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Abstract: The metastatic risk of uveal melanoma (UM) is defined by a limited number of molecular
lesions, somatic mutations (SF3B1 and BAP1), and copy number alterations (CNA): monosomy of
chromosome 3 (M3), chr8q gain (8q), chr6p gain (6p), yet the sequence of events is not clear. We
analyzed data from three datasets (TCGA-UVM, GSE27831, GSE51880) with information regarding
M3, 8q, 6p, SF3B1, and BAP1 status. We confirm that BAP1 mutations are always associated with M3
in high-risk patients. All other features (6p, 8q, M3, SF3B1 mutation) were present independently
from each other. Chr8q gain was frequently associated with chr3 disomy. Hierarchical clustering of
gene expression data of samples with different binary combinations of aggressivity factors shows
that patients with 8q|M3, BAP1|M3 form one cluster enriched in samples that developed metastases.
Patients with 6p combined with either 8q or SF3B1 are mainly represented in the other, low-risk
cluster. Several gene expression events that show a non-significant association with outcome when
considering single features become significant when analyzing combinations of risk features indicat-
ing additive action. The independence of risk factors is consistent with a random risk model of UM
metastasis without an obligatory sequence.

Keywords: uveal melanoma; metastases; gene expression; BAP1; CNA; tumor evolution

1. Introduction

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults
and accounts for 80% of all non-cutaneous melanomas [1]. Although the molecular charac-
teristics of the primary tumor are thoroughly known, metastatic disease remains incurable
with very low 5-year survival that has not changed for decades [2]. Despite low risk of local
recurrence, metastatic disease in the liver, develops in 25% to 30% of patients within 5 years
and in approximately 50% of patients within 10 years. No adjuvant treatments have been
identified to delay metastasis, and the median survival time after diagnosis of metastatic
UM is 6–9 months [3]. Recently Tebentafusp has been approved by FDA for metastatic
uveal melanoma treatment, with an OS benefit observed in treated patients [4].

Uveal melanoma and cutaneous melanoma (CM) arise from melanocytes that originate
from common ancestors, namely the neural crest-derived melanoblasts. Both show a higher
incidence in subjects with a fair complexion. Despite the common origin and shared risk
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factors, UM and CM show very distinct characteristics. The prevalent mutation types
in the two melanomas are C > T transitions, yet they differ for the prevalent mutational
signature, linked to exposure to ultraviolet rays for CM but not for UM [5]. No etiological
agents that increase the risk of UM are known; UV rays are almost entirely filtered by
the lens and vitreous body of the eye and do not reach the uvea. UM and CM carry
different tumor initiating-mutations, GNAQ, GNA11, CYSLTR2, PLCB4 in UM and BRAF,
NRAS, NF1 in CM, and show a different frequency of mutations (mutational burden), very
high for CM (>10 mutations per megabase [6]) and very low for UM (0.5 mutations per
megabase [7]). These features also determine a different clinical course that has dramatically
improved for CM through the introduction of targeted therapy and immune checkpoint
inhibitors [8] that show only very limited benefit for UM [9]. A recent work of Newell and
coauthors has shown the presence of 6p and 8q gain, typical of UM, in a set of samples from
different melanoma subtypes as cutaneous, acral and mucosal [10]. Interestingly, several
UM samples with mutated p53 were described for the first time [10].

Metastatic risk is determined by cytogenetic alterations; mainly monosomy of chro-
mosome 3 (M3), amplification of chr8q, and inversely, by chr6p gain, by somatic mutations
in BAP1 (high risk), SF3B1 (intermediate risk, metastasis with long latency), and EIF1AX
(low risk), by cell shape (spindle or epithelioid cells), tumor thickness, basal diameter
and by gene expression profile (class 1, class 2 signature) [11]. The initiating mutation
in GNA11 also determines a more aggressive development of the tumor as compared to
GNAQ mutations [12].

