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Abstract: Piwi-interacting RNAs (piRNAs) are a new class of small, non-coding RNAs, crucial in the
regulation of gene expression. Recent research has revealed links between piRNAs, viral defense
mechanisms, and certain human cancers. Due to their clinical potential, there is a great interest in
identifying piRNAs from large genome databases through efficient computational methods. How-
ever, piRNAs lack conserved structure and sequence homology across species, which makes piRNA
detection challenging. Current detection algorithms heavily rely on manually crafted features, which
may overlook or improperly use certain features. Furthermore, there is a lack of suitable compu-
tational tools for analyzing large-scale databases and accurately identifying piRNAs. To address
these issues, we propose LSTM4piRNA, a highly efficient deep learning-based method for predicting
piRNAs in large-scale genome databases. LSTM4piRNA utilizes a compact LSTM network that can
effectively analyze RNA sequences from extensive datasets to detect piRNAs. It can automatically
learn the dependencies among RNA sequences, and regularization is further integrated to reduce the
generalization error. Comprehensive performance evaluations based on piRNAs from the piRBase
database demonstrate that LSTM4piRNA outperforms current advanced methods and is well-suited
for analysis with large-scale databases.

Keywords: Piwi-interacting RNA (piRNA); RNA prediction; machine learning; LSTM

1. Introduction

The Piwi-interacting RNAs (piRNAs) are a new class of small, endogenous, non-coding
RNAs (ncRNAs) that regulate gene expression through various mechanisms. These piRNAs
can further interact with Piwi-class proteins to form the piRNA-induced complexes that
silence transposons in germline cells. Research has demonstrated that piRNAs are associ-
ated with the control of transposon silencing, epigenetic regulation, and RNA silencing in
diverse organisms [1–3]. Furthermore, recent studies have linked piRNAs to virus defense,
as well as to the development and progression of many types of cancer [4–7]. Due to their
potential as therapeutic targets for certain diseases, there is a growing interest in identifying
novel piRNAs. Therefore, efficient computational methods are required for large-scale
piRNA detection to accelerate piRNA exploration.

PiRNAs are the largest class of small ncRNAs, typically ranging in sequence length
from 24 to 33 nucleotide bases [8,9]. However, piRNAs lack conserved structure motifs
and sequence homology across species, which makes it challenging to recognize them [10].
Currently, there are two main classes of piRNA detection methods. The first class utilizes
sequence-based features from known piRNAs to predict new ones. While piRNAs tend
to have a uridine base at the first position and an adenosine base at the tenth position,
relying solely on the base position to predict piRNAs is not accurate [11]. The k-mer
scheme approach, piRNAPredictor [12], takes the frequencies of k-mer features and linear
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discriminant analysis (LDA) to predict piRNAs with better performance. Furthermore,
piRNAdetect [13] enhances the prediction accuracy by using N-gram models along with
a support vector machine (SVM) to parse and classify the piRNAs. By using the deep
learning technique, piRNN [14] first summarizes the k-mer motifs based on their base
positions and creates a corresponding feature vector with 1364 items. The feature vector
is then normalized and fed into a convolutional neural network (CNN) to make sound
predictions for piRNAs. In addition, GAWE [15] utilizes ensemble weight learning for the
combined features and random forest classification to predict piRNAs with high accuracy.
As some piRNAs have been found to be derived from genomic piRNA clusters, the second
class of piRNA detection methods employs the genomic features of the clustering locus
to predict piRNAs. Several clustering-based methods have been developed to predict
clustered piRNAs [16,17], and the clustering features can further be incorporated with
sequence-derived features by using multiple kernel SVM [18,19]. However, it should be
noted that clustering-based approaches only work for clustered piRNAs and that some
databases may not provide clustering information.

