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Abstract: Panicle development and grain production in crop species are essential breeding charac-
teristics affected by the synthesis of auxin, which is influenced by flavin monooxygenase-encoding
genes such as YUC (YUCCA) family members. In this trial, fourteen YUCs were identified and named
uniformly in foxtail millet, an ancient crop species cultivated across the world. The phylogenetic
analysis revealed that the SiYUCs were clustered into four subgroups; protein motif and gene struc-
ture analyses suggested that the closely clustered SiYUC genes were relatively conserved within
each subgroup; while genome mapping analysis indicated that the SiYUC genes were unevenly
distributed on foxtail millet chromosomes and colinear with other grass species. Transcription anal-
ysis revealed that the SiYUC genes differed greatly in expression pattern in different tissues and
contained hormonal/light/stress-responding cis-elements. The haplotype characterization of SiYUC
genes indicated many superior haplotypes of SiYUCs correlated with higher panicle and grain weight
could be favorably selected by breeding. These results will be useful for the further study of the
functional characteristics of SiYUC genes, particularly with regard to the marker-assisted pyramiding
of beneficial haplotypes in foxtail millet breeding programs.

Keywords: YUC genes; auxin; gene expression; haplotype analysis; foxtail millet

1. Introduction

Grain yield formation is of great importance for the agricultural field production of
crop species, which is clearly determined by panicle development that is influenced by var-
ious hormones. Plant hormones, including IAA (indole-3-acetic acid), BR (brassinosteroid),
ABA (abscisic acid), and GA (gibberellin), play vital roles in crop growth regulation under
variant environments. Of these, IAA was the first reported auxin associated with many bio-
logical processes in plant development [1,2] such as cell proliferation, tissue differentiation,
apical dominance formation, plant architecture regulation, and determination of growing
period [3–8].

The regulatory effects of auxin on plant development are mainly determined by
its concentration, which is critical for maintaining plant growth under different envi-
ronments [9–12]. Auxin is synthetized by tryptophan-dependent and non-tryptophan-
dependent pathways in plants [3,13,14], with the tryptophan-dependent methods including
four types of pathways: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic
acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime
(IAOX) pathway [3,13–17].

The YUC gene families encode flavin monooxygenases, which are responsible for
catalyzing the conversion of TAM (tryptamine) and IPyA (indole-3-pyruvic acid) to NHT
(N-hydroxyl tryptamine) and IAA (indole-3-acetic acid), respectively, during the process
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of auxin synthesis in plants [18–24]. A total of 11 YUC family members with functional
redundancies have been identified in Arabidopsis [18,25–27]; transcriptional variations
in YUC members lead to variations in IAA concentration in the root of Arabidopsis, and
multiple mutations of yuc3yuc5yuc7yuc8yuc9 severely disrupt root growth and gravity
response [21,23,28]. The knockout of multiple YUC genes (AtYUC1/2/4/6) leads to narrowed
leaves, while their overexpression results in leaf coiling in Arabidopsis [18,29,30]. Moreover,
AtYUC1/2/4/6 has been verified to affect leaf polar differentiation, leaf veins, and vascular
bundle formation in Arabidopsis [30–32]. The overexpression of AtYUC8 and AtYUC9 in
Arabidopsis result in stem regrowth [33]. AtYUC2/6 could inhibit chlorophyll synthesis by
increasing IAA concentration in Arabidopsis leaves [34]. The YUC gene could also impact
the grain yield of crop species by influencing panicle architecture and seed development.
AtYUC5 is encoded by SUPER1 and could interact with the ERECTA receptor to regulate
inflorescence architecture in Arabidopsis [26]. Zmspi1 encodes a flavin monooxygenase;
the mutation of Zmspi1 leads to the failed initiation of BMs (branch meristems) and SPMs
(spikelet pair meristems) in inflorescences and results in the generation of tassels with fewer
branches and spikelets and small ears with fewer kernels [35]. AtYUC1 and AtYUC4 could
promote floral formation, and AtYUC10 and AtYUC11 regulated embryo development
in Arabidopsis [29,30]. Hvyuc4 mutations lead to the failed generation of normal pollen
grains due to the lack of starch and potassium in barley [36]. OsYUC9 and OsYUC11 were
responsible for ensuring grain filling and substance accumulation [37].