BAP1 was initially identified as a protein interacting with the tumor suppressor
gene BRCA1, which is involved in homology-directed DNA repair. The loss of BAP1
hinders homology-directed DNA repair, forcing cells to rely on the more error-prone
non-homologous end joining (NHEJ) [13]. Unexpectedly, the mutational load in UM is
noticeably lower compared to other cancer types, indicating that BAP1 deletion in UM does
not severely impact DNA damage repair mechanisms [13]. It is therefore likely that other
functions of BAP1 determine the metastatic risk. In fact, its role in polycomb repressive
complex 1 (PRC1) has been linked to the metastatic potential [14]. Recent work has shown
that BAP1 biallelic inactivation could promote metastasis development by enhancing
immune evasion of the tumor through inhibition of the immune response [15], consistent
with the limited response of UM to immunotherapy [9]. The splicing factor 3b, encoded by
the SF3B1 gene, is responsible for appropriate branchpoint detection during pre-mRNA
splicing. SF3B1 mutations in UM lead to alternative splicing at the 3′ end of exon borders
and can cause aberrant splicing. Incorrectly spliced transcripts may be translated into
specific, abnormal proteins, or their expression may be lost due to nonsense-mediated RNA
decay [16].

For the sake of prognostication, molecular events are grouped into risk classes. The
most accepted molecular risk model has been provided by the analysis of 80 UM cases by
integrative genomics, which provided whole genome copy number alteration (CNA), gene
expression, and DNA-methylation data. Each of these domains identifies four risk classes
that roughly correspond to the disomy of chr3 with mutation of EIF1AX (class 1) or SF3B1
(class 2) and chr3 monosomy and BAP1 mutation without (class 3) or with (class 4) chr8q
amplification [13].

The Robertson classification also significantly correlates with prognosis in other clin-
ical UM datasets [17] yet in the clinics, more complex predictors are applied. LUMPO 3
(Liverpool Uveal Melanoma Prognosticator Online), for example, estimates the absolute
risk of metastatic death from choroidal melanoma by combining features such as chromo-
some 3 loss, 8q gain, and Tumor Node Metastasis/American Joint Committee on Cancer
(TNM/AJCC) staging [18,19]. Recent work has analyzed the effect of CNA on a large
cohort of around one thousand UM samples: this study extended the Robertson classifi-
cation by adding 16q and 1p deletion to high-risk class definition [3]. The high number
of samples in this study enlightened the presence of a rare high-risk class (5), defined by
chromosome 3 monosomy, 8q amplification, and 16q or 1p loss. 16q loss has previously
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been associated with metastastatic risk [20]. Chr16q contains a relevant proportion of tumor
suppressors [21] but is generally a rare genomic alteration [3]. Other events, such as chr1q
gain, are detected in metastases but rarely so in primary tumors [22,23]. CNAs could also
be induced by a different selective pressure acting in new environments, as the observed
increase of chr8q gains in metastatic versus primary tumors [3,24]. The gain of 6p has been
previously reported as a protective factor [25], other authors have suggested a potential role
of this CNA on UM malignancy, as HLA class I resides on chromosome 6. Overexpression
of the antigen-presenting machinery could protect the tumor from Natural Killer cells [26].

Molecular prognostic classes, however, do not necessarily correspond to the sequence
at the time of acquisition of molecular lesions that drive tumor evolution. Gene expression
and, to a certain extent, DNA methylation are helpful for prognostication. However,
they constitute intermediate phenotypes secondary to stable molecular lesions (somatic
mutations and CNA) [12,13].

BAP1 mutations and chr3 monosomy are central to the metastatic risk [25]. Somatic
mutation of the tumor suppressor gene BAP1, located on chr3, confers a selective growth
advantage only in the presence of Chr3 monosomy leading to the complete loss of functional
BAP1 expression. Loss of BAP1 also confers a gene expression profile associated with high
metastatic risk [27,28]. The potential interdependence of the other molecular events driving
UM tumorigenesis and metastasis is a matter of discussion.

