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Abstract: The long-read RNA sequencing developed by Oxford Nanopore Technology provides
a direct quantification of transcript isoforms. That makes the number of transcript isoforms per
gene an intrinsically suitable metric for alternative splicing (AS) profiling in the application to this
particular type of RNA sequencing. By using this simple metric and recruiting principal component
analysis (PCA) as a tool to visualize the high-dimensional transcriptomic data, we were able to group
biospecimens of normal human liver tissue and hepatocyte-derived malignant HepG2 and Huh7 cells
into clear clusters in a 2D space. For the transcriptome-wide analysis, the clustering was observed
regardless whether all genes were included in analysis or only those expressed in all biospecimens
tested. However, in the application to a particular set of genes known as pharmacogenes, which are
involved in drug metabolism, the clustering worsened dramatically in the latter case. Based on PCA
data, the subsets of genes most contributing to biospecimens’ grouping into clusters were selected
and subjected to gene ontology analysis that allowed us to determine the top 20 biological processes
among which translation and processes related to its regulation dominate. The suggested metrics
can be a useful addition to the existing metrics for describing AS profiles, especially in application to
transcriptome studies with long-read sequencing.

Keywords: nanopore sequencing; alternative splicing; human liver tissue; Huh7 and HepG2 cell
lines; transcriptome; pharmacogenes

1. Introduction

Principal component analysis (PCA) is one of the oldest and most widely used math-
ematical tools to reduce the dimensionality of large datasets, allowing us to increase the
data interpretability but, at the same time, minimize information loss [1,2]. In application
to omics technologies, PCA allows one to visualize high-dimensional data, generated
by these technologies, by projecting them into a 2D or 3D space [3]. The visualization
is crucial for detecting intrinsic structure of the data, such as clusters and outliers. In
transcriptome-wide studies, PCA was recruited to dissect both gene expression [4] and
alternative splicing [5] profiles.

Alternative splicing (AS) is a highly specialized processing of pre-mRNAs which
allows organisms to enhance transcriptome and proteome diversity [6,7]. Over 90% of
transcripts may undergo alternative RNA processing by the skipping/inclusion of exons or
retention of introns via differential selection of splice sites in pre-mRNAs, enriching the
phenotypic diversity [7,8]. AS dysregulation plays an important role in pathogenesis [9].
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Aberrations in AS have been linked, e.g., to various oncogenic processes including tumor
progression, metastasis, and therapy resistance [10].

The advent of the high-throughput sequencing of short cDNA fragments (RNA-seq)
greatly boosted the transcriptome-wide analysis of AS [6,11]. However, despite success-
fully detecting AS events, RNA-seq is still limited due to a reliance on short reads since,
during data analysis, the transcript assembly software faces difficulties in determining the
connectivity between exons when one gene has many isoforms and the assembling of short
reads into transcript isoforms becomes prone to errors [6]. As a way around this, metrics
were suggested to quantify AS without assembling short reads into transcript isoforms,
including ‘exone usage’, ‘Percent Spliced-In’ (PSI), and ‘Percent of Intron Retention’ in-
dexes [12–14]. Among them, the PSI index was employed in PCA to dissect AS profiles,
using the short-read RNA-seq data [15].

The emergence of long-read RNA sequencing such as that developed by the Oxford
Nanopore Technologies (ONT), with long reads spanning multiple exons, opened new
opportunities to study AS with less ambiguity, by directly identifying and quantifying tran-
script isoforms [7]. In addition, ONT sequencing can be carried out in the format of direct
RNA sequencing, thus avoiding potential biases which can result from the amplification of
cDNA fragments (though at the expense of sequencing yield). This allows one to reveal
splicing patterns in terms of the relative abundance of transcript isoforms (expressed using,
e.g., the ‘transcripts per million’ metric, TPM) and/or as the number of transcript isoforms
per each and every gene.

In this study, we aimed to evaluate whether such a metric as the number of tran-
script isoforms per gene, which will be hereinafter referred to as ‘degree of splicing’ (DS),
can be utilized to visualize differences in AS profiles between cell and tissue types by
means of PCA. Samples of human liver tissue and hepatocyte-derived HepG2 and Huh7
cultured cells were employed for this purpose and the extracted mRNA was subjected
to long-read ONT sequencing. HepG2 and Huh7 are hepatocyte-derived cell lines origi-
nated from human hepatoblastoma (HBL) and hepatocellular carcinoma (HCC) tumors,
respectively [16,17], and commonly used for studying processes associated with the ma-
lignant transformation of hepatocytes (e.g., [17–19]). Since liver cells are responsible for
the metabolism of the most drugs, alongside analyzing the whole transcriptome, we also
applied PCA, using DS as a metric, to a particular group of genes known as ‘pharmaco-
genes’ [20]. Pharmacogenes are involved in the processing of drugs and are composed,
among others, of genes encoding Phase I (e.g., cytochrome P450) and Phase II (e.g., UDP-
glucuronosyltransferase) enzymes.

