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Abstract: The exact mechanisms by which implant surface properties govern osseointegration are
incompletely understood. To gain insights into this process, we examined alterations in protein and
blood recruitment around screw implants with different surface topographies and wettability using a
computational fluid dynamics (CFD) model. Compared with a smooth surface, a microrough implant
surface reduced protein infiltration from the outer zone to the implant thread and interface zones by
over two-fold. However, the microrough implant surface slowed blood flow in the interface zone
by four-fold. As a result, compared with the smooth surface, the microrough surface doubled the
protein recruitment/retention index, defined as the mass of proteins present in the area per unit
time. Converting implant surfaces from hydrophobic to superhydrophilic increased the mass of
protein infiltration 2–3 times and slowed down blood flow by up to two-fold in the implant vicinity
for both smooth and microrough surfaces. The protein recruitment/retention index was highest
at the implant interface when the implant surface was superhydrophilic and microrough. Thus,
this study demonstrates distinct control of the mass and speed of protein and blood flow through
implant surface topography, wettability, and their combination, significantly altering the efficiency of
protein recruitment. Although microrough surfaces showed both positive and negative impacts on
protein recruitment over smooth surfaces, superhydrophilicity was consistently positive regardless
of surface topography.

Keywords: bone-implant integration; microrough; osseointegration; titanium dental and orthopedic
implant; UV photofunctionalization

1. Introduction

Endosseous titanium implants with microtopographic surfaces have become stan-
dard in dental and orthopedic practice [1–11]. Commonly used microrough surfaces
are created via acid etching and present compartmental structures consisting of sharp
peaks and valleys of 0.5–3 µm height and width [12,13]. Microtopography not only
strengthens the mechanical interlocking between the bone and implant surface but also
promotes the differentiation of osteogenic cells compared with relatively smooth machined
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surfaces [14–32], thereby accelerating bone formation around implants [33,34]. However,
there remain unanswered questions around the eventual bone phenotypes that develop
around implants with microtopographic surfaces. For instance, less bone develops around
microrough implants than around machine-smooth implants. Although this might be
because osteoblast proliferation is slower on microrough surfaces, other mechanisms might
contribute. Bone forms close to microrough surfaces (contact osteogenesis), whereas bone
formation around smooth surfaces is relatively distant (distant osteogenesis) [35–37]. It
has been shown that unique molecular layers form exclusively at the microrough tita-
nium interface, which enhances the mechanical and adhesive properties of the interfacial
tissue [38]. Rapid bone formation is seen around microrough implants with minimal soft
tissue intervention. While these distinct osteogenic effects may be due to faster osteoblast
differentiation on microrough surfaces, this might not be the only explanation and, more im-
portantly, the reason for the faster osteoblastic differentiation has not been fully established.
In particular, there are few data on the role of protein and blood localization on and around
implants, even though this is crucial for cellular recruitment, attachment, and signaling in
peri-implant osteogenesis. Specifically, it is unknown how proteins are recruited to implant
surfaces via blood flow and whether this is influenced by surface topography.

The recent implementation of computational fluid dynamics (CFD) in implant science
has provided a new in silico approach to understanding osseointegration by simulating
blood and protein flow around implant surfaces [39,40]. In these studies, CFD models
mimicking standard-sized, screw-shaped dental implants were created and located in bone.
To simulate a clinical scenario, the implant was surrounded by bone with a spacious gap
sufficient to let blood flow. The blood inlet was bidirectional from the apex of the implant
and surrounding bone. The studies demonstrated that the CFD model is simple, low-cost,
and useful to explore the new area of research in implant biology and, indeed, provided
novel results to deepen the understanding of osseointegration. For instance, macroscopic
implant morphology, such as the screw shape or implant threads, induces protein retention
by slowing down blood flow in certain areas of the implant [41]. Compared with hydropho-
bic surfaces, superhydrophilic implant surfaces—where the contact angle of water θ is
0◦—effectively promote the recruitment of proteins to the implant interface [39,40]. These
results provided new insights into the regulation of protein and cell recruitment to implant
surfaces, which is key to successful osseointegration. Furthermore, protein and blood
localization is not accidental nor solely dependent on their interaction with the implant
surface but also on their dynamic flow on a larger scale, including the remote zone outside
the implant threads. These facets of fluid dynamics cannot be addressed in cell culture
studies and are extremely difficult to model in vivo.