Foxtail millet is an ancient crop species cultivated for grain harvesting across the
globe [38]; it is being developing as a new model plant with short life cycle, high propaga-
tion coefficient, small genome size, prominent drought tolerance, and high level of photo-
synthesis [39,40]. In recent studies, high-quality assembled genomes and pan-genomic data
have been released to facilitate genomic variation studies of foxtail millet [41–45]. However,
the dissection of vital genomic variations associated with grain yield traits in foxtail millet
have been less well investigated and many research efforts still need to be made for this
important crop species.

Members of the YUC gene family have been identified in Arabidopsis (11, AtYUCs),
maize (14, ZmYUCs), rice (14, OsYUCs), although variations in the YUC genes in foxtail
millet have not been analyzed. This work elucidated genomic variation, chromosomal
distribution, molecular characteristics, and expression patterns of YUCs of foxtail millet, as
well as analyzing and identifying the superior haplotypes of several members, which was
of theoretical significance for the marker-assisted pyramid breeding of this valuable crop
species.

2. Results
2.1. Identification and Phylogenetic Analysis of YUCs in Foxtail Millet

To clarify the evolutionary properties of YUCs in foxtail millet, the YUC genes in
foxtail millet, green foxtail, and sorghum were all identified by protein homology analysis,
and a total of 14, 12, and 11 YUCs were detected in these species, containing the conserved
FAD-binding motif (‘GxGxxG’), NADPH-binding motif (‘GxGxxG’), FMO-identifying motif
(‘FxGxxxHxxxY/F’), ATG-containing motif 1[(‘Y(x)7ATGEN(x)5P’)], and ATG-containing
motif 2[(‘(F/L)ATGY’)] (Figure S1).

The phylogenetic analysis of YUCs in foxtail millet, green foxtail, sorghum, maize,
rice, and Arabidopsis showed that YUC members could be divided into four subgroups
(Figure 1). YUC members in the same subgroup had similar numbers of introns and
exons. All YUC members in foxtail millet were highly homologous with green foxtail,
except SiYUC13 and SiYUC14. This result supports the conjecture that foxtail millet was
domesticated from green foxtail.
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Figure 1. Phylogenetic analysis of YUC proteins of foxtail millet, green foxtail, sorghum, maize, 
rice, and Arabidopsis. The phylogenetic tree was constructed using the neighbor-joining method 
of MEGA6, with different colored branches indicating different subgroups, and branches in the 
same color showing that they were in one subgroup. Numbers next to branches represent the clus-
tering confidence level. The full-length sequence of the YUC proteins was used for sequence align-
ment and phylogenetic analysis. The gene IDs are listed in Table S1. 

In general, YUCs of foxtail millet and green millet had similar gene structures, but 
there were many variations between different subgroups or between different members 
grouped into the same subgroup. For instance, members of subgroup I had 1~3 introns 
and 2~4 exons, but all the remaining subgroups contained 3 introns and 4 exons, except 
for SiYUC13 (Figure 2A). All YUC members except SiYUC13 in foxtail millet, green foxtail, 
and sorghum, contain all motifs of the YUC families. The FAD-binding motif and ATG 
containing motif 2 were identified at the N-terminus and C-terminus of the protein, re-
spectively. The FMO-identifying motif was located in the middle of the protein, while 
ATG containing motif 1 and NADPH-binding motif were located before and after the 
FMO-identifying motif, respectively. SiYUC13 encoded a protein without the ATG con-
taining motif 2, which was shorter than other YUC members of foxtail millet (Figure 2B). 

Figure 1. Phylogenetic analysis of YUC proteins of foxtail millet, green foxtail, sorghum, maize,
rice, and Arabidopsis. The phylogenetic tree was constructed using the neighbor-joining method of
MEGA6, with different colored branches indicating different subgroups, and branches in the same
color showing that they were in one subgroup. Numbers next to branches represent the clustering
confidence level. The full-length sequence of the YUC proteins was used for sequence alignment and
phylogenetic analysis. The gene IDs are listed in Table S1.

In general, YUCs of foxtail millet and green millet had similar gene structures, but there
were many variations between different subgroups or between different members grouped
into the same subgroup. For instance, members of subgroup I had 1~3 introns and 2~4
exons, but all the remaining subgroups contained 3 introns and 4 exons, except for SiYUC13
(Figure 2A). All YUC members except SiYUC13 in foxtail millet, green foxtail, and sorghum,
contain all motifs of the YUC families. The FAD-binding motif and ATG containing motif 2
were identified at the N-terminus and C-terminus of the protein, respectively. The FMO-
identifying motif was located in the middle of the protein, while ATG containing motif
1 and NADPH-binding motif were located before and after the FMO-identifying motif,
respectively. SiYUC13 encoded a protein without the ATG containing motif 2, which was
shorter than other YUC members of foxtail millet (Figure 2B).