As the amount of genomic data continues to surge, analyzing extensive databases has
become increasingly challenging. A prime example is the piRBase database, which has seen
staggering growth in the number of sequences of human piRNAs from 32,000 [9] to over
8.5 million [20]. However, there is a lack of effective tools capable of analyzing such a large
database with millions of data for piRNA prediction. To bridge this gap, we have developed
a sequence-based detection algorithm, called LSTM4piRNA, that employs long short-term
memory (LSTM) to predict piRNAs accurately. Unlike previous approaches that manually
select features from known piRNAs, LSTM4piRNA can automatically extract and learn
useful features from a large database to maximize detection performance. The performance
results based on the piRNAs in the piRBase [9,20] database show that LSTM4piRNA
outperforms previous algorithms in terms of efficiency and accuracy. Furthermore, We have
developed a web server that allows users to easily predict piRNAs through LSTM4piRNA.
The user can submit RNA sequences in the FASTA format to the server and check the
predicted results.

2. Results

To evaluate the performance of the proposed LSTM4piRNA, we conducted four-fold
cross-validation experiments using constructed datasets on piRNAs from four species:
H. sapiens, R. norvegicus, M. musculus, and C. elegans. The dataset was evenly divided into
four subsets. Each subset was used as the testing set in turn, while the remaining subsets
were used for training. The performance of piRNA detection is assessed in terms of the
accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN), the sensitivity (SEN) = TP

TP+FN , and the positive
predictive value (PPV) = TP

TP+FP . TP denotes the number of piRNAs correctly identified,
while TN denotes the number of correctly identified negative samples. FP represents
the number of negative samples mistakenly classified as piRNAs, and FN represents the
number of piRNAs missed in the detection process. In addition, the harmonic metric
F-score = 2/( 1

SEN + 1
PPV ) is also employed to assess the performance.

2.1. Regularization and Generalization

We first evaluated the influence of the dropout rate on the piRNA dataset. The use
of dropout regularization in neural networks serves as a preventive measure against
overfitting. The detection performance at different dropout rates, ranging from 0 to 0.8
with a step size of 0.2, is illustrated in Figure 1a,b. The adoption of dropout regularization
can enhance the detection performance across a range of dropout rates for the piRBase
v1.0 dataset. For the piRBase v3.0 dataset, a dropout rate between 0.2 and 0.4 proves to
be most effective, especially when accuracy is the main consideration, except for the C.
elegans species. Given that the C. elegans dataset is relatively smaller, a higher dropout rate
can mitigate overfitting on training data and enhance detection performance. Selecting an
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appropriate dropout rate is essential for reducing generalization error. Therefore, for piRNA
detection in LSTM4piRNA, we have set the dropout rate to 0.2.
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(a) The evaluation of dropout rate for piRBase v1.0.
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(b) The evaluation of dropout rate for piRBase v3.0.

Figure 1. The evaluation of detection performance on piRBase datasets with regard to regularization.
Bars in different colors correspond to the test for different species. The ACC, SEN, PPV, and F1-Score
are illustrated for comparison.

For data generalization, Figure 2a,b illustrate the accuracy of data generalization at
various probabilities ranging from 0 to 1.0 with a step size of 0.2. Employing data general-
ization can effectively reduce generalization errors, leading to a more robust training model.
This strategy can result in more substantial improvements to the piRBase v1.0 dataset,
particularly when working with limited data quantities. For all species, generalizing proba-
bilities greater than 0.4 can offer better accuracy, with particular efficacy observed for the
C. elegans dataset. To augment piRNA detection, LSTM4piRNA has set the generalizing
probability to 0.6.
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(a) The evaluation of generalizing probability for piRBase v1.0.
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(b) The evaluation of generalizing probability for piRBase v3.0.

Figure 2. The evaluation of detection performance on piRBase datasets with regard to generalization.
Bars in different colors correspond to the test for different species. The ACC, SEN, PPV, and F1-Score
are illustrated for comparison.