BAP1 mutations are early events in tumorigenesis, likely occurring when the tumor
still consists of a few malignant cells. Nevertheless, they do not imply the immediate
departure of metastases [29]. After the cell has acquired a mutation in the GPCR signaling
pathway that drives proliferation, BAP1 expression is lost and cells invade the surrounding
tissue and migrate to choroidal vessels for metastasis.

UM metastases do not show consistent acquisitions of additional molecular lesions
concerning the primary tumors. Metastasis driver events seem to occur early during tumor
development [30].

The tumor evolution model of successive molecular alterations that confer a growth
advantage and accumulate over time has recently been challenged by the punctuated
equilibrium or “big bang” model that predicts an original phase of genomic instability
followed by the outgrowth of stabilized clones carrying molecular lesions that confer a
selective growth advantage [2,31,32].

Here we try to systematically approach the interdependence of the molecular lesions
of UM that determine metastasis thereby identifying the gene expression proxy of these
associations. Identifying the molecular basis underlying UM evolution can provide insight
into the molecular pathogenesis of UM calling for appropriate patient stratification in
clinical trials of new drugs.

2. Results
2.1. UM Genomic Features and Metastases

We analyzed the frequency and the co-occurrence of five risk factors: BAP1 and SF3B1
mutations, M3, chr8q, and chr6p gains. We did not consider EIF1AX mutations since they
are not associated with metastatic risk likely co-driving tumor initiation but not progression
and we also excluded GNA11 as a risk factor which, in comparison to the other risk factors,
only contributes a minor risk elevation [12].

Our analysis shows that chr8q gain is the most frequent molecular lesion encountered,
present in 82 of 113 cases, followed by monosomy of chr3 observed in 60 cases and chr6p
gain in 53 cases. BAP1 and SF3B1 mutations are present in 44 and 20 cases, respectively.
Figure 1 shows the association of these features. Chr8q gain is mainly associated with chr3
monosomy but can occur separately and it occurs in the presence or absence of any of the
other features. There are three cases with chr8q gain as an isolated feature. Any of the other
features, namely chr3 monosomy, chr6p gain, BAP1, and SF3B1 mutations can occur in
the presence or absence of any of the other features except for BAP1 mutation that is only
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encountered in cases with chr3 monosomy (Figure 1), consistent with its tumor suppressor
gene function.
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patients is characterized by 8q, M3, and BAP1 (15), followed by samples with also 6p gain 
(10), only M3 and 8q gain (6), and 6 samples with at least a mutation on SF3B1. The only 
feature that occurs in isolation in the absence of any of the other features, though in a 
single case, is chr3 monosomy. All features can occur in the presence or absence of any 
other feature again with the exception of the BAP1 mutation that is obligatorily associated 
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Figure 1. Upset plot of all patients in Genoa and TCGA UVM dataset. Each row represents a genomic
alteration: chromosome 8q gain (8q), monosomy of chromosome 3 (M3), chromosome 6p gain (6p),
BAP1 and SF3B1 mutation. Each bar represents the number of patients that have a set of genomic
factors, represented as points connected by a line (e.g., 12 patients have 8q, M3, 6p, and BAP1). Black
bars, on the right, are the total number of patients in the dataset with a specific genomic alteration
(e.g., 82 patients have 8q). Bar colors are related to the number of genomic events in the same patient:
4 = red, 3 = orange, 2 = gold, 1 = violet, 0 = blue.

This picture dramatically changes when only the 41 cases that developed metastases
within the time of follow-up are considered. Metastatic UM generally shows the presence of
more than one molecular risk factor. The most numerous group among metastatic patients
is characterized by 8q, M3, and BAP1 (15), followed by samples with also 6p gain (10), only
M3 and 8q gain (6), and 6 samples with at least a mutation on SF3B1. The only feature
that occurs in isolation in the absence of any of the other features, though in a single case,
is chr3 monosomy. All features can occur in the presence or absence of any other feature
again with the exception of the BAP1 mutation that is obligatorily associated with chr3
monosomy (Figure 2a). Cases that did not develop metastases within the time of follow-up
show associations of molecular lesions similar to the whole samples as described above
(Figure 2b).
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chromosome 8q gain (8q), monosomy of chromosome 3 (M3), chromosome 6p gain (6p), BAP1 and
SF3B1 mutation. Each bar represents the number of patients that have a set of genomic factors,
represented as points connected by a line (e.g., 12 patients have 8q, M3, 6p, and BAP1). Black
horizontal bars, on the right, are the total number of patients in the dataset with a specific genomic
alteration (e.g., 82 patients have 8q). Bar colors are related to the number of genomic events in the
same patient: 4 = red, 3 = orange, 2 = gold, 1 = violet, 0 = blue.