Int. J. Mol. Sci. 2023, 24, 15637 4 of 16
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Analysis of gene structure and conserved protein motifs of YUC gene family members 
in foxtail millet, green foxtail, and sorghum. (A) Gene structure and conserved motif of YUC genes 
in foxtail millet, green foxtail, sorghum. Group I–IV and colored lines on the left indicated different 
clustering branches of YUC genes in foxtail millet (Si), green foxtail (Se) and sorghum (Sb). (B) Con-
served motifs of proteins encoded by cereal YUC genes. 

2.2. Structure Characterization of the YUC Proteins of Foxtail Millet 
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stability index from 32.04 to 48.33, and hydrophilicity value from −0.181 to 0.04 (Table 1). 

  

Figure 2. Analysis of gene structure and conserved protein motifs of YUC gene family members
in foxtail millet, green foxtail, and sorghum. (A) Gene structure and conserved motif of YUC
genes in foxtail millet, green foxtail, sorghum. Group I–IV and colored lines on the left indicated
different clustering branches of YUC genes in foxtail millet (Si), green foxtail (Se) and sorghum (Sb).
(B) Conserved motifs of proteins encoded by cereal YUC genes.

2.2. Structure Characterization of the YUC Proteins of Foxtail Millet

Proteins encoded by YUCs in foxtail millet consisted of 262~444 amino acids, with
molecular weight from 28.5 to 49.4 kDa, theoretical isoelectric point from 6.48 to 9.68,
instability index from 32.04 to 48.33, and hydrophilicity value from −0.181 to 0.04 (Table 1).
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Table 1. The properties of SiYUC proteins.

Protein
ID

No.
of aa MW Theoretical

PI Instability GRAVY Alpha
Helix

Extended
Strand

Beta
Turn

Random
Coil

Subcellular
Localization

SiYUC1 373 39,976.31 9.68 39.65 −0.006 34.05% 17.16% 8.04% 40.75% Cytoplasmic
SiYUC2 437 48,793.28 8.44 36.21 −0.181 32.04% 16.48% 6.86% 44.62% Cytoplasmic
SiYUC3 444 49,407.86 8.22 40.72 −0.141 30.63% 16.89% 7.88% 44.59% Cytoplasmic
SiYUC4 379 41,632.14 8.67 36.15 −0.026 32.19% 17.68% 7.92% 42.22% Cytoplasmic
SiYUC5 379 41,460.73 8.68 33.02 −0.020 30.34% 18.47% 8.18% 43.01% Cytoplasmic
SiYUC6 394 42,950.23 7.08 38.91 0.022 32.23% 18.78% 6.35% 42.64% Cytoplasmic
SiYUC7 420 46,290.53 8.83 39.42 −0.029 30.48% 19.76% 6.19% 43.57% Cytoplasmic
SiYUC8 425 45,442.24 9.36 35.90 0.023 33.41% 16.71% 7.76% 42.12% Cytoplasmic
SiYUC9 400 43,207.52 8.89 45.62 −0.121 34.25% 19.00% 9.00% 37.75% Cytoplasmic

SiYUC10 395 43,136.18 8.51 48.33 −0.107 32.66% 16.96% 8.10% 42.28% Cytoplasmic
SiYUC11 385 42,506.07 6.51 32.04 0.029 32.21% 18.44% 6.49% 42.86% Cytoplasmic
SiYUC12 380 41,522.73 8.68 34.41 −0.029 31.05% 18.95% 8.16% 41.84% Cytoplasmic
SiYUC13 262 28,541.64 6.46 48.31 0.019 35.11% 14.89% 7.63% 42.37% Cytoplasmic
SiYUC14 382 41,608.06 8.59 33.80 0.040 31.94% 18.32% 8.12% 41.62% Cytoplasmic

All SiYUC proteins had similar spatial structure with conserved function except
SiYUC13 (Figure 3). Most proteins encoded by SiYUCs (10 out of 14) were considered
stable due to the instability index being lower than 40. The SiYUC1/2/3/4/5/7/9/10/12
proteins were all hydrophilic, as hypothesized by the GRAVY value (<0) of these proteins.
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links are available in Text S1.