2.2. Accurate Prediction of piRNA Sequences

We evaluated the effectiveness of LSTM4piRNA against the following algorithms:
piRNAPredictor, GAWE, and piRNN. For the performance comparison, piRNAPredic-
tor, GAWE, and piRNN with default settings were evaluated on the same test datasets.
The evaluation results and total run time (in seconds) for each species are summarized in
Tables 1 and 2. The computation time was measured on a 64-bit server machine running
Linux kernel 5.8.0 with 8-core CPUs clocked at 3.5 GHz and 32 GB RAM.

Except in terms of the sensitivity metric for R. norvegicus species, LSTM4piRNA
consistently outperforms the other methods in most evaluation metrics for the piRBase v1.0
dataset. It achieves the highest accuracy, PPV, and F-score (which evaluates the harmonic
mean of SEN and PPV), as illustrated in Table 1.

While GAWE exhibits higher sensitivity for the R. norvegicus species, it comes with
significantly higher time complexity due to its adoption of an ensemble and iterative frame-
work. In comparison, LSTM4piRNA’s sensitivity for R. norvegicus is nearly on par with
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GAWE, with only a minor performance discrepancy. Moreover, although LSTM4piRNA
achieves the highest performance scores across most test cases, it demands the least compu-
tation time for predictions. On the other hand, while piRNN exhibits promising prediction
performance, its computation time is nearly tenfold compared to our proposed algorithm,
as piRNN has a larger number of neurons and filters, making it less suitable for analyzing
large-scale datasets. Although deep learning-based approaches exhibit improved per-
formance metrics for piRNA detection, they may entail significant computational costs.
Therefore, careful design of effective deep neural networks is essential to achieve promising
performance while maintaining reasonable computational expenses.

Table 1. Performance evaluation on the piRBase v1.0 dataset. Note that we highlight the best
performer using boldface font.

Method H. sapiens

ACC SEN PPV F1-Score (%) Log10 (Time)

LSTM4piRNA 88.66 89.86 87.75 88.79 1.05
piRNAPredictor 77.79 81.36 75.94 78.56 1.76
GAWE 80.35 82.13 79.31 80.70 3.66
piRNN 86.88 87.82 86.20 87.00 2.24

R. norvegicus

LSTM4piRNA 88.50 88.88 88.22 88.55 1.12
piRNAPredictor 74.91 83.15 71.39 76.82 1.99
GAWE 87.07 89.85 85.13 87.42 3.98
piRNN 87.27 88.43 86.43 87.42 2.52

M. musculus

LSTM4piRNA 83.34 84.07 82.86 83.46 1.28
piRNAPredictor 73.19 78.02 71.15 74.42 2.23
GAWE 80.00 80.50 79.70 80.10 4.12
piRNN 81.51 80.44 82.20 81.31 2.70

C. elegans

LSTM4piRNA 89.25 93.80 85.98 89.72 1.12
piRNAPredictor 78.10 79.05 77.58 78.31 1.66
GAWE 84.30 88.47 81.65 84.93 3.18
piRNN 87.69 91.42 85.07 88.13 2.11

Based on the performance assessment using the piRBase v3.0 datasets, we confirm that
LSTM4piRNA achieves higher performance metrics across all species, with a remarkable
performance gap as shown in Table 2. Please note that, in our performance evaluation on
piRBase v3.0, we only obtained the analysis results for LSTM4piRNA and piRNAPredictor
due to the limited computational resources. However, we are able to assess all algorithms
for C. elegans because its dataset size is relatively smaller compared to that of other species.
Based on the simulation results, we can verify that LSTM4piRNA has better scalability than
piRNN, which adopts convolutional neural networks to predict piRNAs. Additionally, we
confirm that LSTM4piRNA requires less computation time compared to other algorithms,
while it achieves distinctly higher ACC, SEN, PPF, and F1-scores.