Eight cases show none of the five molecular lesions analyzed. Seven of these, in the
absence of metastasis driver lesions, did not develop metastases but one case did. This case
probably has other, uncommon pro-metastatic lesions (Figure 2a).

2.2. Association of Pairs of Risk Factors with Gene Expression

To evaluate the effect of combined genomic events on gene expression and their effect
on metastasis development, we compared gene expression profiles of samples with binary
combinations of molecular risk factors with those samples where the specific combination
was absent. Genes that are differentially expressed in any risk factor combination are
reported in a single heatmap that also shows clinical and molecular sample annotations
(Figure 3).

Groups with 6p gain are clustered in the right part of the heatmap, which contains
most samples without metastases. This was expected since a 6p gain is an indicator of a
better prognosis. In general, monosomy of chromosome 3 is the dominant factor in patient
prognosis: all combinations of M3 (with BAP1, 8q) led to the worst prognosis. In particular,
the protective effect of 6p is evident in disomic patients (Figure S1) compared to monosomic
samples (Figure 4a,b).

In particular, 10 out of 12 M3 patients with 6p, 8q gain, and BAP1 have developed
metastasis during follow-up, while progression was observed in only a limited number
of disomic patients with SF3B1 (Figure 2a). In general, survival curves of SF3B1 mutated
samples show a better prognosis compared to the other groups unless the mutation oc-
curs in combination with M3 (Figure 4). SF3B1 mutations are considered a risk factor for
delayed metastasis that develops up to 15 years later [33]. Gene ontology enrichment of
differentially expressed genes shows enrichment of genes involved in the biological pro-
cesses of second-messenger-mediated signaling and cyclic-nucleotide-mediated signaling:
in UM, consistent with the constitutive activation of G protein signaling due to mutations
in GNAQ, GNA11 genes [5,12,34,35]. To check if differentially expressed genes (DEG) were
exclusively associated with a particular genomic feature (such as M3 or 8q) and not with
the combination of features (M3/8q), we again performed DEG analysis comparing single
factors (such as M3 vs. all) and we plotted the genes that were differentially expressed in
more than one comparison (Figure 5).
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Figure 3. Heatmap of differentially expressed genes. In this heatmap, we reported genes that were
differentially expressed comparing one couple of factors vs. all (e.g., patients with 8q and M3, 8q/M3,
vs. all). In this heatmap only differentially expressed in more than one group, with at least one
comparison with logFC greater or equal to 2, are reported. Heatmap colors represent the expression
values relative to the mean value: red indicates expression higher and blue lower than mean, white
at mean. The color intensity indicates the distance from the mean value. On the top of the heatmap
combination of genomic events are reported with different colors: 8q/SF3B1 = red, 6p/SF3B1 = blue,
6p/8q = brown, M3/SF3B1 = orange, BAP1/M3 = purple, 8q/M3 = yellow. Patients that developed
metastasis within the time of follow-up = black.
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Two clusters of patients can be observed (Figure 5): one mostly characterized by 8q,
M3, and BAP1 mutations, comprising most of the metastatic patients, while the other group
has a greater number of 6p gain events: in particular 8q gain is frequently associated with
6p gain, as in Figure 2 (Table S1). The relation between gene expression and methylation
in elements of Table S1 has been reported in Figure 6 with a scatterplot, as previously
implemented in [36].