2.3. Cis-Element Variations of YUC Members in Foxtail Millet

To investigate the possible regulatory factors of YUC members in foxtail millet, the
cis-elements were identified in the promoter sequences of YUC genes. Almost all YUC
promoters contained light-responsive elements, except SiYUC11 and SiYUC13, which was
consistent with the IAA-mediated modulation of plant phototropism. Four genes—SiYUC3,
SiYUC4, SiYUC6, and SiYUC10—might be associated with drought tolerance in foxtail
millet, as all of them contained an MBS (MYB binding site involved in drought-inducibility)
element in their promoter regions.
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The MeJA-responsiveness elements indicate that YUC genes might be involved in
the regulation of plant defensive mechanisms, except for SiYUC5, SiYUC7, SiYUC11, and
SiYUC13. Some SiYUC genes might be involved in the feedback regulation of IAA synthesis,
as auxin response elements were identified in the promoters of SiYUC2, SiYUC6, SiYUC9,
SiYUC11. TC-rich repeats and LTR (low-temperature responsiveness) elements suggest
that SiYUC6, SiYUC8, and SiYUC12 might be involved in the response to environmental
stresses, such as low temperature (Table S2). The richness of regulatory elements in YUC
promoters implied the essential regulatory roles of YUCs in foxtail millet growth and field
production.

2.4. Chromosomal Distribution and Colinearity Analysis of YUCs in Foxtail Millet

The YUC genes in foxtail millet were mainly located on chromosome 5 (with 5 mem-
bers) and chromosome 8 (with 4 members). Chromosome 7 contained two YUC genes,
and chromosome 2 and 9 contained only one YUC gene (Figure 4A). We simultaneously
analyzed colinearity among the YUC genes in foxtail millet, green foxtail, maize, sorghum,
and rice, and the results showed YUC genes from foxtail millet and green foxtail were the
most colinear among all species. The YUC members on chromosome 5 of foxtail millet were
all colinear with YUCs on chromosome 3 of sorghum (Figure 4B). SiYUC13 and SiYUC14
were specific to foxtail millet, and no homologous genes were found in green foxtail.
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Figure 4. Chromosomal distribution of YUC genes in foxtail millet and colinearity analysis of
YUC genes in five grass species. (A) Distribution of 13 YUC genes on 9 chromosomes of foxtail
millet. SiYUC13 was not shown because it was not annotated to a specific location when the genome
was assembled. (B) Colinearity analysis of YUC genes in five species. The gray lines between
chromosome 8 of Sv and Si indicated the colinearity of 10 genes upstream and downstream of the
SiYUC14 gene. The red triangle on chromosome 8 indicates SiYUC14. Sv, Setaria viridis, Si, Setaria
italica, Zm, Zea mays, Sb, Sorghum bicolor, Os, Oryza sativa.
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2.5. Transcriptional Profiling of YUC Members in Foxtail Millet

To better understand the transcriptional regulation of foxtail millet growth and devel-
opment controlled by the YUC genes, we characterized the expression pattern of the YUC
genes in various tissues of foxtail millet at different developmental phases (Figure 5A). All
YUC genes located on chromosome 8 had a low expression level with no tissue specificity.
SiYUC1 was mainly expressed in rapidly developing young tissues, such as young panicles,
developing seeds, seedling leaves, and flag leaves, which was presumably involved in cell
proliferation and tissue elongation. SiYUC2 was mainly expressed in the leaf and panicle
tissues. SiYUC3 was expressed in all tissues except the leaves, stems, and stem nodes at
the late developmental stages. SiYUC6 had a low expression level in developing seeds,
stems, stem nodes, leaves, and leaf sheaths at the shooting stage, and secondary branches
of inflorescences at the flowering stage. SiYUC7 was mainly expressed in germinating
seeds, roots at the seedling stage, stem nodes at the shooting stage, and primary branches
of the panicle, these results showed that SiYUC7 might be involved in cell division or
elongation. SiYUC8 showed a tended to be constitutively expressed, except in roots, sug-
gesting that it was mainly involved in the growth and development of the aboveground
tissues of foxtail millet. SiYUC9 was highly expressed in young leaves at the seedling
stage and expanded leaves, leaf sheaths, leaf pulvini, the panicle at the flowering stage,
and mature seeds. SiYUC11 was predominantly expressed in the pre-flowering panicle,
the secondary branches of the inflorescence, and mature seeds, suggesting that this gene
primarily impacted the development of panicle and kernels. SiYUC13 and SiYUC10 had
similar expression patterns and were expressed in all tissues except young panicle and
anthers.