Overall, LSTM4piRNA can automatically learn the critical features and provide supe-
rior prediction performance compared to approaches that use artificial feature selection.
Furthermore, LSTM4piRNA has the fastest prediction efficiency among all compared
algorithms for all datasets.
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Table 2. Performance evaluation on the piRBase v3.0 dataset. Note that we highlight the best
performer using boldface font.

Method H. sapiens

ACC SEN PPV F1-Score (%) Log10 (Time)

LSTM4piRNA 83.81 82.81 84.49 83.64 1.87
piRNAPredictor 70.59 73.09 69.61 71.31 3.22

R. norvegicus

LSTM4piRNA 85.25 85.57 85.03 85.30 1.55
piRNAPredictor 72.53 70.30 73.58 71.90 3.18

M. musculus

LSTM4piRNA 83.32 82.90 83.61 83.25 1.79
piRNAPredictor 71.77 69.05 73.02 70.98 3.21

C. elegans

LSTM4piRNA 88.81 92.32 86.27 89.19 1.10
piRNAPredictor 78.25 79.39 77.62 78.50 1.62
GAWE 82.20 85.03 80.47 82.69 3.20
piRNN 87.45 92.11 84.26 88.01 2.14

Note that only LSTM4piRNA and piRNAPredictor are capable of analyzing datasets for H. sapiens, R. norvegicus,
and M. musculus species.

3. Discussion

Due to the lack of distinct characteristics for piRNA identification, accurate predic-
tion of piRNAs poses a significant challenge. Most existing piRNA detection methods
predominantly rely on machine learning techniques that necessitate manual feature se-
lection. However, this approach may overlook critical features or incorporate irrelevant
data, leading to suboptimal prediction performance. To address this issue, we introduce
LSTM4piRNA, a novel computational approach for piRNA detection, and also develop a
web-based application for piRNA analysis. By leveraging LSTM networks, LSTM4piRNA
can autonomously learn sequence characteristics from unstructured data and incorpo-
rate generalization and regularization to enhance model resilience. Through extensive
performance assessments using piRNAs from the piRBase database, LSTM4piRNA has
demonstrated impressive accuracy, outperforming all other existing algorithms in piRNA
detection. Moreover, LSTM4piRNA is a time-efficient algorithm that can efficiently process
large-scale databases, and its use can be further extended to analyze other similar databases.
To make the software more accessible, we offer a web server version of LSTM4piRNA,
ensuring it’s available to researchers who may not have a strong software background or
ample computational resources. The algorithm we propose carries significant potential to
advance the field of piRNA research and aid in exploring their clinical applications.

The performance of piRNA detection is generally influenced by both the characteristics
of the training dataset and the prediction model. To achieve good performance in a
sequence-based approach, it is essential to have a large enough training dataset to cover all
species and a prediction model capable of learning the representative features of the dataset.
Although most machine learning approaches use artificial feature selection techniques to
extract features from the dataset, this may not be suitable for large datasets due to the
difficulty in identifying all significant features. In contrast, LSTM4piRNA can efficiently
handle large datasets and automatically learn the critical features. This method can also
be extended to analyze other databases with vast amounts of sequential data for further
analysis. As evidenced in this study, LSTM4piRNA successfully leverages LSTM for feature
extraction, leading to effective prediction of piRNAs and exhibiting exceptional prediction
performance on both the piRBase v1.0 and v3.0 datasets.

While genome sequences are a fundamental feature commonly used in genomic analysis,
LSTM4piRNA cannot fully predict all piRNAs due to biological diversity. To overcome
the limitation, integrating biological priors such as genomic loci and regulatory network
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models into the algorithm would be an appropriate direction for future studies. Note that
not all genomic sequences come with such biological prior information, and the integration
might also require the adoption of additional machine learning techniques. Furthermore,
incorporating different artificial intelligence frameworks into the piRNA prediction algorithm
would facilitate a deeper understanding of the roles of specific piRNA sequences.