2. Results
2.1. The Transcript Isoforms Abundance Profiles in Liver Tissue and Hepatocyte-Derived
Cultured Cells

The number of transcript isoforms detected for a given gene depends on the sequenc-
ing depth—the parameter hardly controlled in the ONT sequencing. The sequencing depth
greatly varied among the analyzed biospecimens (Table S1). To alleviate the impact of
variation in sequencing depth on DS, we systematically varied the TPM threshold values
to cut off the “noisy” low-abundance transcript isoforms. Prior to setting TPM threshold
values, we as a first step compared the distributions of the number of transcript isoforms
by their abundance for the studied types of biospecimens, using all detected transcript
isoforms. The entire range of transcripts’ abundance determined by the ONT sequencing
was split into uneven bins whose means differed by a factor of about three to visually
enlarge the range of low- and medium-abundance transcripts. The range started with
the TPM value of 0.1 since for all biospecimens used in the analysis there were no tran-
script isoforms found with an abundance below this value. To construct distributions,
we grouped transcript isoforms into ‘bins’ representing their abundance (in TPM) for
each biospecimen and then averaged over all biospecimens of a given type for each bin.
The result is presented as a histogram in Figure 1. As seen, the distributions are simi-
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lar in general. Yet, the average abundance of moderately-expressed transcript isoforms
(10 ≤ TPM ≤ 100) is statistically lower in the liver tissue compared to that in HepG2 and
Huh7 cells. Also, there is a considerable variability in the abundance of low-expressed
transcripts (TPM ≤ 1) between biospecimens for HepG2 cells and liver tissue as manifested
by the large confidence intervals (Figure 1). Moreover, for the liver tissue biospecimens,
there is no transcripts’ isoform whose abundance fell into the bin (0.1, 0.316]. This is most
probably a consequence of the lower sequencing outputs for the biospecimens of liver
tissue compared to those we obtained for cultured cells in our sequencing experiments
(Table S1). Interestingly, if transcript isoforms abundances are averaged in another way,
viz. by first calculating means for each transcript isoform over biospecimens of a given
type and then plotting the histogram by using these mean values of isoforms’ abundance
(Figure S1 of Supplementary Materials), the number of isoforms falling into the bin (0.1,
0.316] increases dramatically compared to that in Figure 1. This is likely due to a great
variability in the abundance of low-expressed transcript isoforms between biospecimens of
the same type so that, depending on the way of averaging, they fall into different TPM bins.
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Figure 1. The distributions of the number of transcript isoforms by their abundance. The heights of
bars show mean values obtained by averaging the number of transcript isoforms after grouping them
into bins over all biospecimens of a given type. The error bars represent 95% confidence intervals. The
blue, orange, and grey color correspond to human liver tissue, HepG2, and Huh7 cells, respectively.

Second, we considered how the cutting off of low-abundance transcript isoforms by
increasing the TPM threshold can affect the overall splicing (defined here as the number
of all transcript isoforms with an abundance above the TPM threshold, averaged over
biospecimens of a given type, divided by the number of genes expressing them). We have
extended this analysis up to a threshold value of 100. The results for the TPM thresholds
of 0.1, 1, 10, and 100 are presented in Table S2. It turned out that the overall splicing is
quite different for liver tissue, HepG2, and Huh7 cells when the TPM threshold equals
0.1 (1.6, 2.1, and 1.9, respectively) but becomes indistinguishable between the studied types
of biospecimens at the TPM thresholds of 10 and 100 (1.3 and 1.2, respectively). However,
in the last case, the quantity of transcript isoforms left for analysis is dramatically reduced
(by about 20-fold compared to TPM > 0.1; Table S2). Thus, three TPM thresholds, 0.1, 1, and
10, were used in the further analysis. For the TPM threshold of 10, when the overall splicing
is similar for all types of biospecimens, the AS profiles are expected not to be influenced by
the sequencing depth.
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2.2. Principal Component Analysis of Alternative Splicing for Whole Transcriptome and Subset of
Pharmacogenes in Liver Tissue and Hepatocyte-Derived Cultured Cells

