary factors,
inflammatory processes, or diseases. Thus, the absence of a universally defined “physio-
logically normal fatty acid composition” underscores the natural variability in fatty acid
composition. This natural phenomenon is, likewise, a continuous process of adaptation.
This review further provides an in-depth exploration of fatty acid biosynthesis and post-
synthetic modifications, such as elongation and desaturation. In addition, it highlights
the preferences of fatty acids for incorporation into diverse complex membrane lipids
and their roles in biological systems, encompassing both physicochemical properties and
the regulation of biological signaling. This understanding holds significant implications
across various disciplines, including lipid-based drug delivery, cell membrane engineering,
and the advancement of lipid-based biomaterials. Nevertheless, further research remains
essential to unveil the intricate mechanisms and regulatory pathways governing eukaryotic
lipid metabolism and fatty acid composition. This includes investigations into the mecha-
nisms underpinning cellular membrane adaptability, with the potential to shed light on
the molecular foundations of cellular processes, diverse diseases, and the development of
therapeutic strategies for lipid-related disorders.

Evidently, the pivotal role of fatty acids in biomembranes is ascending and is poised
to exert a substantial influence across various disciplines, notably within the realms of
nutrition and medicine. This review serves to illuminate the multifaceted roles and contri-
butions of distinct membrane lipids, along with their associated fatty acids, with a specific
focus on matters pertaining to health and the intricate aspects of inflammatory responses.
Enhancing our comprehensive comprehension of the diverse repertoire of membrane lipids
stands to be invaluable for assessing the overall health of organisms. The trajectory of the
field nutrition is set to emphasize progressively specific fatty acids that are indispensable
for organism health. In this context, the n3 and n6-fatty acids are assuming paramount
significance due to their critical roles as precursors for bioactive lipids that play a pivotal
role in the modulation of inflammatory processes. They also contribute indispensably to
the development and sustenance of vital organ functions, exemplified by the brain, heart,
lungs, liver, and kidneys. Elevated levels of these fatty acids have been consistently corre-
lated with to the regulation of chronic maladies, encompassing diabetes, cardiovascular
disorders, and certain forms of cancer. However, it is crucial to recognize that the opti-
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mization of fatty acid biosynthesis, the preservation of their stability, and a comprehensive
understanding of their various roles in biological systems continue to remain areas ripe
for exploration. Thus, the unwavering dedication to research and development in this
domain holds the promise of unveiling the unlocking of novel approaches to incorporate
these essential nutrients into the diets of organisms, thereby fostering enduring health and
well-being.
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