Previous studies reported that there was functional redundancy among members of the
YUC gene family, and we hypothesized that genes with similar expression profiles might be
involved in the development of the same tissue. Expressional correlation analysis between
YUC members implied that SiYUC3 and SiYUC7 might be functionally redundant in the
regulation of root development. SiYUC2 and SiYUC14 might co-regulate pre-flowering
panicle development, while SiYUC9 and SiYUC3 showed a negative correlation in the
regulation of leaves at the shooting and booting stages. SiYUC10 and SiYUC13 might
be functionally redundant in each of the expressed tissues (Figure 5B). In addition, seed-
specific expression elements were identified in the promoters of SiYUC3 and SiYUC5.

The subcellular localization analysis of SiYUC genes revealed that they were all
localized in the cytoplasm (Table 1). To verify the accuracy of this prediction, the subcellular
localization of SiYUC11 and SiYUC13 were also identified by using foxtail millet protoplasts,
and the results were consistent with the predicted localization (Figure 5C).

2.6. Haplotype Variations and Morphological Effects of YUC Members in Foxtail Millet

To investigate morphological effect of YUC genes on foxtail millet panicle development,
we analyzed the haplotypes of the YUC members mainly expressed in the panicle of foxtail
millet.

A total of six haplotypes were identified in SiYUC2 (Figure 6A); these were mainly
expressed in the panicle and leaf, with Hap1 and Hap3 being the superior haplotypes
with longer panicle (Figure 6B,C). The proportion of cultivars (29.8% and 21%) containing
both the Hap1 and Hap3 haplotypes was lower than that of landraces (57.5% and 66%),
suggesting that these two haplotypes had not been fully selected as superior haplotypes.
Meanwhile, Hap2, with a relatively short panicle, constituted a large proportion of cultivars
(41.7%), suggesting that this haplotype had been selected in breeding programs (Figure 6D).
SiYUC6 was mainly expressed in the panicle and roots and was categorized into six hap-
lotypes (Figure S2A). Hap6-carrying materials, of which the cultivar (50%) constituted a
higher proportion than the landrace (20%), had a thicker panicle (Figure S2B–D). However,
the small number of cultivars containing this haplotype implied that Hap6 of SiYUC6 might
be beneficial as a selected target in future breeding programs (Figure S2D). The relatively
higher expression of SiYUC8 in seeds implied that it might be involved in the regulation



Int. J. Mol. Sci. 2023, 24, 15637 8 of 16

of seed size or weight. Haplotype analysis showed that Hap1 had a higher grain weight
per panicle than Hap2 (Figure S2F,G). Moreover, Hap1 of SiYUC8 was the dominant haplo-
type, present at a higher proportion in cultivars (29.4%) than Hap2 (1.3%), suggesting that
Hap1 might have undergone positive selection during foxtail millet breeding (Figure S2H).
Similarly, a total of five haplotypes were identified in SiYUC11, which was specifically
expressed in the seeds and the secondary branches of flowering panicles (Figure 6E). Hap1
and Hap3 were the superior haplotypes of SiYUC11 with higher panicle grain weights
(Figure 6F,G). Both Hap1 and Hap3 of SiYUC11 were favorably carried in cultivars, which
implied that they had been selected during foxtail millet breeding (Figure 6H).
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introns, and SNPs in the promoter and coding sequence of the gene are shown in the upper table. The
UTR region is indicated in light blue. Indel is represented by i1-i5. (B,C,F,G) The correlation analysis
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carrying that haplotype.
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3. Discussion
3.1. YUC Family Members Are Structurally Conserved and Highly Colinear in Grass Species

Members of the YUC gene family have been identified and functionally validated in
many plants, including Arabidopsis, rice, and maize [46,47], but there is a lack of relevant
research reports in foxtail millet, green foxtail, and sorghum. In this trial, we identified
14, 12, and 11 YUC genes in foxtail millet, green foxtail, and sorghum, respectively, based
on gene homology and conserved domains. The number of YUC genes in foxtail millet
was consistent with rice and maize [46,47], suggesting that members of this family were
conserved during plant evolution. There were also differences in the number of YUC genes
compared to Arabidopsis and sorghum, suggesting that there also some uniqueness among
the species. Differences in the number of YUC genes between foxtail millet and green foxtail
may be related to evolution or domestication. For example, SiYUC13 and SiYUC14 might
have been generated by gene duplication during the evolution or domestication of foxtail
millet. In order to validate this hypothesis, we analyzed protein coding sequence diversity
among members of the YUC genes of foxtail millet. The results of sequence comparison
indicated that the SiYUC13 was part of SiYUC10, but no genes with high homology to
SiYUC14 were found. Therefore, we speculated that SiYUC13 was produced by the partial
duplication and insertion of SiYUC10.