We applied PCA to the datasets where each gene was characterized by its DS value
as follows: the DS of a gene was set to equal the number of isoforms expressed with the
abundance above the TPM threshold for each of the biospecimens; if there were no tran-
script isoforms with an abundance above the TPM threshold for that gene in a particular
biospecimen, then the gene’s DS value in that biospecimen was set to equal zero (Table S3).
The result for the TPM threshold of 0.1 (when, in fact, all detected transcript isoforms
expressed by a gene are counted) is presented in Figure 2a. As seen, the biospecimens are
well clustered by PCA according to their type. When the TPM threshold was increased to
exclude the potentially most variable transcript isoforms from the analysis, the clear cluster-
ing of biospecimens according to their type was still preserved (Figure 2b,c). The clustering
also remained obvious for TPM > 10 where the overall splicing became indistinguishable
between the studied types of biospecimens (Table S2).
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Figure 2. The scores/scores plots. PCA of transcriptome-wide alternative splicing profiles at different
TPM thresholds (panels (a,d)—0.1, (b,e)—1, (c,f)—10). Green, yellow, and blue circles represent
biospecimens of human liver tissue, HepG2, and Huh7 cells, respectively. Panels a to c show the
results of PCA for all genes, panels d to f—for genes which have no zero DS values for any of
biospecimens. PC1 and PC2—the first and the second principle components, respectively. The
explained variance for PC1 and PC2 was 35.6% and 17.9%, 34.5% and 19.2%, 40.6% and 21.4%, 39.4%
and 14.2%, 35.0% and 16.3%, 35.8% and 22.4% for panels (a,b,c,d,e,f), respectively.

As the next step, we conducted PCA under more stringent conditions by excluding
from the analysis all genes which had a DS value equal to zero for, at least, one of the
biospecimens. The motivation was to evaluate whether splicing profiles for subsets of
genes which are expressed in all biospecimens under study are still different so as to allow
for discriminating biospecimens between their types (liver tissue, HepG2, and Huh7 cells).
Figure 2d–f shows that the clustering of biospecimens according to their type remains
obvious for all TPM thresholds tested. It is worth noting that, in this case, the number of
genes included in the analysis is considerably reduced—to 6666, 6425, and 2599 for TPM
thresholds of 0.1, 1, and 10, respectively.

Among 384 genes listed as pharmacogenes in [20], the expression of 323 was detected
in at least one of the biospecimens in our sequencing experiments (Table S4). We constructed
datasets composed of these pharmacogenes characterized by DS values in each biospecimen
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for TPM thresholds of 0.1, 1, and 10 (Table S4). The results of PCA of these datasets are
shown in Figure 3a–c. As seen, the biospecimens are clustered according to their type at
all TPM thresholds tested. However, when pharmacogenes are excluded from the dataset
if their DS values equal zero even in one biospecimen, the clustering worsens dramati-
cally (Figure 3d–f. It should be noted that merely 115 (TPM > 0.1), 111 (TPM > 1), and
56 (TPM > 10) pharmacogenes are included in the analysis in this case. Nonetheless, there
is a separation between biospecimen clusters of Huh7 cells and liver tissue at the TPM
threshold of 0.1 along PC2 (Figure 3d) and between clusters for liver tissue and hepatocyte-
derived cells at the TPM threshold of 10 on PC1 (Figure 3f). Interesting, all three types of
biospecimens show separated clusters along PC1 (Figure 3e).
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Figure 3. The scores/scores plots. PCA of splicing profiles at different TPM thresholds (panels
(a,d)—0.1, (b,e)—1, (c,f)—10) for pharmacogenes. Green, yellow, and blue circles represent biospeci-
mens of human liver tissue, HepG2, and Huh7 cells, respectively. Panels a to c show the results of
PCA for all genes, panels d to f—for genes which have no zero DS values for any of the biospecimens.
PC1 and PC2—the first and the second principle components, respectively. The explained variance
for PC1 and PC2 was 35.1% and 19.9%, 39.3% and 19.5%, 52.9% and 20.0%, 28.9% and 22.5%, 27.3%
and 16.8%, 40.6% and 18.8% for panels (a,b,c,d,e,f), respectively.

