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Abstract: In this manuscript, we introduced a French EOAD patient in Korea who carried the
presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-
related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7)
Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and gran-
ulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction
in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography
(PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was
also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may
not impact amyloid production. However, additional variants were found in other AD and non-AD
risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase
amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant
that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance;
however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis
revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants
since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-
related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms
through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly
would impact disease by impairing immune-related pathways, including microglia and astrocyte
development, or NFkB-related pathways. Taken together, the five risk factors may contribute to
disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.

Keywords: PSEN1; ABCA7; SORL1; TOMM40; GRN; risk factor; early onset Alzheimer’s disease;
gene interactions

1. Introduction

Early-onset Alzheimer’s disease (EOAD) is a relatively rare form of Alzheimer’s
disease (AD) before 65 years of age. Three main genes were identified as causative
factors for EOAD: amyloid precursor protein (APP, NC_000021.9), presenilin 1 (PSEN1,
NC_000014.9), and presenilin 2 (PSEN2, NC_000001.11). Among them, the majority of
EOAD-related variants were reported in the PSEN1 gene with more than 300 mutations
(http://www.alzforum.org/mutations/psen-1 (accessed on 20 April 2023)). Variants in
PSEN1 present diverse clinical phenotypes. The typical EOAD hallmarks were intracellular
amyloid deposits and extracellular neurofibrillary tangles with fast disease progression.
Atypical disease phenotypes were also reported, including motor impairments (spastic
paraparesis, Parkinsonism, and ataxia), language dysfunctions, or personality changes [1,2].
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Besides the classical EOAD-related genes, additional AD risk factor genes were also sug-
gested to impact early-onset AD onset through amyloid-related mechanisms, including
the sortilin-related receptor (SORL1) [3] or ATP-binding cassette (ABC) transporter A7
(ABCA7) [4] genes. SORL1 could play a role in APP trafficking from the cell membrane to
the Golgi complex. Normally, SORL1 would protect against amyloid processing by APP
transport. SORL1 may also reduce the amyloid load by directing the amyloid peptides to
the lysosomes [5,6]. The ABCA7 gene plays an important role in the lipid-related pathways
by protecting against amyloid aggregation through inducing phagocytosis and enhancing
amyloid clearance [7]. Mutations in ABCA7 and SORL1 could be involved in the loss-of-
function mechanisms, leading to elevated amyloid beta aggregations [4,8]. Translocase of
outer mitochondrial membrane 40 (TOMM40) is a mitochondrial channel-forming protein
involved in protein transport into the mitochondria. Coding and non-coding mutations
(such as polyT repeat in intron 6) would be risk factors for AD. TOMM40 variants were
reported to be related to AD through mitochondrial dysfunction or inflammation-related
mechanisms [9,10]. Mitochondria plays a significant role in maintaining synaptic and
neuronal functions. Furthermore, mitochondria could be essential in cellular respiration
and regulating the bioenergetics of neurons. Impaired mitochondrial pathways could
lead to neurological dysfunction and AD through multiple pathways, such as abnormal
calcium homeostasis, the production of reactive oxygen species, and mitophagy [11,12].
One of the associations between non-AD-related genes and AD was through granulin
(GRN), a causative gene for frontotemporal dementia (FTD). GRN played a significant
role in immune-modulation neurodevelopment and synapse formation, and the reduced
expression of GRN in the brain was suggested as a risk factor for AD [13,14]. Inflammation
may also play a significant role in neurodegeneration and AD progression. Microglia and
macrophage activation were observed during the aging process and in several neurodegen-
erative diseases. In AD, microglia may be activated by amyloid deposits. Amyloid overload
may result in abnormal inflammasome formation and neurodegeneration. Inflammatory
markers (pro- and anti-inflammatory cytokines/chemokines) were observed in the brain
and biological fluids of patients with cognitive decline and AD [15].

In this study, we described a 65-year-old EOAD patient who carried a known PSEN1
mutation, Glu318Gly. This mutation may not be a causative factor for EOAD, but it may
act as a potential risk factor. Additional rare variants in other AD-related genes from the
proband patient included SORL1 (Glu270Lys), ABCA7 (Val1946Met), and the TOMM40
gene (Arg239Trp), with a rare variant in GRN (Ala505Gly). We suggested that PSEN1
Glu318Gly may impact the neurodegenerative pathways by interacting with the above-
mentioned possible risk genes. This study was approved by the Institutional Review
Board of Soonchunhyang University College of Medicine, Cheonan Hospital (IRB number:
2023-02-038).

