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Abstract: Species within the genus Equus are valued for their draft ability. Skeletal muscle forms
the foundation of the draft ability of Equus species; however, skeletal muscle development-related
conserved genes and their target miRNAs are rarely reported for Equus. In this study, a comparative
genomics analysis was performed among five species (horse, donkey, zebra, cattle, and goat), and
the results showed that a total of 15,262 (47.43%) genes formed the core gene set of the five species.
Only nine chromosomes (Chr01, Chr02, Chr03, Chr06, Chr10, Chr18, Chr22, Chr27, Chr29, and
Chr30) exhibited a good collinearity relationship among Equus species. The micro-synteny analysis
results showed that TPM3 was evolutionarily conserved in chromosome 1 in Equus. Furthermore,
donkeys were used as the model species for Equus to investigate the genetic role of TPM3 in muscle
development. Interestingly, the results of comparative transcriptomics showed that the TPM3 gene
was differentially expressed in donkey skeletal muscle S1 (2 months old) and S2 (24 months old),
as verified via RT-PCR. Dual-luciferase test analysis showed that the TPM3 gene was targeted by
differentially expressed miRNA (eca-miR-1). Furthermore, a total of 17 TPM3 gene family members
were identified in the whole genome of donkey, and a heatmap analysis showed that EaTPM3-5
was a key member of the TPM3 gene family, which is involved in skeletal muscle development. In
conclusion, the TPM3 gene was conserved in Equus, and EaTPM3-5 was targeted by eca-miR-1, which
is involved in skeletal muscle development in donkeys.
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1. Introduction

The Equus genus comprises donkeys, horses, and zebras [1]. The chromosomal-level
genomes of horses, donkeys, and zebras allow for the investigation of the karyotype or
chromosomal evolution, which is important for understanding Equus genome organiza-
tion and chromosomal architecture [2,3]. Donkey reference genome research concerns
investigating the genetic basis of coat color and population genomics analyses [1]. The
quality of donkey and zebra genomes has significantly improved; however, they lack a
comparative study [2–4]. Comparative genomics analysis of mammals can identify genes
with conserved functions, especially among Equine animals, though few studies exist [5,6].
Previous studies have used collinearity analysis to identify the role of evolutionarily con-
served genes [7,8]. Skeletal muscle in the Equus genus plays an important role as a dynamic
tissue in the body, and exercise ability is very important for donkeys and horses, which
drives their important economic value [9,10]. An analysis of the fatty acid composition of
donkey intramuscular fat showed that the content of polyunsaturated fatty acids (PUFAs)
in both longissimus dorsi and biceps femoris muscles at 25.16 g/100 g and 24.97 g/100 g
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total fatty acids, respectively [9]. Therefore, it is necessary to use comparative genomics to
identify conserved genes for muscle development in Equus species.

Many studies have utilized transcriptomic analyses to identify key candidate en-
zyme genes and miRNAs for muscle development [11–14]. In pigs, a total of 99 differ-
entially expressed genes and 15 differentially expressed miRNAs (DE-miRNAs) were
identified [11]. Another study also reported a total of 85 genes and 18 miRNAs related to
muscle growth [12]. In chickens, a previous study identified that 337 miRNAs are differen-
tially expressed during muscle development [13]. Moreover, the gga-miR-499-5p/SOX6
and gga-miR-196-5p/CALM1 networks are involved in the determination of muscle fiber
types [14]. Therefore, it is necessary to identify genes and miRNAs involved in muscle
development by comparing transcriptomes.