Since it is known that gene expression can be considered as an integrated dynamical
system and that any random choice of genes gives more or less the same results (at least for
gene expression in terms of transcript abundance [21,22]), we applied PCA to subsets of
genes randomly selected from the gene sets used for PCA in Figure 2c,f. The sizes of these
random subsets match those of the pharmacogene subsets used for PCA in Figure 3c,f,
respectively. The result is presented in Figure S2. As in the case of gene expression in terms
of transcripts’ abundance, the AS profiles in terms of DS values have also demonstrated
the ability to group biospecimens according to their type in PCA for randomly chosen
subsets of genes. This is in contrast to pharmacogenes, for which AS profiles did not allow
us to clearly group biospecimens in the case when only genes with no zero DS values are
involved in the analysis (only moderately-expressed splice variants are taken into account)
(Figure 3f vs. Figure S2b).
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2.3. Subsets of Genes Determining Differences in Alternative Splicing Profiles for Liver Tissue and
Hepatocyte-Derived Cultured Cells

To determine subsets of genes whose differences in AS contribute the most to the
biospecimens’ distribution to clusters in PCA, we retrieved loadings for PC1 and PC2 from
the PCA data. The PCA data used correspond to the case represented by Figure 2f when
no genes with zero DS values in at least one biospecimen are included in the analysis (the
more constrained version of the suggested metric) and the TPM threshold is set as 10 (the
AS profiles are expected not to be influenced by the sequencing depth). The loadings can
be understood as the weights for each original variable when calculating the principal
component [1,2]. Loadings vary in the range of −1 to 1, and the further the loading
value is from zero, the more strongly the variable (ENGS identifier in our case) influences
the component.

The values of loadings are presented in Table S5 and were used to construct box plots
for PC1 and PC2 (Figure S3). Genes (ENGS identifiers) which constitute the outliers (data
points located outside the whiskers of the box plot) were chosen for a further consideration
and provided in Table S6 (400 and 655 genes for PC1 and PC2, respectively). Table S6
contains ENGS identifiers as rows and biospecimens as columns with the number of
transcript isoforms (DS values) for each of the listed gene in a given biospecimen.

The defined sets of genes contributing the most to the biospecimen clustering (Figure 2f)
were used to look at biological pathways which are influenced by differences in AS patterns
of these genes in human liver tissue and hepatocyte-derived malignant cells. We applied
the one-way ANOVA test to those sets of genes and selected only genes with the mean
DS values (obtained by averaging DS values over all biospecimens of a given type) which
statistically significantly differ between types of biospecimens (p-value < 0.01). Finally,
we arrived at two subsets of genes (163 and 174 ENGS identifiers for PC1 and PC2, re-
spectively; Table S7) which were subjected to gene ontology (GO) analysis. The results
are presented in Figure 4 as the top 20 biological pathways revealed by GO analysis. As
seen, for both components, translation appeared as the top biological pathway influenced
by the statistically significant differences in AS profiles, responsible for the distribution of
biospecimens to clusters according to their type.
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2.4. Transcript Isoforms Involved in Translation and Characteristic for Liver Tissue, HepG2 or
Huh7 Cells

To see which transcript isoforms involved in translation-related pathways can be
considered as ‘characteristic’ (detected only in one type of biospecimen at a given TPM
threshold), we selected genes from Table S7 participating in the transcription pathway
(Figure 4). Additionally, we included genes from Table S7 involved in other biological path-
ways related to the regulation of translation such as “Translation factors”, “Mitochondrial
translation initiation”, and “DGCR8 multiprotein complex” (Figure 4). In overall, 31 genes
(109 transcript isoforms) from Table S7 were selected as involved in translation related
pathways and are presented in Figures S4 and S5.

Figure S4 shows a heatmap of the distribution of the number transcript isoforms by
biospecimens for each of 31 selected genes. There was a striking difference between the
diversity of transcript isoforms in liver tissue and hepatocyte-derived malignant cells: the
number of transcript isoforms in liver tissue is systematically lower. For HepG2 and Huh7,
the diversity was rather similar; however, the genes RPL23A and DDX5 (coding a ribosomal
protein and RNA helicase, respectively) exhibited an especially high level of splicing
(6 transcript isoforms) in Huh7 cells. The heatmap in Figure S5 presents 109 transcript
isoforms detected in liver tissue, HepG2, and Huh7 cells at the TPM threshold of 10: there
were 18 transcript isoforms observed only in one type of biospecimen studied (characteristic
isoforms), which are listed in Table 1. Among these transcript isoforms, 6 isoforms code for
protein isoforms which were not detected to date (“computationally predicted”), 6 code
for canonical protein isoforms (“canonical forms”), and the other 6 protein isoforms are
non-canonical but were experimentally detected as proteins (“reviewed protein isoforms”).
Thus, 6 out of 18 characteristic transcript isoforms can produce different protein products
involved in translation-related processes and contributing to phenotypes of normal and
malignant hepatocytes.