Furthermore, the genomic colinear analysis of YUCs among five grass species revealed
potentially functional conservation in YUC family members. In particular, YUC members
(except SiYUC13 and SiYUC14) derived from foxtail millet and green foxtail showed a
similar chromosomal distribution, suggesting that foxtail millet was domesticated from
green foxtail, as verified in previous studies [48]. SiYUC13 encoded a protein less than
135 aa at the C-terminal compared with SiYUC10, and SiYUC14 was a unique gene only
detected in foxtail millet; these observations implied that these two members might be
involved in morphological diversification between foxtail millet and green foxtail.

3.2. SiYUC Genes Are Functionally Divergent and Might Be Involved in Hormonal Crosstalk and
Stress Response in Foxtail Millet

Previous studies revealed that there was functional redundancy among YUC mem-
bers [18,30]. In this trial, the expressional commonality and variability among SiYUCs indi-
cated functional conservation and diversity of YUC members in foxtail millet. SiYUCs with
similar expression profiles might be involved in similar tissue development process [28].
For example, SiYUC1, SiYUC3, SiYUC6, SiYUC7, SiYUC8, SiYUC9, SiYUC10, SiYUC11,
and SiYUC13 were expressed in developing seeds, implying that they might regulate seed
development through conserved function. While the expression of most SiYUCs could be
detected in seedling leaves, except for SiYUCs on chromosome 8 and SiYUC11 (Figure 5A),
expressional correlation analysis between YUC members implied that SiYUC3 and SiYUC7
might be functionally conservative and redundant in root development regulation.

Functional differentiation among YUC genes was also identified through the analysis
of expression specificity in this study. The different expression patterns of YUC genes
imply that they were involved in regulating the development of different tissues and
organs in plants [28,29]. For example, the transcription of SiYUC11 was only detected in
pre-flowering panicles, flowering inflorescence secondary branches, and seeds. Moreover,
in the first root of the seedling, only SiYUC2, SiYUC3, SiYUC6, SiYUC7, SiYUC10, and
SiYUC13 transcripts were detectable (Figure 5A), which implied that the expressional
diversifications of SiYUCs is essential for the functional divergence of YUC members in
foxtail millet.

The YUC genes showed functional conservation in different plants; for example,
the overexpression of AtYUC1 in petunia and rice also resulted in elevated IAA con-
tent [17,49,50]. SiYUC1 (ZmSPI1) was mainly expressed in the developing panicle, root,
and leaves of germinating seedlings, suggesting that the gene might be involved in lateral
organ initiation and development as well as inflorescence development. In maize, Zmspi1
mutants led to the abnormal initiation of axillary meristematic and lateral organs [35].
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ZmYUC10 is responsible for pollen development and is mainly expressed in tapetal cells,
microspores, and mature pollen in maize [47]. Similar results were also obtained for the
expression profile of SiYUC genes, with SiYUC2 (a direct homolog of ZmYUC10) expressed
mainly in the flowering panicle and anthers. SiYUC6 was mainly expressed in the roots
and leaves during the whole life cycle, which might be associated with the development
and differentiation of lateral organs; similar results have also been observed in rice OsYUC6
mutants [49,51]. SiYUC9/10/13 were mainly expressed in the leaves, panicle, and seeds
at the later stages of foxtail millet development, suggesting that these genes might be
related to grain yield formation; the same functions were also identified in the rice Osyuc9
mutant, which exhibit decreased grain weight, increased chalkiness, and slower grain
filling rate [37]. SiYUC11 was specifically expressed in developing seeds and might play a
critical role in grain development. SiYUC11 was homologous to ZmYUC1 in maize and
OsYUC11 in rice, and it has been reported that the content of IAA in the endosperm of
the Zmyuc1 mutant was significantly decreased and seed weight was reduced by 40% in
maize [52]. Mutations in OsYUC11 also exhibited decreased seed size, increased chalkiness,
and reduced grain weight (60–70% of the wild type) in rice [37,53,54]. The haplotype
analysis in this trial also showed that SiYUC11 correlated with the grain weight of the
panicle in foxtail millet, which was consistent with the reports from maize and rice.