Each point coordinate is defined as the log fold change of the mean expression or
gene methylation values in the high-risk samples over the low-risk ones. For most of the
genes, we observe a concordance between the considered genomic domains (such as high
expression and low methylation or the opposite), except for 11 items, 4 of them in regions
covered by CNA (gray triangles). HCP5 is the gene with the lowest logFC methylation
values, it maps on the 6p chromosome, and it has been shown to have a role in autoimmune
diseases as well as promoting proliferation and metastasis in different cancers [37,38].
HTR2B has the highest RNA-seq logFC value in high-risk samples compared to low-risk
ones. Moreover, low expression of the collagen type XI alpha 1 gene COL11A1 was
correlated with poor survival [39]. Since there is a good correlation between expression and
methylation, we tried a data fusion (DF) approach. Unfortunately, we have no methylation
data for the Genoa dataset [40,41], and therefore we used a DF method that supported
the integration of partial-omics data, NEMO [42], while previously applied methods such
as jCMF or jSVD were not applicable [36,43]. NEMO produced 4 clusters with different
survival curves whose differences were statistically significant (Table S2). Class 1 and
4 are high-risk classes, while 2 and 3 have low risk (Figure 7): 5 metastatic patients were
misclassified.



Int. J. Mol. Sci. 2023, 24, 15602 8 of 16

Figure 5. Heatmap of differentially expressed genes in single genomic factors. In this heatmap, we
reported genes that were differentially expressed by comparing one factor vs. all (e.g., patients with
8q vs. all patients without 8q gain). In this heatmap only differentially expressed genes in more than
one group, with at least one comparison with logFC greater or equal to 2, are reported. Heatmap
colors represent the expression values relative to the mean value: red indicates expression higher and
blue lower than mean, white at mean. The color intensity indicates the distance from the mean value.
On the top of the heatmap genomic events are reported with different colors: 6p = blue, 8q = brown,
SF3B1 = orange, BAP1 = red, M3 = yellow. Patients that developed metastasis within the time of
follow-up = black.



Int. J. Mol. Sci. 2023, 24, 15602 9 of 16

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Scatterplot representing log rate of the mean RNA gene expression and methylation data 
of high-risk (3, 4) over low-risk (1, 2) patients of genes on Table S1. Overexpressed and down-meth-
ylated genes are reported in red, while blue color is used for downregulated and up-methylated 
genes. All other points are colored gray. Genes overlapping on CNA regions are represented as 
triangles. 

Each point coordinate is defined as the log fold change of the mean expression or 
gene methylation values in the high-risk samples over the low-risk ones. For most of the 
genes, we observe a concordance between the considered genomic domains (such as high 
expression and low methylation or the opposite), except for 11 items, 4 of them in regions 
covered by CNA (gray triangles). HCP5 is the gene with the lowest logFC methylation 
values, it maps on the 6p chromosome, and it has been shown to have a role in autoim-
mune diseases as well as promoting proliferation and metastasis in different cancers 
[37,38]. HTR2B has the highest RNA-seq logFC value in high-risk samples compared to 
low-risk ones. Moreover, low expression of the collagen type XI alpha 1 gene COL11A1 
was correlated with poor survival [39]. Since there is a good correlation between expres-
sion and methylation, we tried a data fusion (DF) approach. Unfortunately, we have no 
methylation data for the Genoa dataset [40,41], and therefore we used a DF method that 
supported the integration of partial-omics data, NEMO [42], while previously applied 
methods such as jCMF or jSVD were not applicable [36,43]. NEMO produced 4 clusters 
with different survival curves whose differences were statistically significant (Table S2). 
Class 1 and 4 are high-risk classes, while 2 and 3 have low risk (Figure 7): 5 metastatic 
patients were misclassified. 