2. Case Presentation

The patient was a 68-year-old male patient of French nationality (from the 5th ar-
rondissement of Paris) who presented memory dysfunctions and behavioral problems in
his early 60s. Initially, he returned home without any treatment. A year before the genetic
analysis, his cognitive decline worsened, and he visited the hospital with the symptoms
of an inability to do his daily activities (including cleaning himself), talk to himself while
looking in the mirror, and say words that did not fit the situation and were gibberish. The
neurological examination was performed, and no abnormality was observed in kinesthetic
symptoms. Misidentification syndrome was observed in his behavior at the front of the
mirror. The family history of the patient remained unclear, but he revealed that his mother
passed away with dementia at the age of 73. The father of the patient passed away at the
age of 65, without any disease phenotype. The patient did not have any siblings. Other
family members denied the genetic test or any other health information.

From the Mini-Mental State Examination, his score was 1 with a Global Deterioration
Scale of 6 and a CDR (Clinical Dementia Rating) of 3, indicating a status of severe demen-
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tia. The proband patient’s cognitive function deteriorated quickly 5 years after the first
symptoms. The symptoms worsened faster compared to general Alzheimer’s dementia.
The patient’s APOE genotype was E3/E4.

The diffuse cortical atrophy and moderate ventricle enlargement were observed from
the brain magnetic resonance imaging (MRI) examination. Next, the positron emission
tomography (PET)-CT (Amyloid-Florapronol Brain) revealed the abnormal amyloid de-
posits in the gray matter of both parietal and temporal lobes (Figure 1). The multimer
detection system-oligomerized amyloid beta (MDS-OAβ, PeoplBio Inc., Seongnam, Re-
public of Korea) assay presented a score of 0.99, which was higher than the cut-off of
normal persons (0.90). Results from analyses of MRI, PET-CT, and MDS-OAβ suggested
the diagnosis of Alzheimer’s disease. He was prescribed drug treatments for Alzheimer’s
disease. For cognitive dysfunction, donepezil and memantine were used in combination,
and there was no significant change even after administration. However, the patient’s
abnormal behavior, including misidentification syndrome, significantly improved after
administration of quetiapine. Although the patient was admitted to the hospital at the age
of 68, he was already in a state of severe dementia at the time of admission, and the family
member described that the symptoms started 5 years ago, which meant that he would be a
patient with EOAD when he was 63 years old.

Int. J. Mol. Sci. 2023, 22, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. (a) MRI data of the proband patient, which showed diffuse cortical atrophy and enlarged 
ventricles; (b) PET-CT data from the patient showed amyloid deposits in different brain areas. 

3. Methods 
The sample of the patient was received as whole blood, and the total DNA was puri-

fied from white blood cells using a Quiagen blood kit (Seoul, Republic of Korea). The 
whole exome sequencing (WES) and its analysis were performed with the patient’s ge-
nomic DNA on the Illumina platform by Macrogen (https://www.macrogen.com 
(accessed on 1 March 2023), Seoul, Republic of Korea). The sequencing data were visual-
ized by Integrative Genomics Viewer (IGV) software 2.52 [16]. Other possible genes were 
selected for analysis, which could impact different neurodegenerative diseases, including 
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3. Methods

The sample of the patient was received as whole blood, and the total DNA was purified
from white blood cells using a Quiagen blood kit (Seoul, Republic of Korea). The whole
exome sequencing (WES) and its analysis were performed with the patient’s genomic DNA
on the Illumina platform by Macrogen (https://www.macrogen.com (accessed on 1 March
2023), Seoul, Republic of Korea). The sequencing data were visualized by Integrative
Genomics Viewer (IGV) software 2.52 [16]. Other possible genes were selected for analysis,
which could impact different neurodegenerative diseases, including risk factors for AD,
Parkinson’s disease, frontal temporal disease, amyotrophic lateral sclerosis, and vascular
diseases (Supplementary Table S1). Mutation-carrying genes found in the patient were
screened by pathway analysis tools, including STRING and Cytoscape Cluego software,
version 3.10.0 (https://apps.cytoscape.org/apps/cluego, accessed on 20 April 2023) [17].
The 3D structures of PSEN1, SORL1, ABCA7, TOMM40, and GRN were modeled by the
Phyre2 tool (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index (accessed on
20 April 2023)). The possible structural alterations resulting from the rare variants were
modeled by the Discovery Studio 3.5 Visualizer tool.