A-tropomyosin-3 (TPM3) is an actin-binding protein that plays a crucial role in the
regulation of muscle development [15,16]. In myostatin-edited Meishan pigs, TPM3
participates in the regulation of muscle growth and development. In rabbits, TPM3 ex-
hibits stronger protein signals in fetal hearts and adult skeletal muscle compared to adult
hearts [15]. Slow skeletal muscles are associated with mutations in the TPM3 gene [17].
In donkeys, TPM3 is differentially expressed in different skeletal muscle types [18]. Stud-
ies have shown that the TPM3 gene is associated with muscle development in many
animals [15–18]. Therefore, in order to identify the functional genes related to muscle devel-
opment in the Equus genus, it is necessary to study TPM3. MiRNAs can also bind to other
recognition positions of target genes, such as 5′UTR [19], promoters [20], and open reading
frames [21–23]. MiRNAs play roles in both the cytoplasm and nucleus of cells to regulate
the expression of the corresponding genes [24,25]. An increasing number of miRNAs have
been found to play important regulatory roles in skeletal muscle development. MiR-206
and miR-208a play an important role in knocking out the Dicer enzyme, which causes
muscle underdevelopment or death in newborn mice [26]; studies have also found that a
large number of highly expressed miRNAs, such as miR-206 and miR-208a, are excavated
in cardiac or skeletal muscle [27]. MiR-7 plays a regulatory role in muscle disease [28], and
miR-434-3p targets the eIF5A1 gene to promote skeletal muscle apoptosis [29]. MiR-125b
targets insulin-like growth factor II (IGF2) to inhibit myoblast differentiation and skeletal
muscle regeneration [30], and it was also found that the upregulation of miR-199a-3p
promotes the transformation of muscle fiber types [31]. MiR-29 targets Akt3 to promote my-
oblast differentiation and inhibit myoblast proliferation [32], miR-638 inhibits muscle cell
glycolysis by targeting the lactate dehydrogenase (LDHA) gene [33], miR-3646 promotes
the proliferation and migration of vascular smooth muscle cells by directly targeting the
rho-related GTP-binding (RHOH) gene [34], miR-210 inhibits smooth muscle cell apoptosis
by targeting the myocyte enhancer factor 2 (MEF2C) gene [35], and miR-885 promotes the
proliferation and inhibition of myoblast differentiation by targeting the myogenic differen-
tiation 1 (MyoD1) gene [36]. These studies suggest that miRNAs play an important role in
skeletal muscle regeneration, as well as myoblast differentiation and proliferation.

A previous study using lncRNA–miRNA–mRNA interaction network analysis showed
that there were three important candidate lncRNAs (MSTRG.9787.1, MSTRG.3144.1, and
MSTRG.9886.1) and candidate gene Alpha-actinin 1 (ACTN1) involved in the skeletal muscle
in donkeys [18]. Therefore, it is necessary to identify more miRNAs and genes involved
in the muscle development of the Equus genus. In this study, we performed comparative
genomics to both investigate chromosomal evolution and identify the role of evolutionarily
conserved genes in the Equus genome, especially in muscle development. To investigate
the mechanism of muscle development in Equus, this study employs a comparative tran-
scriptomics analysis using skeletal muscle transcriptome data from donkeys of different
ages. We characterized the expression of different genes and miRNAs and their networks
using transcriptomics, RT-PCR, and the dual-luciferase reporter assay. Furthermore, the
TPM3 gene family number was identified as playing a critical role in TPM3 gene-related
muscle development in donkeys.
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2. Results
2.1. Comparative Genomics of Equine Genomes and Outgroup (Goat and Cattle)

Comparative genomics of the five species (Equus caballus (horse), Bos taurus (cattle),
Equus quagga (zebra), Equus asinus (donkey), and Capra hircus (goat)) was performed
based on protein-coding genes. In the analysis of the 49,384 gene families among them,
the five species contain 23,805–25,042 gene families in each genome (Figure 1A), 15,262
(47.43%) of which are shared among all the species, probably representing the core gene
set of the five species (Figure 1B). In addition, a total of 20,086 (27.33%) dispensable and
17,101 (25.23%) species-specific gene families were also identified from these species
(Figure 1C).
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Figure 1. Equus genome evolution. (A) The percentage of different gene types among the five species.
(B) The homologous genes in donkeys, cattle, zebras, goats, and horses. (C) The core and species-
specific genes. Orange, light green, and blue are the core, dispensable, and species-specific gene
families, respectively, among the five species.