Table 1. The distribution of characteristic isoforms by biospecimen types and their relation to
protein isoforms.

Transcript Isoform Liver Tissue Huh7 Cells HepG2 Cells UniProt Identifier Status of Coded Protein

HNRNPR-203
HNRNPR-202

DAP3-214
RPL31-203
EEF1B2-201
RPL32-206
EIF4G1-203

RPL26L1-206
RPS10-207

MRPS33-202
MRPS33-203
MRPL11-203
RPL23A-206
DDX5-223
ILF3-222

EIF3K-213
EIF6-209
EIF6-202

−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
+
−

−
−
−
−
+
−
+
−
−
+
+
+
+
+
+
+
−
+

+
+
+
+
−
+
−
+
+
−
−
−
−
−
−
−
−
−

O43390-2
O43390-1
P51398-2
P62899-2
P24534-1
P62910-1
Q04637-5

Q9UNX3-1
A0A2R8Y7H1

Q9Y291-1
C9JBY7

Q9Y3B7-2
K7EMA7

A0A0G2JLI4
K7EMZ8
K7EK53
P56537-1
P56537-2

Protein isoform
Canonical form
Protein isoform
Protein isoform
Canonical form
Canonical form
Protein isoform
Canonical form

Predicted
Canonical form

Predicted
Protein isoform

Predicted
Predicted
Predicted
Predicted

Canonical form
Protein isoform

3. Discussion

In the short-read RNA-seq data analysis, it is commonly accepted to describe AS
profiles by using such metrics as ‘exone usage’ or PSI index [11–14]. In fact, they are a
substitute of truly AS profiling in terms of splice variants (transcript isoforms) per gene.
These metrics continued to be used in the ONT data analysis (e.g., [23–25]) despite the fact
that, in long-read ONT sequencing, the standard treatment of raw sequencing data directly
provides the abundance of each and every transcript isoform and, consequently, allows us
to easily calculate the number of splice variant (transcript isoforms) expressed by each gene.
That makes the number of transcript isoforms per gene an intrinsically suitable metric for
alternative splicing (AS) profiling in the application to a particular type of RNA sequencing
such as ONT sequencing.
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Clearly, the suggested metric—the number of transcript isoforms per gene, or, in short,
the degree of splicing—has to allow, as a minimum, for distinguishing between various cells
and/or tissue types, based on differences in their AS profiles. To test whether the suggested
metric allows us to discriminate cells/tissues of various types, we applied PCA to AS
profiles revealed by ONT sequencing and expressed in terms of DS. We employed biospeci-
mens of three types—from normal human liver tissue and from two hepatocyte-derived
malignant cell lines. Since the dataset for PCA was composed of the RNA sequencing
results for a rather limited number of biospecimens (11 samples in total), for such testing
the types of biospecimens should be expected to have quite different AS profiles. Indeed,
malignant transformation is known to be associated with alterations in AS—tumors have,
on average, up to 30% more AS events than normal tissues [26,27]. The HepG2 and Huh7
cell lines employed in our study as examples of hepatocyte-derived cells are originated from
the malignant human liver tumors of different types, HBL and HCC, respectively. While
HBL results from the malignant transformation of pluripotent hepatic stem cells, HCC
results from that of differentiated hepatocytes [28]. Thus, one may expect that the types of
biospecimens used in our study will be characterized by quite different AS patterns.

Indeed, using AS profiles described in terms of DS, PCA clearly grouped all biospeci-
mens tested into three well-defined and separated clusters, both for the transcriptome-wide
analysis (Figure 2a) and for the subset of pharmacogenes (Figure 3a). However, the de-
tection of low-abundance transcript isoforms inevitably depends on the transcriptome
sequencing depth (the overall number of mapped reads) [29] which, in the case of direct
RNA ONT sequencing, can substantially vary and is hardly controlled (since it is deter-
mined to a large extent by the initial quality of the sequencer’s flow cell as supplied by
the manufacturer). Thus, variations in sequencing depth between biospecimens (Table S1)
can influence the revealed AS patterns, making it hard to differentiate the biological vari-
ability in AS profiles from that caused by technical reasons. To overcome this problem,
we applied PCA to datasets obtained by systematically varying a TPM threshold. To set a
TPM threshold is a routine practice in RNA sequencing to filter off noisy reads. In our case,
such an approach allowed us to cut off the low abundance transcript isoforms detected
only at a substantial sequencing depth and, therefore, to minimize the variability in AS
patterns, introduced due to technical reasons. Upon the increase in the TPM threshold to
10, the overall splicing becomes similar for the biospecimen types (Table S2). One cannot
rule out that datasets obtained by elevating the TPM threshold can also lose partially the bi-
ologically relevant information on AS. Nonetheless, the remaining differences between AS
patterns, which can now be considered as biologically relevant, allow for a clear grouping
of biospecimens into clusters according to their types (Figure 2c).