Figure 6. Scatterplot representing log rate of the mean RNA gene expression and methylation data of
high-risk (3, 4) over low-risk (1, 2) patients of genes on Table S1. Overexpressed and down-methylated
genes are reported in red, while blue color is used for downregulated and up-methylated genes. All
other points are colored gray. Genes overlapping on CNA regions are represented as triangles.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. Survival curves as predicted by Data Fusion. The survival curves of the classes were found 
by data fusion of the whole UM RNA expression dataset and TCGA methylation data on DE genes 
of couples of factors with at least one comparison with logFC ≥ 2. In yellow is reported the survival 
of class 1 patients. Class 1 and 4 have a high risk of metastasis, while for Class 2 and 3, the risk is 
lower. 

One patient with no feature, one with M3, 8q, BAP1, and one with only chr3 mono-
somy were classified in class 3, while two other metastatic patients were classified in class 
2, one had 6p, SF3B1 mutation, the other also 8q (Tables 1 and 2). These patients can be 
found in the right part of the heatmap of coupled and single genomic factors, distant from 
the leftmost part of the plot, where the majority of metastatic patients were clustered (Fig-
ures 3 and 5). Hence, misclassification is probably due to their diversity in the expression 
profile compared to the majority of metastatic patients. Misclassification likely relies on 
the intrinsically stochastic process of metastasization [44]. 
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Figure 7. Survival curves as predicted by Data Fusion. The survival curves of the classes were found
by data fusion of the whole UM RNA expression dataset and TCGA methylation data on DE genes of
couples of factors with at least one comparison with logFC ≥ 2. In yellow is reported the survival of
class 1 patients. Class 1 and 4 have a high risk of metastasis, while for Class 2 and 3, the risk is lower.

One patient with no feature, one with M3, 8q, BAP1, and one with only chr3 mono-
somy were classified in class 3, while two other metastatic patients were classified in class
2, one had 6p, SF3B1 mutation, the other also 8q (Tables 1 and 2). These patients can
be found in the right part of the heatmap of coupled and single genomic factors, distant
from the leftmost part of the plot, where the majority of metastatic patients were clustered
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(Figures 3 and 5). Hence, misclassification is probably due to their diversity in the expres-
sion profile compared to the majority of metastatic patients. Misclassification likely relies
on the intrinsically stochastic process of metastasization [44].

Table 1. Features of patients in clusters defined by NEMO.

Cluster M3/BAP1 Metastasis All

class 1 24 16 25

class 2 0 2 18

class 3 2 3 31

class 4 34 20 39

Table 2. Features of metastatic patients classified in clusters 2 and 3.

Patients_ID Metastasis M3 6p 8q BAP1 SF3B1 Cluster

TCGA-V4-A9EW 1 0 1 0 0 1 2

TCGA-VD-A8KA 1 0 1 1 0 1 2

MU012 1 1 0 1 1 0 3

MU043 1 1 0 0 0 0 3

TCGA-VD-AA8Q 1 0 0 0 0 0 3

3. Discussion

Uveal melanoma metastatic disease has a complex development: the loss of both
BAP1 alleles with mutations and chromosome 3 deletion and/or chr8q gain could drive
the formation of different metastases that, after colonization of the liver, can spread to
different organs. Each tumoral cell line will randomly develop additional mutations and
CNA to proliferate in different organs [16,45]. Metastases originate before the primary
tumor is extracted and grow into clinically overt metastases only later on, when additional
genomic events have accumulated in the cells of micro-metastases [16] or when a favorable
microenvironment is created [46]. However, primary and metastatic tumors will contin-
uously accumulate new CNA and mutations, increasing the genomic diversity between
the different tumor subclones [23,45]. The most frequent CNA are 3p loss, 8q gain, and 6p
gain: the first two are associated with bad prognosis and the third is considered to have a
protective effect, possibly since M3 and 6p rarely occur in combination [25]. Other events
such as loss of 1p and 16q are rare but found in most aggressive M3 UM tumors [3].