Surface topography and physicochemistry are major factors determining the biological
capability of titanium implants [42–48]. Specifically, hydrophilicity/hydrophobicity, or
wettability, is a major physicochemical property [43–46]. Although ordinary titanium
surfaces, regardless of surface topography, are hydrophobic [49], hydrophilic surfaces can
appear under certain conditions and be induced by some surface modifications [50–52].
In particular, ultraviolet (UV) light treatment induces the superhydrophilicity of titanium
surfaces, providing a new means to improve osseointegration both experimentally [53–63]
and clinically [45,53,64,65].

Therefore, the objective of this study was to use CFD to model and compare protein
and blood dynamics around screw-shaped implants with amorphous, smooth surfaces
or microrough surfaces, in particular focusing on the mass and speed of infiltration of
blood and protein in the vicinity of implant surfaces. The combinational effects of surface
topography and hydrophilic/hydrophobic state were also examined. Fibrinogen was used
as a model protein because it is critical to bone wound healing.
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2. Results
2.1. Visualizing Fibrinogen through Color Mapping

We first visualized the localization of fibrinogen along the implant surface by draw-
ing density-based color maps during blood flow. Blood flowed from the implant apex
and surrounding bone. After 1 s, the first apical thread but not the other threads of the
hydrophobic (contact angle 70◦) smooth implant was filled with fibrinogen but, by 3 s,
fibrinogen had infiltrated into the second implant thread (Figure 1). Around hydrophobic
microrough implants, even the first apical thread was only half-filled with fibrinogen, and
there was no progressive infiltration into the other threads.
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Figure 1. Fibrinogen dynamics visualized via color mapping. Implants with two different surface
topographies and with or without superhydrophilicity are compared. The color scale applies to
all panels.

Fibrinogen filled the first, second, and third threads of the superhydrophilic (contact
angle 0◦), smooth implant at 1, 2, and 3 s, respectively. The superhydrophilic microrough im-
plant also showed progressive infiltration, with the 3 s map showing fibrinogen even in the
fourth and fifth threads, significantly different from the hydrophobic microrough implant.
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2.2. Longitudinal Fibrinogen Quantification

We next quantified the mass of fibrinogen infiltrating each of the interface and thread
zone areas relevant to osseointegration (Figure 2). In the interface zone of the hydrophobic
smooth surface (Figure 2A), the mass of fibrinogen increased nearly linearly over time,
whereas infiltration was delayed around the hydrophobic microrough surface. Making
the surface superhydrophilic (contact angle 0◦) considerably increased the fibrinogen infil-
tration of both smooth and microrough surfaces in the order of superhydrophilic smooth,
superhydrophilic microrough, hydrophobic smooth, and hydrophobic microrough surfaces.
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Figure 2. Quantitative assessment of time-dependent fibrinogen quantity infiltrating into each of the
interface (A) and thread (B) zones. (C) Total mass of fibrinogen present in each of the three different
zones. (D) The ratio of fibrinogen distribution in the thread zone relative to the one in the outer zone.
(E) The ratio of fibrinogen distribution in the interface zone relative to the one in the outer zone.
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There was also greater infiltration into the thread zone of the hydrophobic smooth
surface than the hydrophobic microrough surface (Figure 2B). The fibrinogen mass around
the hydrophobic microrough interface was only 50% of that around the counterpart smooth
implants, even after 3 s. Superhydrophilicity significantly increased fibrinogen infiltration
for both surface topographies. Similar to the result of the interface zone, the most fibrinogen
was around the superhydrophilic smooth surface, and the least was around the hydrophobic
microrough surface.