2.2. The Karyotype Evolution of Equine Genomes

We reconstructed the evolutionary history of chromosomal changes among the three
Equus species, which included horse, zebra, and donkey (Figure 2). A number of rearrange-
ments were found in the three Equus species, indicating that multiple chromosomal fusion
or fission events occurred (Figure 2). The frequency of chromosomal rearrangements varied
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among chromosomes, with some chromosomes experiencing repeated and independent re-
arrangements. We found that, in donkeys, nine chromosomes (Chr01, Chr02, Chr03, Chr06,
Chr10, Chr18, Chr22, Chr27, Chr29, and Chr30) showed a good collinearity relationship
among equine genomes. Besides these chromosomes, frequent chromosomal changes were
shown among the three Equus species (Figure 2).
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2.3. TPM3 Evolutionarily Conserved in Equus and Differentially Expressed in S1 and S2 Muscle

While various chromosomes underwent significant changes in the three Equus species,
the genes related to skeletal muscle development remained evolutionarily conserved. In
our study, the collinearity analysis result showed that TPM3, which plays an important
role in muscle development, was evolutionarily conserved in the five animal species
(Figure 3A,B). Based on our transcriptome data of S1 and S2, we identified 45 miRNAs that
were differentially expressed between these two transcriptomes (Figure 3C). Among the
differentially expressed miRNAs, three miRNAs were highly expressed in S2-staged muscle
compared to S1-stage muscle, which included eca-miR-1, eca-miR-509a-5p, and novel_12
(Figure 3C). Additionally, a total of 17 genes showed differential expression between the
two transcriptomes. Among them, the TPM3 gene showed higher expression in S1 muscle
than S2 muscle, indicating that the eca-miR-1 and TPM3 genes play a critical role in muscle
development (Figure 3).
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2.4. Eca-miR-1 Targeting the TPM3 Gene

Analyses were carried out to understand the protein-coding genes regulated by can-
didate miRNAs and their key roles in muscle development. Based on differentially ex-
pressed miRNAs and genes, we found that eca-miR-1 (sequence details: UGGAAUGUAAA-
GAAGUAUGUAU) showed different expression levels between S1 and S2 transcriptomes
(Figure 3B; Table S1). The expression profiles of seven tissues showed that eca-miR-1
was highly expressed in muscle compared to the other six tissues (Figure 4A). Among
these differentially expressed genes and miRNAs (Figure 3B), six genes were targeted by
eca-miR-1 (Figure 4B,C). To further confirm the eca-miR-1 target genes, a dual-luciferase
test was performed for eca-miR-1 and the predicted target genes that were transfected
with the psiCheck2 vector (Figure 4C; Table S2). The relative expression profiles of V-Ets
oncogene homolog 1 (ETS1), insulin-like growth factor-I (IGF1), Plexin domain-containing
2 (PLXDC2), and thymosin beta 4 X-linked (TMSB4X) exhibited a lower expression level in
the wild-type samples compared to the normal control (NC), indicating that these genes
may be target genes of eca-miR-1. We noticed that TPM3 showed a significantly lower
expression level in the wild-type samples than the NC, indicating that these two genes may
be targeted by eca-miR-1 (Figure 4D). These results show that TPM3 is a conserved target
gene of eca-miR-1, which plays an important role in the muscle development of donkeys
(Figure 4).
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* p < 0.05, ** p < 0.01.

2.5. The TPM3 Gene Family Evolution and Expression Profile

Based on the whole genome data of horses, zebras, donkeys, cattle, and goats, we
characterized the gene family number of TPM3 among the five genomes. We verified a
total of 12 TPM3 genes in zebras, 16 in horses, 17 in donkeys, 18 in cattle, and 20 in goats.
Phylogenetic analysis of the TPM3 gene family members of the five genomes showed that
their genes were divided into five subgroups, and group 5 contained the greatest number
of TPM3 gene families (Figure 5; Table S3).