4. Results

The patient did not carry any pathogenic mutations in the APP, PSEN1, or PSEN2
genes. However, several potential risk factor variants were observed in the patients by
whole-exome analysis. A PSEN1 variant, Glu318Gly (g. 73673178A>G; c.953A>G), was
found in the patient. Additional rare variants were discovered in AD risk genes, such as
ABCA7 Val1946Met (g. 1063667G>A, c.5836G>A), SORL1 Glu270Lys (g. 121367627G>A,
c.808G>A), and TOMM40 Arg239Trp (g. 44900801 C>T). Furthermore, a rare variant
Ala505Gly (g. 42429809C>G; c.1514C>G) was observed in the GRN gene. All variants were
heterozygous (Table 1, Supplementary Figure S1). Details on the variants found in the
patient were summarized in Supplementary Table S2.

Table 1. Summary of potential risk variants in the proband patient. NA means not available.

Variant rsID 1000Genomes Conserved? GnomAD SIFT PolyPhen2 CADD

PSEN1 Glu318Gly rs17125721 0.00559105 No 0.01813 0.135, B 0.03, B 22.3

ABCA7 Val1946Met NA NA yes NA 0.031, D 0.805, D 24.7

SORL1 Glu270Lys rs117260922 0.00778754 yes 0.01507113 0.008, D 0.998, D 31

TOMM40 Arg239Trp rs142412517 0.000199681 yes 0.000058 0.14, B 0.648, D 25.1

GRN Ala505Gly rs780159686 NA yes 0.0000731 0.257, B 0.444, B 15.92

(D means damaging, B means benign).

PSEN1 Glu318Gly seemed like a relatively rare variant in East Asians since its Gno-
mAD frequency was 0.00005017. In other populations, it may be more common; for example,
its frequency was 0.006148 in South Asians, 0.006045 in Latinos, 0.01927 in non-Finnish
Europeans, 0.03394 in Finnish Europeans, and 0.002927 in African populations. The in silico
prediction by SIFT and PolyPhen2 suggested that PSEN1 Glu318Gly was a benign variant
and not conserved among vertebrates. However, CADD scoring predicted the variant to be
damaging, with a score of 22,3. The SORL1 Glu270Lys and the novel ABCA7 Val1946Met
variants were predicted to be pathogenic with all of these tools. TOMM40 Arg239Trp was
suggested as a possibly damaging variant by PolyPhen2, but the SIFT scores were low
for this variant. The CADD score was high for TOMM40 Arg239Trp, with a score of 25.1.
However, GRN Ala505Gly received was predicted to be benign by PolyPhen2, and SIFT
and CADD scores were also relatively low (15.92), suggesting that it may not be a strong
pathogenic factor for AD.

https://www.macrogen.com
https://apps.cytoscape.org/apps/cluego
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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Pathway analysis with STRING and ClueGo predicted that PSEN1 could interact with
the other rare variant carrier genes. In STRING analysis, direct interaction was found
between PSEN1 and GRN, SORL1, ABCA7, and TOMM40 genes. (Figure 2a).
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Figure 2. (a) STRING pathway analysis of patients: the significant pathogenic effects of the variants
in all the above genes could be suggested from the direct interconnectivity among the above genes.
The black edges mean that co-expression may occur in the case of the above genes. The green edges
mean that these genes may interact based on “text mining”, and have possible associations based
on literature [18]. (b) ClueGo interactions of the patient: variants in the above genes would affect
amyloid-beta formations, astrocyte activations, and aspartic-type peptidase activities. Edge thickness
indicates the score of the interaction. Different colors show different pathways. The colors of the
edges and nodes and the length of nodes are customizable [19].