2.3. Fibrinogen Distribution among Three Zones

We next quantified the total mass of fibrinogen localizing to the interface, thread, and
outer zones (Figure 2C). The results confirmed that there was more fibrinogen infiltra-
tion (1) into the interface and thread zones of the smooth surface than the microrough
surface, and (2) for the superhydrophilic surfaces than for the hydrophobic surfaces. Of
note, there was more fibrinogen infiltration into the interface and thread zones of the
superhydrophilic microrough surface than the hydrophobic smooth surface, indicating that
superhydrophilicity could even overcome the negative effect of the microrough surface.
Accordingly, fibrinogen localization in the outer zone was greater for microrough and
hydrophobic surfaces due to less influx into the thread and interface zones.

To evaluate the volumetric rate of protein recruitment, particularly to areas relevant to
osseointegration, we next calculated the percentage of fibrinogen in the interface and thread
zones relative to that in the outer zone (Figure 2D). Although protein recruitment rates at
microrough surfaces were lower, superhydrophilic conversion of the surfaces significantly
improved it, i.e., the effect of superhydrophilicity was greater for microrough surfaces
(Figure 2D,E). The fibrinogen infiltration rate was even higher in the interface zone than
the thread zone for superhydrophilic surfaces, resulting in a higher infiltration rate for the
superhydrophilic microrough surface than for the hydrophobic smooth surface (Figure 2E).

2.4. Vector Mapping

We next created a vector field formation map for whole blood, and representative
vector maps after 2 s of blood inflow are shown in Figure 3. There was robust inbound
vector formation across the thread and outer zone border (white dotted lines) for the smooth
hydrophobic implant (white triangles in Figure 3A), with no current within the implant
threads except for small multidirectional vector clusters indicative of vortex initiation
(white squares in Figure 3A). Similarly, the hydrophobic microrough implant did not show
structured vector formation within the thread except for minor vortex formation (white
squares in Figure 3B). Unlike the smooth implant, there was no solid inbound vector at the
entrance of the thread zone around the microrough implant.

Fibrinogen reached the interface zone around the superhydrophilic smooth implant,
showing arrays of dense vector formation along the implant interface (white circles in
Figure 3C) and current formation inside the thread (white stars in Figure 3C). The super-
hydrophilic microrough implant showed rigorous formation of inbound, long vectors at
the outer thread zone border (white triangles in Figure 3D) and current inside the thread
(white stars in Figure 3D).
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Figure 3. Vector color mapping for blood flow around four different surfaces (A–D). Each vector
represents the direction and speed of the cell meshed in the domain. Refer to the main text for
symbols. The color scale applies to all panels.
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2.5. Blood Velocity

We next analyzed the average velocity of the whole blood based on the vector analysis.
Velocity was highest in the outer zone for all four implant surfaces, followed by the thread
and interface zones (Figure 4). Although the outer zone velocity was similar for the four
surfaces, the thread and interface zone velocities were substantially different according
to surface type. Thread–zone velocity was higher for smooth surfaces than microrough
surfaces, and superhydrophilicity significantly reduced the velocity. The interface velocity
was also higher for smooth surfaces than microrough surfaces, but the effect of superhy-
drophilicity/hydrophobicity was not substantial. The velocity varied drastically according
to surface topography, wettability, and zones, for example: (1) the thread zone velocity for
the superhydrophilic microrough surface was half that of the hydrophobic smooth surface;
(2) the interface velocity was 2.7-fold slower for the superhydrophilic microrough surface
than the hydrophobic smooth surface; and (3) the interface velocity was 25-fold slower
than the outer zone velocity around the superhydrophilic microrough surface.
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2.6. Fibrinogen Recruitment/Retention Index