By setting the DS of a gene equal to zero when no transcript isoforms are detected
or expressed above a TPM threshold, we assign a zero value for a biospecimen on a
particular axis in the multidimensional space of ‘gene names’, which is composed of all
genes showing expression in at least one biospecimen. However, rigorously, splicing is
a characteristic of an expressing gene while the zero value assumes that a gene does not
express any transcript isoforms. Formally, we can describe AS patterns by including all
genes, regardless of whether they are expressing transcripts in a detectable amount or
not (in the latter case, their splicing is taken as zero). Yet, it seemed interesting to us to
examine how the biospecimens would be grouped by PCA if only genes whose expression
is detected in all biospecimens (with no zero DS values in a dataset) are taken into account.
We found that the clustering of biospecimens is still observed (Figure 2d–f), thus indicating
that the more constrained version of the suggested metric allows one to distinguish the
characteristic patterns of AS for HepG2 and Huh7 cell lines and liver tissue.

In the case of the subset of pharmacogenes, the clear clustering of biospecimens was
also observed (Figure 3a–c). The Hep G2 cell line was considered for a long time as a suitable
in vitro model for studying human drug metabolism but was later subjected to criticism
due to the different spectrum and low expression of cytochrome P450 compared to normal
hepatocytes [16,17,30]. As our results demonstrate, the AS patterns of pharmacogenes’
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expression, defined in terms of DS, do differ in normal liver tissue and Hep G2. This
also holds for Huh7 cells. Moreover, AS patterns appear to vary considerably between
HepG2 and Huh7 cells as well, likely reflecting the different origins of these cell lines. As
mentioned in Section 2.2, any randomly chosen subset of genes can demonstrate a behavior
similar to that of the original set, at least in terms of transcript abundance [21,22]. However,
if the more constrained metric is used (with no DS values of zero allowed), the clustering
becomes strongly dependent on the TPM threshold and worsens in general (Figure 3d–f).
At the same time, the randomly chosen subset of the matching size grouped biospecimens
into clear clusters (Figure S2b). In fact, it may reflect that, among the pharmacogenes
steadily expressed (detected in all biospecimens) in liver tissue, HepG2, and Huh7 cells,
there are no groups of genes whose AS patterns could allow one to clearly discriminate all
three biospecimen types by projecting the multidimensional datasets into a 2D space. This
appears quite possible since the overall explained variance for PC1 and PC2 is below 60%
at all TPM thresholds (Figure 3d—f).

Investigating differences in the profiles of splice forms between the hepatic cell lines
HepG2 and Huh7 and normal liver tissue, one cannot ignore the fact that the cell lines are
of cancerous origin. AS is known to be one of the key drivers of the formation of a cancer
phenotype through the production of aberrant splice forms, the formation of splice forms
with an altered translation rate, or direct influence on the diversity of proteoforms [27,31].
From Table S5, about 41% and 26% of the genes for which AS was associated with the
clustering of biospecimens of liver tissue, HepG2, and Huh7 cells in the first and second
components, respectively, statistically significantly differed in the number of splice variants
(transcript isoforms). The results of our analysis demonstrate that AS in the studied
types of biospecimens differed significantly in genes involved in the mRNA translation
process (Figure 4, pathways R-HSA-72766 “Translation”, WP107 “Translation factors”, R-
HSA-5368286 “Mitochondrial translation initiation”). Numerous studies have shown that
the process of mRNA translation in cancer cells differs significantly from that in normal
cells [32,33]. However, the focus of these studies was commonly on the formation of
defective splice forms. As our results show, the possible cause of such differences may
also be a different profile of splice forms of genes involved in translation. In addition, it
has been shown that the rRNA/protein composition of ribosomes may differ depending
on the cell type and AS may also contribute to the formation of tissue-specific ribosomal
proteins [34,35]. GO analysis of genes statistically significantly differing in the number of
splice forms revealed that genes of the DGCR8 protein complex involved in the maturation
of microRNAs and the formation of spliceosomes also differed in the number of detected
splice forms, which can affect both the process of AS and mRNA translation [36,37].