4. Materials and Methods

Effective identification of piRNAs through genome sequences requires a mechanism
that can learn the relevant features within the sequences. However, manually summarizing
and consolidating general features from piRNAs, as attempted in previous studies, may
lead to overfitting or the exclusion of important features. As the LSTM network is designed
to model chronological sequences, it can automatically learn both long-term and short-term
dependencies over the sequences [21,22]. Thus, LSTM networks are applicable to a variety
of sequential problems, including speech processing, grammar learning, and semantic
parsing. For the sake of piRNA detection, each nucleotide base is encoded into a one-hot
vector, and these vectors are then concatenated into a vector sequence. We apply the LSTM
network to this concatenated vector sequence to uncover correlations across the sequences,
thus transforming the input sequence into informative base embedding. Based on the
embedded representation of the input sequence, we employ a feedforward neuron network
to determine the class of the input sequence. Moreover, regularization and generalization
methods are employed to minimize generalization errors. The detailed procedure for
piRNA detection using the LSTM4piRNA method is presented in the following subsections.

4.1. Encode Data and Generalization

To train and evaluate piRNA detection, we download piRNAs from the piRBase
v1.0 [9] and v3.0 databases [20] for species including Homo sapiens, Caenorhabditis elegans,
Rattus norvegicus, and Mus musculus. The piRNAs with lengths ranging from 18 to 40 are
randomly drawn from piRBase as positive samples. Note that, in the piRBase database,
the majority of piRNAs fit within the 18–40 nucleotide range, with only a few exceptions
outside this range, and the proportion is exceptionally low. The maximum sample size is set
to 100,000 for the piRbase v1.0 dataset and 1,000,000 for the expanded piRbase v3.0 dataset.
Table 3 summarizes the total number and average length of the piRNAs for each species in
the constructed benchmark. To create the negative samples, ncRNAs are first taken from
the Rfam 14.6 database [23,24]. For each sequence in the positive samples, the sub-sequence
with the same length is randomly drawn from the Rfam database and shuffled to create
the negative control sample. Based on the aforementioned strategy for generating the
benchmarking dataset, each positive sample has a matching negative control sample so
that we have the exact same number of positive and negative samples. Next, we encode
each base of the sequence into a 4-bit one-hot vector according to Table 4. For example, the
RNA sequence {ACCG} is encoded into the vectors {[1,0,0,0], [0,0,1,0], [0,0,1,0], [0,0,0,1]}.
Following the one-hot encoding, since 4 bits are required to represent a single nucleotide
base, the input sequence of length L is converted to a sequence of vectors with a total size of
L × 4. These one-hot vectors are then sequentially fed into the LSTM network. During the
training phase, we introduce data generalization by randomly reordering the negative
samples with a generalizing probability. This data generalization allows the model to adapt
effectively to new data, thereby enabling the LSTM network to learn more relevant features
and reduce potential generalization errors.



Int. J. Mol. Sci. 2023, 24, 15681 8 of 11

Table 3. Statistical summary of the benchmark sequences for each species.

piRBase v1.0 Data Size Average Length

H. sapiens 32,252 28.8
R. norvegicus 62,130 28.1
M. musculus 100,000 26.9
C. elegans 28,219 21.0

piRBase v3.0 Data Size Average Length

H. sapiens 1,000,000 28.5
R. norvegicus 1,000,000 28.0
M. musculus 1,000,000 27.2
C. elegans 30,036 21.0

Table 4. Code words for one-hot encoding.

Nucleotide Base One-Hot Vector

A [1,0,0,0]
U [0,1,0,0]
C [0,0,1,0]
G [0,0,0,1]
N [0,0,0,0]

The character “N” represents an uncertain base.