However, Cluego interactions failed to find any interaction with PSEN1 and TOMM40,
neither directly nor indirectly. (Figure 2b). PSEN1 may interact directly with ABCA7 and
SORL1 through amyloid-related mechanisms, including amyloid beta formation. A direct
interaction was found between PSEN1 and GRN through immune-related mechanisms,
such as astrocyte activation, which were involved in the immune response. Interestingly,
GRN and SORL1 would also interact by regulating aspartic-type peptidase activity. (Direct
interaction between GRN and SORL1 was also observed by STRING networking). Aspartic
peptidases, or aspartyl proteases, contain two catalytic aspartates and may be involved
in protein degradation. Both the alpha-beta and gamma secretases could have aspartyl
protease activity [20,21].

Structure predictions were performed on all rare variants to probe the altered in-
tramolecular interactions. Even though the prediction of PSEN1 Glu318Gly structure
(Figure 3a) revealed limited significant disturbances, both Glu318 and Gly318 may form a
hydrogen bond with Asn318 in the large non-conservative loop of PSEN1. However, it may
be possible that the small, hydrophobic, and uncharged glycine may result in abnormal
flexible loop motion.

SORL1 Glu270Lys (Figure 3b) was located in a small loop connecting two beta sheets.
The normal Glu270 formed hydrogen bonds with Pro271 and Gly273, and Lys270 discon-
nected the hydrogen bond with Pro271, which may result in stress between the two beta
sheets. Furthermore, the glutamic acid had a negatively charged side chain, while the lysine
had a positively charged side chain, which may result in abnormal electrostatic interactions
between SORL1 and its putative interacting partner.

ABCA7 Val1946Met (Figure 3c) was located in a beta sheet region. Both Val1946 and
Met1946 formed hydrogen bonds with Ser1977 and hydrophobic interactions with Phe1948.
The larger amount of methionine could result in dysfunction inside the ABCA7 protein by
forming an altered hydrophobic interaction.
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TOMM40 Arg239Trp (Figure 3d) was located inside the pore-forming region of the
TOMM40 protein. The normal Arg239 could form hydrogen bonds with Ser214, Gly215,
Tyr237, and Glu244. In the case of Trp239, the contact with Ser214 and Gly215 may remain,
but the hydrogen bonds with Tyr237 and Gln244 were lost with the newly formed hydro-
gen bond with Gly243. The indol side chain of tryptophan may result in intramolecular
stress through abnormal protein interactions and impaired beta sheet motion inside the
TOMM40 protein.

The GRN Ala505Gly (Figure 3e) was located on a loop region of granulin protein.
Neither Ala505 nor Gly505 were predicted to interact with any other residues nearby.

5. Discussion

We presented an EOAD patient who carried the PSEN1 Glu318Gly mutation with ad-
ditional potential risk factor variants for AD or other diseases, including SORL1 Glu270Lys,
ABCA7 Val1946Met, TOMM40 Arg239Trp, and GRN Ala505Gly. PSEN1 Glu318Gly was
located in the C-terminal region of the long hydrophilic loop (HL-6) of the PSEN1 protein.
In this region, several other probable non-pathogenic mutations were observed, including
Lys311Arg, Pro355Ser, and Arg377Trp [22]. Several studies were performed on PSEN1
Glu318Gly to determine its role in neurodegeneration (Table 2), suggesting that PSEN1
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Glu318Gly may not be a causative mutation for EOAD. From multiple AD genetic studies
of both EOAD and LOAD patients and controls, segregation was not found in several cases
with low penetrance. Additionally, Glu318 was not a conserved residue in PSEN1 among
vertebrates [23–25]. Taddei et al. (2002) screened Glu318Gly in Australian EOAD and
LOAD patients in comparison with controls and suggested a higher frequency in EOAD
cases (8.7%) in comparison to LOAD patients or controls (3.1 and 2.2, respectively). In
addition, a significant difference was found in mutation frequency in the comparison of
familial AD cases and age-matched controls [26]. A study by Albani et al. (2007) also
observed a similar association between FAD cases and the Glu318Gly mutation [27]. It
may be possible that the PSEN1 Glu318Gly variant would increase the risk of LOAD only
in participants carrying the APOE E4 allele [28–30]. However, other studies failed to find
an association between the APOE E4 allele and PSEN1 Glu318Gly, suggesting that the
two risk factors may contribute independently to AD progression [25]. One investigated
study of the role between Glu318Gly and DLB suggested a possible contribution to the
onset of dementia with Lewy Body (DLB) in 10 cases between 40 and 85 years of age. The
family history of most DLB patients was clinically negative. AD pathology may also be
present in these patients [31]. Additional studies screened the association between PSEN1
Glu318Gly and other potential risk factors, SORL1 and ABCA7. Coppola et al. (2021)
presented two EOAD cases with Glu318Gly. One of the patients, who developed EOAD
(presented memory and attention disorder) at the age of 55, carried a SORL1 Thr833Ile, and
the other patient had ABCA7 Asp679Tyr variants. They were both predicted as probable
damaging variants by PolyPhen2 and SIFT tools. This study suggested that the SORL1 and
ABCA7 variants may impact amyloid-related processes along with PSEN1 Glu318Gly [32].
Further studies reported that PSEN1 Glu318Gly co-existed with other PSEN1 variants, such
as Leu291Pro [33] or Lys311Arg [34].