All TPM3 genes of donkeys were located in chromosome 1 (Figure 6A). The transcrip-
tome profiles of S1 and S2 showed that a total of seven TPM3 genes exhibited a different
expression profile, especially EaTPM3-5 (Figure 6B). The RT-PCR results showed the same
pattern as the transcriptome data of S1 and S2 (Figure 6C; Table S4).
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Figure 6. The expression profile of the muscle development-related gene family for TPM3 in donkeys.
(A) The chromosome location of the TPM3 gene family in donkeys. (B) The expression profile of the
TPM3 gene family in donkeys. (C) The transcriptome profile and qPCR of EaTPM3-5. S1 indicates a
2-month-old Dezhou donkey; S2 indicates a 24-month-old Dezhou donkey. The bar plot is compared
to the transcriptional analysis in the S1 and S2 stages on the left y-axis; the point plot is compared to
the RT-PCR data in the S1 and S2 stages on the right y-axis. This is a double y-axis: the left y-axis
represents the transcriptome expression level, and the right y-axis represents the RT-PCR level.
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3. Discussion
3.1. Comparative Genomics and Collinearity Analysis Identify Muscle Development Gene TPM3
in Equus

The domestication of donkeys and horses has played an important role in human life,
with these animals being valued for their draft ability, primarily based on their muscular
strength [9,10]. Skeletal muscle plays an indispensable role in their bodies, as it is a dynamic
tissue [37,38]. Both the contiguity and composition have been improved in the new horse
genome. Donkey reference genome research is concerned with investigating the genetic
basis of coat color and population genomics analyses. The quality of the zebra genome
has also improved; however, the studies exploring these developments lack comparative
studies of Equus genomes, especially their chromosome evolution [2–5]. Our study showed
that the five species (donkeys, horses, zebras, cattle, and goats) contained 15,262 (47.43%)
common genes, indicating that these species were evolutionarily conserved (Figure 1). With
three high-quality reference genomes of Equus, a collinearity analysis was performed, and
the results showed that nine chromosomes (Chr01, Chr02, Chr03, Chr06, Chr10, Chr18,
Chr22, Chr27, Chr29, and Chr30) exhibited a good collinearity relationship, indicating
that the genes in these chromosomes were evolutionarily conserved (Figure 2) [5,6]. In
chromosome 1, a further microcolinearity analysis identified an evolutionarily conserved
gene, TPM3, which is related to the function of muscle development (Figure 3) [7,8].

3.2. Comparative Transcriptomics Reveals the TPM3 Gene Potentially Involved in Muscle
Development in Donkeys

Previous studies have shown that TPM3 plays an important role in muscle develop-
ment [15–18]. In order to further understand the function of TPM3 involved in muscle
development in equines, donkeys were selected as the representative animals for further
analysis in this study. In this study, we used mRNA and miRNA sequencing to profile the
skeletal muscle transcriptome and, thus, identify genes and miRNAs that were differentially
expressed between donkeys with different feed efficiencies, including the transcriptome
data of S1 (2-month-old Dezhou donkey) and S2 (24-month-old Dezhou donkey). The
comparative transcriptome analysis results showed that a total of 45 miRNAs and 17 genes
were differentially expressed, indicating that these miRNAs and genes may be related
to muscle development in donkeys, which is consistent with previous studies [10–14].
Additionally, we found that eca-miR-1 was differentially expressed in S1 and S2; moreover,
we also noticed that TPM3 genes were differentially expressed in S1 and S2 transcriptomes
(Figure 4). Interestingly, our collinearity analysis showed that TPM3 was evolutionarily
conserved in zebras, horses, and donkeys. Combining these two results showed that TPM3
plays a critical role in muscle development, which is consistent with previous studies
(Figure 4) [15–18].

3.3. TPM3 Regulates Muscle Development Targeted by eca-miR-1

Previous studies have reported that miR-21 is able to regulate arterial smooth muscle
cell (ASMC) function by targeting tropomyosin 1 [39]. MiRNA-1 plays an important role in
chordoma tissues [40] and various types of cardiac diseases [41]; miR-1, regulated by mam-
malian targeting of rapamycin (mTOR), has emerged as a key regulator of skeletal muscle
development through governing the distinct stages of myogenesis [42], and the SFRP1 gene
is regulated by miR-1/206 and potentially affects skeletal muscle development [43]. In
our study, eca-miR-1 was significantly highly expressed in muscle tissues compared to the
other six tissues. We investigated the target gene of eca-miR-1, observing that the muscle
development-associated gene TPM3 was a target gene, as verified by the dual-luciferase
tests transfected with the psiCheck2 vector, thereby supporting the role of eca-miR-1 in
muscle development in donkeys (Figure 4). These results show that TPM3 is a conserved
target gene of eca-miR-1 in donkeys and plays an important role in muscle development,
which is consistent with previous studies that showed that miRNA-1 can regulate the TPM3
gene during muscle development (Figure 6) [39–43]. Based on these results, we specified
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the key members of the TPM3 gene family in donkeys, and a total of 20 TPM3 genes were
identified (Figure 5). We observed that EaTPM-5 was significantly differentially expressed
in the S1 and S2 stages in donkeys, as verified via RT-PCR (Figure 5). These results show
that EaTPM-5, located in chromosome 1, plays a critical role in muscle development in
donkeys (Figure 6) [15–18].