Cis-element analysis indicates that SiYUCs was not only involved in the cross-talk of
plant hormones, but also the response of foxtail millet to various biotic and abiotic stresses.
For instance, methyl jasmonate and salicylic acid response elements were identified in most
SiYUC genes except SiYUC5/7/11/13, implying that these genes were potentially involved
in the plant defensive response process. Except for SiYUC11 and SiYUC13, all SiYUC genes
contained light-responsive elements, which were related to the phototropism response in
foxtail millet [55]. The low-temperature responsive elements suggested that SiYUC genes
might correlate with the IAA-mediated cold response in foxtail millet [56].

3.3. Haplotype Variation and Selected Potential of SiYUCs for Yield Improvement of Foxtail Millet

Based on the expression pattern of SiYUCs combined with the reported functional
study of their homologous genes, superior haplotypes enhancing grain yield of foxtail
millet were identified. For example, the dominant haplotypes of SiYUC2/6/8/11 had longer
or thicker panicles or greater panicle grain weight, which might be beneficial for enhancing
the yield of foxtail millet. In addition, the proportions of cultivars and landraces carrying
different haplotypes were analyzed, which revealed that some advantageous haplotypes
that potentially increase the grain yield of foxtail millet have not been effectively utilized
in breeding programs. For example, Hap1 and Hap3 of SiYUC2 were the dominant
haplotypes contributing to longer panicles, but have not been selected in cultivars; only
Hap2 of SiYUC2 has been selected during breeding. Hap6 of SiYUC6 was correlated with
thicker panicles and has been selected from landrace to the current cultivar of foxtail millet,
although Hap6 is still the minor haplotype in current cultivars, but could be favorably
selected in future breeding programs. Moreover, many superior haplotypes, such A Hap1
of SiYUC8 and Hap1/3 of SiYUC11, have been positively selected during foxtail millet
breeding, which was correlated with higher panicle grain weight.

Molecular markers utilized for the assisted selection of breeding offspring could be
developed by using the SNPs or InDels identified among haplotypes/genotypes in this trial.
Zhang et al. used molecular markers to assist in breeding soybeans with a high protein
content [57]. Molecular markers were also designed according to the haplotypes of SiCHL1
to accelerate foxtail millet hybrid breeding [58]. DNA markers were also utilized to identify
drought-tolerant genotypes with improved barley yield and drought tolerance [59]. In this
trial, Hap3 of SiYUC2 was the superior haplotype contributing to longer panicles, which
could be selected by detecting InDels (i1-i4) in Hap3 to improve foxtail millet breeding
efficiency. Hap3 of SiYUC11 was responsible for higher panicle grain weight, which could
be identified by marker development for the detection of InDels (i3 and i4). The findings of
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this study also imply that the screening and subsequent selection of superior haplotypes
could significantly improve the breeding efficiency of foxtail millet in future.

4. Materials and Methods
4.1. Identification and Phylogenetic Analysis of YUCs in Foxtail Millet, Green Foxtail,
and Sorghum

Foxtail millet, green foxtail, and sorghum genomes were retrieved from the Phytozome
database (https://phytozome-next.jgi.doe.gov/, accessed date: 27 July 2023), and the YUC
protein sequences of maize, rice, and Arabidopsis were downloaded from the maizeGDB
(https://www.maizegdb.org/, accessed date: 27 July 2023), Rice-data (https://www.ricedata.cn/,
accessed date: 27 July 2023), and TAIR databases (https://www.arabidopsis.org/, accessed
date: 27 July 2023), respectively.

The YUC protein sequences of maize, rice, and Arabidopsis were used as query
sequences to obtain candidate sequences in the protein databases of foxtail millet, green
foxtail, and sorghum, respectively, by using BlastP (default parameter), (E-value < 0.0001).
The HMM files of FAD-binding (PF01494), FMO-like motif (PF00743) (the Hidden Markov
Model (HMM)) were downloaded from the Pfam database, and the HMM search program
was used to search for candidate genes in the protein sequences of foxtail millet, green
foxtail, and sorghum, respectively (E-value < 0.001), and the genes containing the above
two structural domains were taken as candidate genes. All candidate genes were verified
using the CDD and SMART websites, and 14, 12 and 11 members of the YUC gene family
were obtained. In addition, we performed the full-length sequence comparison of the
above reported YUC proteins in Arabidopsis, rice, and maize [24,46,47]. The sequences
were aligned by Muscle, with the following parameters: gap open (−2.9), gap extend (0),
hydrophobicity multiplier (1.2), max memory in MB (2454), max iterations (8), clustering
method (UPGMB), min diag length (24).