Table 2. Studies on PSEN1 Glu318Gly mutation and potential disease risk. NA means, not available.

Study Disease Result Biomarker Data Suggestion Population

Taddei et al.
2002 [26] EOAD More common in

EOAD than in controls NA Glu318Gly may be similar
risk factor like APOE E4 Australia

Albani et al.
2007 [27] EOAD

Significant association
between variant and

familial EOAD

Fibroblasts: reduced
Ab42/Ab40 ratio

Glu318Gly may be risk factor
for EOAD, but further studies

were needed
Italy

Mattila et al.
1998 [23]

Familial and
sporadic AD

Observed in both controls
and patients NA Not causative factor Finnish

Dermaut et al.
1999 [24]

AD and other
dementias

Variant was common in
Dutch population NA May not be causative or

risk factor Netherlands

Aldulo et al.
1998 [35]

AD, LOAD and
vascular dementia

Most common in EOAD, but
also appeared in controls NA May not be causative or risk

factor, has low penetrance Spain

Zekanowski
et al. 2004 [36] AD, PD No significant differences

between disease and controls NA May not be causative or risk
factor, has low penetrance Poland

Helisalmini
et al. 2000 [37]

Familial and
sporadic AD

Detected in both patients
and controls NA Possible risk factor in

Finnish population Finland

Perrone et al.
2020 [25] EOAD and LOAD Detected in patients

and controls

CSF Ab1-43 was
reduced, sAPPα and

sAPPβ reduced

Found mild association with
AD, independently from

APOE genotype
Belgium

Mathioudakis
et al. 2023 [38] AD, MCI Appeared in patients and

controls NA May not be causative or risk
factor, has low penetrance Greece

Hippen et al.
2016 [39] AD

APOE E4 carriers with
Glu318Gly had higher risk for

AD, but not significantly
NA

This study did not provide
strong support on association

of Glu318Gly and AD
USA
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Table 2. Cont.

Study Disease Result Biomarker Data Suggestion Population

Jin et al.
2012 [40] AD and control Appeared in patients

and controls NA May not be causative or risk
factor, has low penetrance Spain

Benitez et al.
2013 [29] AD

More frequent in AD patients
than in controls

Glu318Gly variant with Aβ
deposition was observed in

APOE E4 carriers.

High CSF-Tau and
P-Tau

Glu318Gly with APOE E4
allele could be associated

with more senile plaques and
faster cognitive decline

USA

Nho et al.
2016 [28] AD Increased risk for AD io

E4 carriers
lower CSF Aβ1-42
and higher CSF tau

LOAD risk factor in
E4 carriers USA

Sala Frigerio
2015 [41] AD Appeared in patients

and controls NA May not be causative or risk
factor, has low penetrance Belgium

Abdala 2014
[30] AD Association was found

between AD and Glu318Gly NA

No association between
APOE E4 and Glu318Gly
Glu318Gly variant may

increase AD risk

Brazil

Lee et al.
2014 [42] AD Associated with dementia in

case of cases vs controls NA Possible risk factor Caribbean
Hispanic

Day et al.
2019 [43] AD Age of onset was

earlier expected NA Possible risk modifier? USA

Geiger et al.
2016 [31] DLB Frequency was higher than

in controls NA Possible association
with DLB? USA

Coppola et al.
2021 [32] AD Found in two EOAD patients NA May interact with other risk