4. Materials and Methods
4.1. Ethics Statement

All experimental designs and procedures were performed according to the Regula-
tions for the Administration of Affairs Concerning Experimental Animals (Ministry of
Science and Technology, Xianyang, China, 2004). This study was approved by the Institu-
tional Animal Care and Use Committee of Northwest A&F University (approval number:
20171208–010, 8 December 2017).

4.2. Comparative Genomics Analysis

Five species (Equus quagga (zebra), Equus asinus (donkey), Equus caballus (horse),
Bos taurus (cattle), and Capra hircus (goat)) were selected for comparative genome analysis.
OrthoFinder software version 2.4.0 with the default parameters was used to identify
different types of orthologs [44].

4.3. Chromosome Collinearity Analysis Rearrangement Analysis

To detect the chromosome rearrangement events among Equus caballus, Bos taurus,
Equus quagga, Equus asinus, Capra hircus, and Equus ferus ssp. przewalskii, pair-wise alignment
of these chromosome-level genomes was performed using LAST software version 3.02.
MCScan software version 1.1.11 was used to detect the synteny blocks and chromosome
fusion events [45]. Mauve V2.4.0 with the default parameters was used for the visualization
and detailed analysis of the aligned results [46].

4.4. Sample Collection

In this study, three male Dezhou donkeys at 2 months old (S1) and 24 months old (S2)
were randomly selected as the test materials. After slaughter, the longissimus dorsi and
biceps femoris muscles were taken, respectively, the size of each tube was the same, and the
parts were as close to each other as possible. Then, the samples were immediately placed
in liquid nitrogen and stored in a laboratory refrigerator at −80 ◦C for the subsequent
extraction of total RNA (experimental animals were provided by Shandong Dong E E Jiao
Co., Ltd., Shandong, China).

4.5. RNA Extraction and Sequencing Data Processing

RNA was extracted from the tissue using the Trizol method [45]. RNA concentration
and quality were measured using a Nanodrop 2000, with 260/280 ratios ranging from 1.9
to 2.1. The quality of the original sequencing data was evaluated using FastQC version
0.10.1 [47], and the low-quality sequences in the original sequencing were removed to obtain
high-quality sequences. HISAT2 software version 2.1.0 [47] was used to compare the clean
reads with the reference genome (https://www.ncbi.nlm.nih.gov/genome/?term=equus+
asinus, 15 December 2022), and the gene annotation files were downloaded to improve the
alignment accuracy. The HISAT2 software version 2.1.0 strand-specific parameter was set
to the following: --rna-strandness RF. The aligned reads were assembled using String Tie
(v1.3.1) software [48]. The parameter settings were all the defaults. Each transcript was
merged to obtain the complete sequencing information of each sample using Cuffmerge
software version 2 [49]. Bowtie software version 0.12.5 [50] was used to align small RNAs
with the reference genome to understand the distribution of small RNAs on the genome.

https://www.ncbi.nlm.nih.gov/genome/?term=equus+asinus
https://www.ncbi.nlm.nih.gov/genome/?term=equus+asinus
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4.6. Identification of the miRNAs

The reads were aligned with known donkey miRNA precursor sequences, and the
aligned reads were identified as known miRNAs. Then, based on the signature hairpin
structure of the miRNA precursors, new miRNAs were predicted using miREvo software
version 1.1 [51] and mirdeep2 software version 2.0 [52], and first base preference statistics
were performed. The expression levels of all miRNAs (known miRNAs and new miRNAs)
in the 6 samples were counted, and the expression levels were normalized via the TPM
method. Based on the normalized results, DESeq2 [53] was used to quantitatively analyze
the differential miRNAs with a standard p < 0.05.