MEGA-VI was used to construct a phylogenetic tree of YUC proteins in six plant
species. The full-length sequences of 76 YUC proteins (14 OsYUCs, 14 ZmYUCs, 11 AtYUCs,
14 SiYUCs, 12 SvYUCs, 11 SbYUCs) were used to construct an unrooted phylogenetic
tree by using the neighbor-joining method with 1000 bootstrap replications, clustering
method (UPGMB), model (Poisson model), rates among sites (uniform rates), and gaps
data treatment (complete deletion). The gene IDs of the 76 YUC genes are listed in Table S2.

4.2. Protein Properties and Sequence Analyses of SiYUC Genes

The basic physical and chemical parameters of SiYUC proteins, such as molecu-
lar weight, isoelectric point, instability coefficient and hydrophilicity, were analyzed by
ProParam (https://web.expasy.org/protparam/, accessed date: 7 August 2023). The
prediction and statistics of different secondary structures, such as α-helix, β-folding,
extended strand, and irregular coiling, were provided by SOPMA (https://npsa-prabi.
ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html, accessed date: 7 Au-
gust 2023). The subcellular location prediction of SiYUC proteins was performed us-
ing PSORT prediction (https://wolfpsort.hgc.jp/, accessed date: 7 August 2023) and
softberry (http://www.softberry.com/, accessed date: 7 August 2023). The protein spa-
tial structure prediction was performed by the AlphaFlod Protein Structure Database
(https://alphafold.ebi.ac.uk/, accessed date: 29 August 2023).

4.3. Cis-Elements Analysis of the SiYUC Gene Promoter

The upstream 2000 bp of the SiYUC gene was selected as a promoter for cis-element anal-
ysis using Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed date: 7 August 2023) [60].

https://phytozome-next.jgi.doe.gov/
https://www.maizegdb.org/
https://www.ricedata.cn/
https://www.arabidopsis.org/
https://web.expasy.org/protparam/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://wolfpsort.hgc.jp/
http://www.softberry.com/
https://alphafold.ebi.ac.uk/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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4.4. Chromosomal Distribution and Colinearity Analysis of SiYUCs

The visualization of the chromosomal distribution of the SiYUCs and the colinearity
analysis of the YUC genes in the six species were performed by using TBtools software
(v2.001) [61].

4.5. Expression Patterns and Subcellular Localization of SiYUCs

The transcriptional data for the YUC genes were derived from laboratory data already
available, and these tissues were derived from six different growth periods: seedling,
three-leaf, nodulation, pregnancy, flowering, and maturity [43]. The gene expression levels
were shown by log2(FPKM+1) and heatmaps were generated using pheatmap. Correlation
analysis and visualization between YUC genes expression in each tissue were performed
using corrplot software (v0.92) (available at https://github.com/taiyun/corrplot, accessed
date: 12 August 2023). Subcellularly localized vector constructs for expression of the fusion
protein of YUC and GFP driven by the CaMV (Cauliflower mosaic virus) 35S promoter.
The SiYUC11 and SiYUC13 coding sequences were obtained by amplification and fused to
the transient expression vector PAN580 to construct Pro35S::SiYUC11/13-GFP, which was
transformed into foxtail millet protoplasts to investigate the subcellular localization. The
primers were used for constructing the expression vectors shown in Table S4.

4.6. Haplotype Analysis of the SiYUC Genes and Association with Traits in Foxtail Millet

All SNPs used for haplotype analysis were obtained from resequencing of foxtail
millet resource populations [42,43]. Haplotype identification and the analysis of phenotypic
association and haplotype network were performed by geneHapR [62].

5. Conclusions

We identified 14 YUC genes in foxtail millet; these were clustered into four subgroups
and colinear with other grass species. All SiYUCs showed diversified expression patterns
and contained hormonal/light/stress-responsive cis-elements. Hap1/3 of SiYUC2, Hap6
of SiYUC6, Hap1 of SiYUC8, and Hap1/3 of SiYUC11 were the superior haplotypes that
should be selected in the breeding process to improve foxtail millet grain yield in future.
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