To date, considerable efforts have been put into finding novel transcript isoforms that
can potentially contribute to cell identity (cell phenotype) (e.g., [6] and references therein).
However, the cell phenotype can also be influenced by differences in AS profiles via a
variation in composition of known transcript isoforms. As our results show, the set of genes
revealed by the extended PCA as those whose differential splicing appears to considerably
contribute to the phenotypes of the studied biospecimens and by GO analysis as involved
in translation-related processes contains genes expressing transcript isoforms observed (at
a given TPM threshold) only in one type of biospecimen studied (which we here referred to
as characteristic isoforms). Some of these isoforms code for predicted protein isoforms not
actually detected to date (Table 1). Yet, two thirds of them (12 transcript isoforms, Table 1)
code for either canonical or non-canonical protein isoforms which are expressed and that
can potentially influence the particular biological pathway and, consequently, contribute to
the observed phenotypes of the studied biospecimens.

To sum up, in the case of long-read ONT sequencing, the mapping of reads to a
reference genome/transcriptome allows for the direct quantification of transcript isoforms
of a given gene. Thus, in the application to this particular type of RNA sequencing, the
degree of splicing defined here as the number of transcript isoforms per gene appears as
an intrinsically suitable metric for AS profiling. By using this simple metric and recruiting
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PCA as a tool to visualize the high-dimensional transcriptomic data, we were able to group
biospecimens of normal human liver tissue, HepG2, and Huh7 cells, which are expected to
differ in their patterns of AS, into clear clusters in a 2D space. Furthermore, based on PCA
data, we selected subsets of genes most contributing to biospecimens’ grouping into clusters
according to their type. The further analysis of these subsets allowed us to determine that
those genes are involved into the mRNA translation process and its regulation. The
suggested metrics can be a useful addition to the existing metrics for describing AS profiles,
especially in application to transcriptome studies with the long-read sequencing.

4. Materials and Methods
4.1. Tissue Collection and Cell Culturing

Biospecimens of human liver were collected at autopsy from 38, 54, and 65 years old
male donors with informed consent from the donor’s representatives. The tissue collection
was approved by the N.I. Pirogov Russian State Medical University Ethical Committee
(Protocol #3; 15 March 2018). The donors were HIV- and hepatitis-free, and the sections had
no histological signs of liver diseases. The postmortem resected samples were immediately
placed into the RNAlater RNA Stabilization Solution (Thermo Fisher Scientific, Waltham,
MA, USA) and stored at −20 ◦C until further use.

The HepG2 and Huh-7 cells were purchased from Merck (Darmstadt, Germany) and
Thermo Fisher Scientific, respectively. Both cell lines were cultivated under identical condi-
tions to about 80% confluence. The culturing conditions are provided in [38]. Cells were
harvested, washed with phosphate-buffered saline (Merck), and used for RNA isolation.

4.2. RNA Isolation, Sequencing Library Preparation, and Long-Read ONT Sequencing

Biospecimens of normal human liver tissue from three donors (one sample of each),
HepG2 (5 samples), and Huh7 (3 samples) cultured cells were used to isolate total RNA
with an RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
manual. RNA quality was assessed using a Bioanalyzer 2100 System (Agilent Technologies,
Palo Alto, CA, USA). The RNA integrity numbers were 7.8 or higher for all preparations of
total RNA. The mRNA extraction was carried out with a Dynabeads™ mRNA Purification
Kit (Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturer’s instruc-
tions. mRNA was quantified using a Qubit 4 fluorometer and a Qubit RNA HS Assay Kit
(Thermo Fisher Scientific). The mRNA preparations were either used immediately for the
preparation of sequencing libraries or frozen and stored at −80 ◦C until further use.

To prepare sequencing libraries, a Direct RNA sequencing kit (SQK-RNA002, ONT,
Oxford, UK) was used strictly following the manufacturer’s protocol. The long-read
sequencing was carried out on a MinION nanopore sequencer (ONT) in 48 h single runs,
using FLO-MIN106 flow cells. The row data were processed using the guppy_basecaller
3.1.5 software (ONT) as described in [39]. During processing, the data were filtered by
the guppy_basecaller software with a quality score parameter >7.0. The quality control
of reads was performed with the MinIONqc.R script. Mapping was carried out with the
long-read aligner minimap2 v.2.17 [40] in ‘-ax splice junc-bed’ mode, using the Gencode38
genome assembly (release GRCh40). The number of mapped reads for each biospecimen is
presented in Table S1 of the Supplementary Materials. Transcript abundance was quantified
in TPM with the Salmon 0.12/1.1.0 software [41]. The sequencing data are deposited to the
NCBI Sequence Read Archive (PRJNA765908, PRJNA893571, PRJNA635536).