Chr3 monosomy, BAP1 mutations, and chr8 gain are the principal features of patients
with metastases [3,10,13] as shown in Figures 1 and 2. These events have previously been
linked to liver metastases [47]. The current model of UM tumorigenesis is based on the
Darwinian evolutionary selection of a sequence of genetic aberrations. Here we show
that genetic and epigenetic alterations are independently acquired with each alteration
increasing the metastatic risk. However, the alterations do not occur sequentially and
metastasis is the consequence of an accumulation of randomly introduced high-risk features.
This model also allows for secondary drivers that further derange the central oncogenic
signaling pathway [5].

The rapid metastasizing capacity of uveal melanoma and the inability to improve
the outcome despite progress in early diagnosis and almost perfect control of the primary
disease also indicates that the progression of the disease is not gradual, but rather the
result of divergent trajectories of the initially transformed uveal melanocytes [14]. In
the classical gradualism model of tumor evolution, there is a period of latency between
driver mutations and multiple, independent secondary hits during the transformation
phase of tumorigenesis. This tumor evolution model has recently been challenged by a
new model, the so-called “punctuated equilibrium” or “big bang” model that predicts
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an initial phase of great genomic instability (the cancer-initiating event) followed by the
selection of clones carrying genetic alterations conferring selective advantage and capable
of invasion and metastasis [31,48] that has also been proposed for UM [14]. Strong evidence
indicates that the genetic alterations typical of uveal melanoma usually arise very early
in tumor development followed by clonal stasis [49]. Given the evidence cited and the
results of the present analysis (and despite the paucity of molecular lesions that characterize
metastatic UM), UM metastasization fits better with the punctuated equilibrium model of
cancer development than with the classical gradualism model. A big bang followed by the
outgrowth of viable clones that might further be restricted by cellular competition leading
to clonal extinction [32] seems to hold for many if not all tumors, even when the extension
of the big bang can be very limited (or clonal extinction very extended) as in UM.

Our analysis shows the independence of the single dismal prognostic factors. This
is in contrast with a model of stepwise acquisition of molecular lesions determining an
increasing risk. Bakhoum and colleagues have performed single-cell transcriptomics on
primary UM, and they show the composition of the tumors with various proportions of
cells showing class 1 or class 2 gene expression or features of one of the four prognostic
TCGA classes [14]. The authors interpret this finding as evidence of the definition of the risk
being determined by the relative proportion of high and low-risk cells present in the tumor.
In our interpretation, too few cases have been analyzed to establish a “quantitative” risk
model. In any case, the cellular composition model is in stark contrast with the detection of
drastically different clusters of low- and high-risk cases by bulk transcriptomics which we
also confirm here. The cellular composition model would predict a continuous risk-related
gene expression profile. We think that risk factors occur randomly and independently
(except for M3 and BAP1 loss) and concur to define the risk. To establish whether and to
which extent the risk might also depend on quantitative aspects of different cell populations,
many more tumors must be analyzed. Yet we are inclined to predict that such analyses
will dismiss the cellular composition model. Cell morphology is associated with risk in
a non-quantitative manner since the mere presence of epithelioid cells rather than the
ratios of epithelioid and spindle cells is associated with risk [50]. For certain, further
genomic analyses are required to investigate the dynamics of UM metastasis and tumor
heterogeneity.

4. Materials and Methods
4.1. Data Source

We obtained CNA data (3p, 6p, 8q) and gene expression profiles of UM tumors
from 113 patients with known gene mutation profiles. The dataset is composed of 80
RNA-seq expression profiles from TCGA [13], obtained from UCSC-Xena Browser (http:
//xena.ucsc.edu/ (accessed on 27 September 2023).level 3 data, log2(x + 1) transformed
RNA-Seq by Expectation Maximization, RSEM, normalized counts) and 33 Affymetrix
arrays from our previously published works (GEO: GSE27831, GSE51880) [40,41] (Table 3).

Table 3. Clinical and molecular information of patients collected in the Genoa and TCGA Uveal
melanoma gene expression dataset.