factors in SORL1, ABCA7 Italy

Eryilmaz et al.
2021 [33] AD Co-existed with a pathogenic

L291P mutation in PSEN1 NA
May impact the disease

course in the presence of
pathogenic mutation

Turkey

Bisceglia et al.
2022 [34] MCI Co-existed with

PSEN1 Lys311Arg
CSF Tau and amyloid

levels were normal

Glu318Gly and Lys311Arg
may result in risk to
neurodegeneration

Italy

Taken together, PSEN1 Glu318Gly may not be responsible alone for the onset of
EOAD. However, it may interact with other potential risk factor variants. The proband
patient carried additional rare variants in SORL1, ABCA7, TOMM40, and GRN genes,
which may contribute to disease progression [32–34]. The SORL1 Glu270Lys was a rare
variant in SORL1, located in the VPS10 domain of the SORL1 protein, which would affect
the abnormal APP sorting. SORL1 Glu270Lys was discovered in American, European,
and Saudi Arabian patients [44,45]. Initially, conflicting reports were available about
whether the mutation could impact AD. Fernandez et al. (2016) suggested that it may be
a possible risk factor for EOAD [46]. However, other association studies, including those
by Verheijen et al., 2016 [45], Sassi et al. (2016) [47], and Campion et al. (2019) [48], and
Holstege et al. (2023) [49], failed to find associations with Glu270Lys and AD. Segregation
of SORL1 Glu270Lys with disease was not proven definitively. In one Spanish AD family,
mutation did not segregate with disease since it was missing in one of the AD patients [50].
However, in a Caribbean family, segregation was observed between SORL1 Glu270Lys
and AD [46]. Cell studies of SORL1 Glu270Lys with HEK293 mutant cell lines suggested
that this mutation may impact AD onset by observing the increased levels of Ab42 and
Ab40 and soluble APP-beta. Furthermore, even though the expression of SORL1 was not
changed at the surface of the mutant cells, the co-immunoprecipitation studies revealed
the reduced binding ability of SORL1 to APP [46,51]. Expressing Glu270Lys in iPSC also
revealed abnormal APP processing, resulting in impairment in endosomal trafficking and
enlarged early endosomes in mutation-carrier neurons [52].

The proband patient also carried a novel variant in ABCA7 V1948M, which was
predicted to be damaging by PolyPhen2, SIFT, and CADD tools. Missense variants of
ABCA7 were suggested to increase the risk for both early and late-onset AD. ABCA7 plays
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an important role in amyloid and lipid metabolisms, including cholesterol homeostasis.
The variants could also impact immune functions such as phagocytosis and amyloid
clearance. The Val1946Met mutation was located in the C-terminal region, close to the
Walker B domain of the ABCA7 protein, which was a highly conserved area in ABCA7
for ATP binding and hydrolysis. Val1948Met could disturb ATP regulations by generating
extra stress in the Walker B motif and contribute to neurodegeneration by resulting in
impairment in the above metabolisms [7,53,54]. ABC-transporter proteins were suggested
to impact ATP binding and hydrolysis, as well as lipid and cholesterol homeostasis and
transport inside the brain [55]. Studies on ATP-binding cassette protein A1 (ABCA1 or
ABCA7) suggested that mutations in the nucleotide binding domains (including Walker
A and B motifs) of ABC transporter proteins could result in reduced ATP binding and
abnormal interaction between ABCA proteins and apolipoproteins, such as (apolipoprotein
A-I), leading to abnormal cholesterol transport [56]. Since beta- and gamma-secretases are
located in the cholesterol rafts of transmembrane domains, high cholesterol levels may
increase the APP cleavage into amyloid peptides. Furthermore, high cholesterol levels
could inhibit alpha-secretase activity [55,57].

TOMM40 was verified as a possible risk factor for AD with 5′ upstream of the APOE
gene. TOMM40 could play a significant role in mitochondrial transport by forming a
mitochondrial channel protein. Mitochondrial degeneration was suggested to play a role
in AD onset as an early hallmark of the disease prior to the appearance of neurofibrillary
tangles [9,10]. Expression of TOMM40 may be changed in different areas of the brain of
AD patients in comparison to controls, where up-regulations were observed in the frontal
lobe of AD patients [10]. Besides the non-coding variants [58], missense mutations (such as
F113L and F131L) in TOMM40 may also impact the AD risk. It was suggested that these
variants may be involved in AD through inflammation-related mechanisms. Taiwanese
carriers of these variants were associated with increased pro-inflammatory cytokines
(including IL-6, IL18) in their plasma. Interestingly, increased microglia activations and
inflammasome formations were found in patients with TOMM40 F113L or F131L [9]. Even
though TOMM40 Arg239Trp was a rare variant in a conserved region of TOMM40, its
association with AD or any forms of neurodegeneration remained unclear [59].