4.3. Principal Component Analysis

To prepare datasets for PCA, the Salmon Quant output files with the evaluated genes’
expression were assembled into an Excel table where each gene was characterized by a
set of detected transcript isoforms with corresponding TPM values. The table contained
13 columns (columns of ENSG and ENST identifiers, as well as 11 columns with TPM
values of transcript isoforms for each biospecimen) and 87,814 rows with different ENST
identifiers. The ENST identifiers corresponding to transcripts of protein-coding genes
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were extracted for further analysis. The table was then converted into another Excel table
(Table S3 of Supplementary Materials) where each protein-coding gene (ENSG identifier)
was characterized by the number of transcript isoforms assigned to that gene (the degree
of splicing) for each biospecimen tested. The table contained sheets (datasets) with data
for TPM thresholds of 0.1, 1, and 10. In each dataset, only transcript isoforms with an
abundance above the particular TPM threshold were counted. If no transcript isoforms
were detected for a gene at all or if their abundance was below the TPM threshold, then
the zero value of degree of splicing was assigned to that gene. The obtained datasets
were used as input for transcriptome-wide PCA. The datasets for pharmacogenes listed
in [20] were created by extracting rows with the corresponding ENSG identifiers from the
transcriptome-wide datasets and used in PCA.

PCA was conducted with a script written using options of ‘scikit-learn’ [42]—a
Python module accessed at https://scikit-learn.org (accessed on 10 October 2023). The
script is available at https://github.com/lizelx/PCA_alternative_splicing (accessed on
10 October 2023).

4.4. PCA Loadings, ANOVA Test, and Gene Ontology Analysis

The attribute ‘PCA.components_’ of scikit-learn was used to retrieve loadings for
Principal Components 1 and 2 from the PCA data at the TPM threshold of 10. The results
are presented in Table S5. To determine genes which are statistically significantly different
in the number of transcript isoforms between types of biospecimens, the ANOVA test was
conducted using the Python module ‘scipy.stats’ (1.11.3v) and the data from Table S6 for
p-values of 0.05 and 0.01. The selected genes are listed in Table S7. The gene ontology
(GO) analysis was carried out with the bioinformatics web-tool Metascape, accessed at
https://metascape.org/gp/index.html#/main/step1 (accessed on 10 October 2023).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms242115502/s1, Table S1: The sequencing output (the number of high
quality mapped reads, HQMR) for biospecimens of human liver tissue, HepG2, and Huh7 cells;
Table S2: The number of transcript isoforms and expressing genes, averaged over biospecimens of a
given type, for liver tissue biospecimens, HepG2, and Huh7 cultured cells at different TPM thresholds;
Table S3: Protein-coding genes (ENSG identifiers) (19700 genes) characterized by the number of
transcript isoforms (at cut-off TPM > 0.1, TPM > 1, TPM > 10) assigned to those genes (the degree
of splicing) for each biospecimen tested; Table S4: Pharmacogenes (ENSG identifiers) (384 genes)
characterized by the number of transcript isoforms (at cut-off TPM > 0.1, TPM > 1, TPM > 10) assigned
to that gene (the degree of splicing) for each biospecimen tested; Table S5: Loadings for PC1 and PC2
from the PCA data for variables (ENSG identifiers) used in PCA with a cut-off TPM > 10 (correspond
to Figure 2f); Table S6: Box plot outliers for PC1 and PC2; Table S7: The list of genes (PC1 and PC2),
which statistically significantly (p-value < 0.01) differ across types of biospecimens in terms of AS
profiles; Figure S1: The distributions of mean values of transcript isoforms abundance, obtained by
averaging the number of transcript isoforms over all biospecimens of a given type; Figure S2: The
scores/scores plots for randomly chosen subsets of genes; Figure S3: Box plots of loadings; Figure
S4: The heatmap of distributions of the number transcript isoforms by biospecimens; Figure S5: The
heatmap of 109 transcript isoforms of 31 genes detected in human liver, HepG2, and Huh7 at the
TPM threshold of 10 (selected from Table S-7); Figures S1–S5 legends.
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