We hypothesized that both circulating protein mass and protein retention are im-
portant in the local microenvironment for osseointegration. We, therefore, analyzed how
fibrinogen localized around implants by calculating the fibrinogen recruitment/retention
index, which was defined as the total mass of fibrinogen divided by the blood velocity
(Figure 5). This index represents the quantity of fibrinogen localizing to an area of interest
per unit time. The fibrinogen recruitment/retention index varied considerably with surface
topography and in different zones. The index was highest in the outer zone, followed
by the thread and interface zones, around the hydrophobic smooth surface. However, it
was highest in the interface zone around the hydrophobic microrough surface, with an
approximately 2-fold increase compared with the hydrophobic smooth surfaces.
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Figure 5. Fibrinogen recruitment/retention index (y-axis) defined as the mass of fibrinogen present
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the zone divided by blood velocity.

Adding superhydrophilicity to smooth surfaces significantly increased the fibrinogen
recruitment/retention index in the thread zone by 2.5-fold. Likewise, superhydrophilic mi-
crorough surfaces showed a significant increase in the thread and interface zones compared
with hydrophobic counterparts. The index in the interface zone of the superhydrophilic
microrough surface was the highest of all the tested zones and surface types.

3. Discussion

This is the first study to analyze the effects of two different implant surface properties—
topography and wettability—on fibrinogen infiltration and speed of blood flow on and
around titanium screw implants. We hypothesized that the biologically meaningful re-
cruitment of proteins to the implant surface depends not only on the total mass of proteins
delivered adjacent to an implant surface but also on protein retention in this area. Accord-
ing to this hypothesis, slow rather than fast movement of blood would be beneficial for
localizing proteins adjacent to implant surfaces. By implementing a unique index represent-
ing both the recruitment/retention of fibrinogen (the higher the index, the greater the mass
of fibrinogen in the area-per-unit time), we found that fibrinogen recruitment/retention
significantly varied with implant surface topography and wettability and in different
zones around the implant. Given that implant anchorage depends on bone formation
primarily at the implant interface and secondarily in the thread zone, the index at the
interface zone is of the most importance, followed by the thread zone. In the interface
zone, microrough surfaces had higher indices than smooth surfaces, and adding superhy-
drophilicity to the microrough surfaces further increased this advantage. The index in the
thread zone was less affected by surface topography but was considerably increased by
superhydrophilicity for both smooth and microrough surfaces. Of note, the index, which
was lowest in the interface zone and highest in the outer zone for the smooth implant, was
completely opposite around superhydrophilic microrough implants, indicating a complete
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reversal in protein recruitment/retention through the synergistic effect of microtopography
and superhydrophilicity.

This study revealed distinct control of the mass and speed of protein and blood
flow through implant surface properties (see schematic, Figure 6). Interestingly, under
hydrophobic conditions, the microtopography of implant surfaces significantly reduced
the infiltration of fibrinogen from the outer zone to the thread and interface zones, which
would be unfavorable for osseointegration, but it slowed down blood flow, which would be
favorable for osseointegration. The mass of fibrinogen in the thread and interface zones of
microrough surfaces was less than half of that at smooth surfaces. Instead, the blood speed
at the interface zone around the microrough surface was significantly (four-fold) reduced
compared with around the smooth surface, which attenuated the mass disadvantage and
resulted in an even better recruitment/retention index.
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each panel denote their location at the outer, thread, and interface zones.
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By contrast, rendering implant surfaces hydrophilic only had a positive impact on
both the mass and speed of proteins and blood flow. Superhydrophilic surfaces markedly
increased fibrinogen influx to the thread and interface zones, regardless of the surface
topography, with a notable increase for the microrough surface, mitigating its disadvantage
over the smooth surface. Although superhydrophilicity did not significantly influence the
blood flow speed in the interface zone, it slowed down the blood by over 50% in the thread
zone. Thus, the fibrinogen recruitment/retention index was markedly increased in the
thread zone of the superhydrophilic, microrough surface.