4.7. Prediction and Validation of the miRNA Target Genes

To understand the biological functions of differentially expressed miRNAs, we used
miRanda [54], PITA [55], and RNAhybrid [56] to perform target gene prediction analysis on
the miRNAs. The miRNA–mRNA network interaction map was constructed via Cytoscape
software version 3.6.1 [57]. The distribution of the candidate target genes in Gene Ontology
was analyzed via GOseq analysis. In addition, KEGG analysis of the candidate target genes
was performed via Pathway software version 23.0. Differential miRNAs were verified
via RT-PCR. Quantitative primers were designed via Primer 5 and verified using NCBI
Primer-BLAST to ensure accuracy. The primers of differentially expressed miRNAs were
used for the RT-PCR (Table S1). Finally, they were synthesized via bioengineering, and U6
was used as the internal reference gene. At the same time, the miRNA–mRNA regulatory
relationship was also quantitatively verified, and the quantitative results were calculated
according to 2−∆∆ct [58].

4.8. Vector Construction, Cell Transfection, and Dual-Luciferase Reporter Assay

The target fragment was cloned via PCR and then ligated to the psiCheck2 dummy
digested with Xho I and Not I. 293T cells were cultivated in 96-well plates and divided
into 6 groups for different treatments: the wild-type and mutant vector plasmids were
co-transfected with eca-miR-1 mimics and mimics NCs, respectively. Fluorescence activity
between different treatments was detected via the dual-luciferase assay. The primers are
listed in Table S2.

4.9. Gene Family Identification Analysis

In this study, the identification of members of the TPM3 gene family among the
five species (Equus quagga, Equus caballus, Equus asinus, Bos taurus, and Capra hircus) was
conducted using BLASTP software version 2.2.22 with an E-value of <1× 10−5 and identity
of ≥50% [59]. The candidate sequence protein domains were determined using PFAM [60],
focusing only on proteins with TPM3.

To detect the TPM3 members in Equus asinus, we downloaded a total of 20 TPM3 mem-
bers from NCBI and combined them with all TPM3 genes in Equus quagga, Equus caballus,
Bos taurus, and Capra hircus to construct a phylogenetic tree with MEGA [61]. We searched
for the presence of potential domains of TPM3 genes using the PFAM webserver [60]. The
heatmap was visualized with TBtools [62]. The TPM3 gene family member expression level
was also verified via RT-PCR, and the primers are listed in Table S4.

4.10. Statistical Analysis

The test results were analyzed via one-way ANOVA using SPSS software version
20.0 [63]. * Indicates significant differences, p < 0.015; ** indicates extremely significant
differences, p < 0.01.

5. Conclusions

This study provides the first analysis revealing chromosome-level evolution events
and the evolutionarily conserved genes associated with muscle development, as well as
their target miRNAs, in donkeys. Chromosome analysis showed that the three Equus
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species have undergone a significant number of chromosomal changes, but the skeletal
muscle development-related gene, TPM3, has remained evolutionarily conserved among
these three Equus species (donkeys, horses, and zebras), playing an important role in muscle
development. Using the donkey as a model Equus species, a comparative transcriptome
analysis was performed to investigate the function and network of TPM3, and the results
showed that the TPM3 gene was differentially expressed in S1 (2 months old) and S2
(24 months old) donkey muscles. Concurrently, eca-miR-1 was differentially expressed in
S1 and S2 donkey muscles, indicating that it may play a role in muscle development. A
dual-luciferase test further verified that the TPM3 gene was targeted by eca-miR-1. In order
to characterize the gene family member and the key member of the TPM3 gene family, a
total of 17 TPMs were identified in the donkey genome, and EaTPM3-5 was significantly
differentially expressed in S1 and S2 muscles, indicating that EaTPM3-5, located in donkey
chromosome 1, is a key candidate gene involved in the muscle development of donkeys.
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