4.2. Network Architecture and Regularization

The LSTM is an advanced type of recurrent neural network that can learn the de-
pendencies of an entire input sequence by sharing weights and updating control states
over time. As illustrated in Figure 3a, the LSTM neuron cell is mainly composed of the
cell state and hidden state, which are controlled by three gates using the sigmoid function
to memorize important information or discard less relevant information from prior data.
Initially, the input gate of the LSTM network takes two input signals, including the previous
hidden state Ht−1 and the current input Xt. It then determines which information should be
updated to the cell state Ct based on the output of the sigmoid function σ(·) and hyperbolic
tangent function tanh(·). The update rule for the input gate is given by

Ta(Ht−1, Xt) = W · [Ht−1, Xt ] + B (1a)

it = σ(Ta(Ht−1, Xt)) (1b)

C̃ = tanh(Ta(Ht−1, Xt)), (1c)

where Ta represents an affine transform function with trainable weight W and bias B
parameters. The operator [·] denotes vector concatenation. Furthermore, it is the output of
the sigmoid function, while C̃ is the output of the hyperbolic tangent function.

Subsequently, the forget gate decides what information should be discarded from the
cell state, and the output of the forget gate is given by:

ft = σ(Ta(Ht−1, Xt)). (2)

As a result, the cell state Ct for long-term memory can selectively retain part of the
activated data using both the input gate and the forget gate. Specifically, the LSTM updates
the cell state by combining the outputs of the input gate and forget gate as shown in the
following equation:

Ct = ft ∗ Ct−1 + it ∗ C̃t. (3)
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Figure 3. The LSTM4piRNA architecture. (a) The LSTM neuron consists of cell state Ct and hidden
state Ht, which are controlled by three gates. The σ gate is implemented using the logistic sigmoid
function, while the tanh activation is the hyperbolic tangent function. Both addition and multipli-
cation operations are performed point−wise. (b) The learning network schematic. The learning
network includes regularization, three−layer LSTM neuron networks, batch normalization, and the
feedforward neuron network.

The hidden state Ht for short-term memory can then access the activated cell data
through the output gate. The output gate selectively passes the information to the next cell
based on the following equation:

Ht = σ(Ta(Ht−1, Xt)) ∗ tanh(Ct). (4)

The data stored in the hidden state are taken as the neuron output and are also fed
back to the input data across time steps.

LSTM4piRNA is primarily based on the LSTM algorithm, and its learning network
architecture is illustrated in Figure 3b. Considering that piRNAs are relatively short se-
quences, the inclusion of deeper layers and hidden states does not significantly enhance
performance but increases the risk of overfitting. To avoid the overfitting that often ac-
companies increased model complexity and ensure reliable generalization performance,
we adopt a 3-layer LSTM with 32 hidden states. The streamlined model not only reduces
computational demands but also enhances the ability to process large-scale data effectively.
The initial step in LSTM4piRNA involves encoding the input sequence into one-hot vectors
and generalizing the training sequences. Following this, the three-layer LSTM network
processes the one-hot vectors sequentially to automatically learn and identify the features.
The output from the last hidden state is subjected to batch normalization to reduce the
covariate shift and provide additional regularization [25]. The encoded informative em-



Int. J. Mol. Sci. 2023, 24, 15681 10 of 11

bedding is then directed into a single-layer feedforward neuron network of size 32 × 2 for
piRNA prediction. In the final layer, the feedforward neural network outputs a 2-bit one-
hot vector corresponding to the piRNA and non-piRNA predictions. During the training
phase, we set the batch size to 128 and allow for a maximum of 300 epochs. We employ the
Adam optimizer with a learning rate of 0.001 and use the cross-entropy loss function [26].
To circumvent overfitting during training, we apply dropout regularization to both the
LSTM and feedforward networks, randomly disabling node connections with a specified
probability. The dropout regularization enables the neurons to identify more robust features
independently, thus avoiding over-reliance on other nodes and overfitting of the training
data [27,28]. We empirically optimize the dropout rate and generalization probability, as
depicted in Figures 1 and 2. Additionally, the hyperparameters are set empirically based on
our experiments, with the optimized values recommended for general use. However, users
can freely adjust these hyperparameters to align with their preferences and the statistical
properties of their training datasets.
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