This study also revealed the effect of the macroscopic morphology of implants on
protein and blood flow. The area of the thread zone was one-quarter that of the outer
zone. Therefore, 25% of inlet fibrinogen should have been distributed into the thread zone.
In reality, only 23% and 9% of fibrinogen infiltrated into the thread zone for the smooth
and microrough surfaces, respectively, under hydrophobic conditions, suggesting that the
screw-shaped configuration limits blood infiltration. However, blood speed was 60–70%
lower in the thread zone than in the outer zone, producing a bay effect. Together, the
macroscopic implant threads had both a positive and negative role on the recruitment
of proteins and blood, providing a new perspective on the importance of implant screw
morphology, including, but not limited to, the pitch, depth, and angle of threads, in
addition to its main purpose of obtaining primary stability in surgery. When considering
new designs, the wettability of the surfaces should also be taken into account.

Increased protein adsorption and cell retention on microrough implant surfaces have
been considered underlying mechanisms promoting osseointegration compared to that
occurring around machined, smooth implant surfaces [28,66,67], probably due to the in-
creased surface area from the micro-configuration and increased mechanical interlocking
of proteins and cells with the complex surface morphology, as supported by in vitro data.
Although direct comparisons of in vitro data and in silico simulations should be inter-
preted with caution, the significantly reduced mass of protein recruitment and significantly
slowed protein and blood flow around the microrough surfaces seen here provide novel
insights into surface topography-enhanced osseointegration. Indeed, the protein recruit-
ment/retention index in the interface zone of microrough surfaces was double that for
smooth surfaces, which may explain the contact osteogenesis seen histologically around
microrough surfaces [35,36].

This study had several limitations. First, in CFD analyses, there is no deviation or
variation in results, i.e., the results will be identical under the same conditions. However,
there could be potential errors arising from the number and quality of the computational
mesh during modeling and calculation protocols like truncation errors. In this study,
the mesh on each boundary consisted of the same length of edges for all experimental
groups, with all analytical factors and conditions being consistent among the groups,
establishing the reliability of the results. We also attempted to further increase the reliability
by analyzing cumulative, quantitative data in addition to the cross-sectional, qualitative
imaging and mapping. Second, the results should be interpreted within the scope of an
in silico simulation, although the findings have value because blood and protein flow
cannot be fully assessed in vivo using current technologies or approaches. We compared
contact angles of 0◦ and 70◦ in our simulations, where a contact angle of 0◦ is expected on
UV-treated titanium surfaces and when titanium surfaces are new [50]. The contact angle
of 70◦ was specified because the contact angle of ordinary titanium specimens ranges from
65◦ to 110◦, depending on the age and roughness of the surface, with rougher surfaces
having a higher contact angle [50,68]. We used 70◦ for both smooth and microrough
surfaces, but a higher contact angle could be considered for microrough surfaces to better
mimic reality. Despite these limitations, the differences observed between different surfaces
demonstrate the sensitivity and utility of implant CFD models for evaluating protein and
blood dynamics. There are ongoing experimental and clinical efforts to develop new
implant surfaces to improve osseointegration, and implant surfaces with nanotopography,
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meso-topography, and other morphological features [69–73] should now be tested using
the CFD approach demonstrated here.

The mechanisms underlying increased osseointegration around UV-photofunctionalized
implants are not fully understood but include the following: (1) enhanced cellular adhesion
and proliferation via hydrophilic lipid ends on the cell membrane of osteoblasts reacting to
superhydrophilic titanium surfaces; (2) enhanced cellular affinity facilitating the adhesion,
spread, and proliferation on superhydrophilic titanium due to their hydrocarbon pellicle-free
surfaces; and (3) increased attraction of cells to UV-treated titanium due to interactions be-
tween positively charged UV-treated titanium surfaces and negatively charged osteoblast cell
membranes. The significantly increased recruitment/retention index around superhydrophilic
surfaces due to the dual effects of the increased mass of protein infiltration and reduced speed
of blood flow now provide another putative explanation. Although not examined here, the
slow blood flow induced by microrough surfaces and combined microtopography and super-
hydrophilicity should also benefit the recruitment of circulating stem and osteogenic cells.