Furthermore, we found a rare GRN variant, Ala505Gly. Previously, this mutation
was found in Italian patients [60,61]. One of the cases had motor neuron disease at the
age of 62 with predominant subcortical multi-infarct vascular encephalopathy from MRI
analysis. Family history may not be ruled out since the patient’s mother had late-onset
dementia. Ala505Gly may alter an ESE site in the GRN exon. Plasma GRN was lower than
normal, 76.2 ng/mL, but not low enough for the diagnosis of frontotemporal dementia
(normal range > 100 ng/mL, the mean value in FTD patients was 61.2 ng/mL) [60,61]. This
mutation was predicted to be benign by PolyPhen2 and SIFT, and CADD scores were also
below 20, suggesting that the mutation may not be a damaging variant. Pathway analysis
revealed common mechanisms between PSEN1 and GRN through immune-related mecha-
nisms. Granulin has been verified as an immunomodulator protein, which could impact
both pro-inflammatory and anti-inflammatory mechanisms. For example, progranulin
degradation into granulin fragments may induce pro-inflammatory IL8 production. In
addition, by interacting with tumor necrosis factor receptor 1 (TNFR1), the GRN could
impact the production of anti-inflammatory cytokines (IL10) through the ERK1/2 and
PI3K/AKT pathways. These processes could also play a significant role in inhibiting pro-
inflammatory pathways, including TNF-alpha production and the NF-κB inflammatory
process [62,63]. Furthermore, granulin mutations may result in abnormal astrocyte and
microglia-related mechanisms, such as their development and activation [64,65]. PSEN1
could also impact inflammatory pathways. PSEN1 dysfunction may be associated with
abnormal inflammatory processes, such as the induction of pro-inflammatory factors and
impaired glial functions [66]. PSEN1 was also verified as a regulator of the NF-κB pathway,
since PSEN1 overexpression was associated with increased pro-inflammatory mechanisms.
The immunoregulation by PSEN1 may be independent of gamma-secretase-related path-
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ways [67]. Mutant PSEN1 may impact astrocyte functions, leading to reduced amyloid
clearance [68,69].

According to reference databases (such as GnomAD), these variants are relatively rare
or even absent (ABCA7 Val1946Met) in general populations. It may occur rarely that all of
these variants exist in one patient. Unfortunately, we were unable to perform segregation
analysis on these five variants since all living family members refused the genetic test. In
the future, we are planning to perform cell studies to analyze the potential effects of these
mutations on cell lines.

Lastly, PSEN1 Glu318Gly may not result in a disease phenotype by itself, but it may
be a risk for disease, especially late-onset AD. However, the patient carried four additional
missense mutations (SORL1 Glu270Lys, ABCA7 Val1948Met, TOMM40 Arg239Trp, and
GRN Ala505Gly), which could play a role in the disease pathogenicity. SORL1 Glu270Lys
was already verified to be a risk factor for AD. Next, the novel Val1946Met mutation in
ABCA7 may impact the disease phenotype. Pathway analysis revealed that both PSEN1,
SORL1, and ABCA7 may be closely related and share several common pathways, including
lipid metabolism and amyloid-related pathways. The common disease-related pathways of
PSEN1 Glu318Gly and GRN Ala505Gly may not be ruled out either through astrocyte or
microglia-related pathways, leading to reduced amyloid clearance. PSEN1 and TOMM40
could possibly interact and play a role in AD onset through mitochondria-related mech-
anisms. Although it is difficult for a gene to predict the progression of the disease, our
patient’s cognitive function progressed faster and worsened rapidly in just 5 years, reveal-
ing a different pattern than general Alzheimer’s dementia. Furthermore, the results of
the MDS-OAb of Abeta oligomer test revealed that the patient had higher levels of Abeta
oligomers in the blood, which is typical in the majority of AD patients [70,71], suggesting
funneling effects on the Abeta pathway from the reporting mutations.
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