Parameter Category Genoa Dataset (33) TCGA Dataset (80)

Gender Male/Female 19, 14 45, 35

Age Years 65 (42–83) 62 (22–86)

Metastases Yes 15 26
No 18 54

Alive 21 56
State Dead (metastatic disease) 8 20

Dead (other) 4 4

Follow up Months 2 (0–5) 27 (0–87)

http://xena.ucsc.edu/
http://xena.ucsc.edu/
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Table 3. Cont.

Parameter Category Genoa Dataset (33) TCGA Dataset (80)

Chromosome 3p loss 18 42

Chromosome 8q gain 23 59

Chromosome 6p gain 8 45

BAP1 mutation 9 35

SF3B1 mutation 2 18

4.2. UM Gene Expression Data Collection

The two datasets have different proportions of metastatic patients, more abundant in
the Genoa dataset compared to the TCGA one, this fact is in part reflected by the shorter
follow-up time in the first dataset. Monosomy of chromosome 3 and 8q gain is observed
in the majority of patients in both datasets. The uveal melanoma gene expression dataset
file has been prepared following the procedure published by Piaggio et al. [12]. Briefly,
microarray probes were collapsed to gene symbols to the maximum variance dataset with
the weighted correlation network analysis (WGCNA) R package [51]. Expression profiles
were merged in a single file, without batch effects, using the Combating Batch Effects
When Combining Batches of Gene Expression Microarray Data (COMBAT) algorithm, as
implemented in the inSilicoMerging R package [52]. Clinical and molecular data of the
Uveal melanoma expression dataset were collected from the original publications.

4.3. UM Expression Data Analysis

Differentially expressed genes were computed with the Limma R package [53]. Each
group was compared with the remaining samples with a couple of genomic features, such
as BAP1/M3, 8q|M3, 8q|SF3B1, 6p|SF3B1, 6p|8q, M3|SF3B1. Survival curves were com-
puted with the survival R package, considering metastasis development and patient death
for causes different from Uveal Melanoma as censored [54,55]. Gene ontology enrichment
has been computed with Clusterprofiler on DEG for which at least one comparison had an
absolute value of logFC greater or equal to two [56,57]. We used the NEMO R package [42],
selecting k = 4, to perform Data Fusion on the Uveal Melanoma dataset. We considered the
whole expression dataset and only TCGA data for the methylation domain. Both matrices
only had differentially expressed genes for a couple of factors, with at least one logFC ≥ 2.
Venn diagrams were created with the ggvenn R library [58], cowplot R package was used
to join multiple Venn plots in one figure [59].

4.4. Statistical Analysis

Only significant results (method’s p-value < 0.05) were considered in the analysis
computed with Limma and Clusterprofiler R package. The relationship between gene
expression and mean methylation levels was computed in R, using the Pearson Correlation
Coefficient (PCC), associated p-value was computed with the cor.test R function, all values
are reported in Table S1. Significance of survival curves was computed with the Log-rank
test, using the surv_pvalue function of the Survminer R package [54,55], p-values are
reported in Table S2.

5. Conclusions

Despite success in identifying the canonical genomic alteration in UM, how and when
these events arise during tumor evolution remains unknown [49]. Our results show that
the genomic aberrations usually arise in an early punctuated burst, followed by neutral
evolution, indicating that CNA in the UM tumorigenesis is neither gradual nor follows
multistep carcinogenesis. This implies that the metastatic potential of UM is set in stone
early in tumor evolution and may explain the striking differences between uveal melanoma
and cutaneous melanoma responses to treatment and, last but not least, the imbalance
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between advances in primary treatment and the lack of advance in the treatment of the
metastatic disease. These findings challenge the current model of UM progression and
provide insight into the mutational process that gives rise to metastatic uveal melanoma.

The CNA landscape of 921 UM samples in the dataset presented by Lalonde et al. [3]
shows that most metastatic patients have chr3 monosomy and 8q gain (Figure 8) as observed
in the UM expression dataset considered in our work (Figures 1 and 2). A sequentiality
between CNA events is not the rule in UM evolution different CNA events can develop
without a fixed order (e.g., patients with 6p or 8q amplifications without M3).
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