4. Materials and Methods
4.1. Computational Fluid Dynamics (CFD) Implant Model

A geometric model for implants was created using ANSYS Design Modeler (2019 R1,
ANSYS Inc., Canonsburg, PA, USA) to simulate the environment around the implants,
similar to previously [39,40] (Figure 7A). Two different topographies were modeled: (1) a
smooth, amorphous surface with no projections or irregularities, mimicking the machined
implant surfaces used in the field; and (2) a microrough surface with 0.5–3.0 µm random
peaks and valleys mimicking a common microrough surface made via acid etching. The
model, boundaries, blood inlet and outlet, and three analysis zones (interface, thread, and
outer zone) were designed following methods reported elsewhere (Figure 7B) [40].

4.2. Numerical Conditions

We used an established analytical approach that included the volumes of fraction
(VOF) model, species transport model, fluid properties, and numerical conditions [40].
Briefly, the VOF and species transport models in ANSYS Fluent (2019 R1, ANSYS Inc.)
were utilized to analyze the flow of blood plasma, red blood cells (RBCs), fibrinogen, and
whole blood. All equations used in the analysis are defined and described in the ANSYS
Theory Guide and User’s Guide [74,75]. It was assumed that no chemical reaction happens
between species, and the transfer of temperature was considered negligible. The boundary
condition in this study assumed blood flow from capillaries distributed in alveolar bone.
Studies that have measured RBC velocity in the capillaries have shown that their values
range from 1.0 to 4.0 mm/s [76]. Therefore, the velocity at the blood inlet and in alveolar
bone was set to 0.001 m/s. For the outflow boundary condition, a free stream boundary
condition was used. The contact angle between blood plasma and the implant surface
was set to 0◦ for a superhydrophilic surface or 70◦ a hydrophobic surface. A normal adult
human hematocrit (45%) was used as the VOF value at the blood flow inlet and alveolar
bone, so the VOF for blood plasma was 55%. The mass fraction of fibrinogen (Y0) at the
blood flow inlet and alveolar bone was 0.29% and was obtained by dividing the normal
adult human fibrinogen concentration (300 mg/dL = 3 kg/m3) by the density of blood
serum (1024 kg/m3) [77]. Time step size and the number of steps were set to 0.0001 s
and 30,000, respectively. The pressure-based solver in ANSYS Fluent was used, as it was
necessary for VOF modeling. The calculation at each time step was considered to have
reached convergence when the rate of change in the mass flow of fibrinogen (kg/s) was
below 0.001. A double-precision solver was used. Pressure–velocity coupling was achieved
using the coupled scheme. Since Reynold’s number was sufficiently lower than the value
at which the flow field transitions into a turbulent flow (i.e., 2800), the flow field within the
fluid zone was considered laminar.
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5. Conclusions

Using an implant CFD model, here, we revealed distinct control of the mass and speed
of protein and blood flow via implant surface topography and wettability. The microrough
implant surface reduced protein infiltration from the outer zone to the implant thread and
interface zones compared with smooth surfaces. However, the microrough implant surface
effectively slowed blood flow in the thread and interface zones. As a result, the protein
recruitment/retention index of microrough surfaces was twice that for smooth surfaces.
Converting implant surfaces from hydrophobic to superhydrophilic significantly improved
protein and blood dynamics. Superhydrophilicity increased the mass of protein infiltration
2–3-times and further slowed the blood flow by up to two-fold in the implant vicinity for
both smooth and microrough surfaces. Consequently, the protein recruitment/retention
index was highest at the implant interface when the implant surface was superhydrophilic
and microrough. CFD now provides scope to test many different combinations and types
of surface topography and physicochemical properties to accelerate the development of
implants that optimally promote osseointegration.
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