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Abstract: A variety of ribo-, 2′-deoxyribo-, and 5′-norcarbocyclic derivatives of the 8-aza-7-
deazahypoxanthine fleximer scaffolds were designed, synthesized, and screened for antibacterial
activity. Both chemical and chemoenzymatic methods of synthesis for the 8-aza-7-deazainosine
fleximers were compared. In the case of the 8-aza-7-deazahypoxanthine fleximer, the transglycosy-
lation reaction proceeded with the formation of side products. In the case of the protected fleximer
base, 1-(4-benzyloxypyrimidin-5-yl)pyrazole, the reaction proceeded selectively with formation of
only one product. However, both synthetic routes to realize the fleximer ribonucleoside (3) worked
with equal efficiency. The new compounds, as well as some 8-aza-7-deazapurine nucleosides
synthesized previously, were studied against Gram-positive and Gram-negative bacteria and
M. tuberculosis. It was shown that 1-(β-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19)
and 1-(2′ ,3′ ,4′-trihydroxycyclopent-1′-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) were able to
inhibit the growth of M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL,
respectively. Antimycobacterial activities were revealed for 4-(4-aminopyridin-3-yl)-1H-pyrazol
(10) and 1-(4′-hydroxy-2′-cyclopenten-1′-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). At con-
centrations (MIC99) of 40 and 20 µg/mL, respectively, the compounds resulted in 99% inhibition
of M. tuberculosis growth.

Keywords: fleximer; nucleoside analogues; antibacterial activity; inhibitor; antituberculosis activity

1. Introduction

To date, great success has been achieved in the treatment of infectious diseases through
antibiotic therapies [1]. Despite this, the rapid development of drug-resistant strains [2] of
pathogenic microorganisms creates a need for the new and more effective antibiotics. The
problem of drug resistance is more acute than ever in the case of tuberculosis, as it is one of
the factors that reduces the effectiveness of many treatments [3,4].

Int. J. Mol. Sci. 2023, 24, 15421. https://doi.org/10.3390/ijms242015421 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms242015421
https://doi.org/10.3390/ijms242015421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1452-0253
https://orcid.org/0000-0002-9552-7141
https://orcid.org/0000-0003-3131-1031
https://orcid.org/0000-0002-0154-3459
https://orcid.org/0000-0002-7443-6961
https://orcid.org/0000-0002-4981-7316
https://doi.org/10.3390/ijms242015421
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms242015421?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 15421 2 of 12

In 2021, 10.6 million people were diagnosed with tuberculosis worldwide, and a total
of 1.6 million deaths (including 187,000 people living with HIV) [4] have been attributed
to it. Tuberculosis is the 13th leading cause of death globally and is the second leading
cause of infectious death after COVID-19 (ahead of HIV/AIDS) [5]. The high incidence
of tuberculosis in the global population is a serious threat to society [4]. In addition,
over the past few years, the world has faced unprecedented challenges associated with
the emergence of new pathogens such as SARS-CoV-2 [6], among other emerging and
reemerging infectious diseases. This underscores the critical need for new and more
effective therapeutic drugs.

During decades of searching for molecules active against new and emerging bacterial
infections, drugs belonging to various chemical classes of compounds have been discovered.
Unfortunately, again, the development of resistance has limited their utility [7]. One
potential solution is to explore new viral and bacterial targets, as well as classes of drugs
not previously considered [8]. Another is the development of compounds that exhibit broad-
spectrum activity, or the use of combination therapies, thereby reducing susceptibility to
the development of resistance [9].

Nucleoside analogues, which are traditionally considered as antiviral [10–12] or antitu-
mor agents [13], have also recently become attractive as potential antibacterial compounds,
including as a part of a repurposing strategy [14]. For example, the well-known anti-HIV
drug zidovudine (AZT) [15] has been demonstrated to have potent activity against many
pathogenic Gram-negative bacteria, including Escherichia coli, Salmonella typhimurium, Kleb-
siella pneumoniae, Shigella flexneri, and Haemophilus influenzae as well as isolates that are
resistant to conventional antibiotics [14]. Pyrimidine nucleosides, bearing long substituents
in the 5-position of the heterocyclic base, were able to inhibit Mycobacterium tuberculosis,
Mycobacterium bovis, and Mycobacterium avium [16–24]. A group of 5-substituted uridine
analogues inhibited the mycobacteria growth including MDR (multidrug-resistant) strains
in the low micromolar range [20,21].

Among the purine nucleosides, there are also compounds which have exhibited
antibacterial properties. For example, there are the compounds developed by the Aldrich
group, who synthesized a number of adenosine derivatives which proved to be inhibitors
of M. tuberculosis [25,26]. Moreover, analogues of 8-aza-, 7-deaza-, 9-deaza-, and 8-aza-7-
deazapurines showed pronounced inhibitory properties against M. tuberculosis [27–29].

In terms of the search for new compounds with broad spectrum activity, a very
promising group of purine nucleoside analogues are the fleximers [30,31]. It has been
shown that these unique compounds, where the purine base is split into its two separate
components, have exhibited a wide spectrum of biological activity [30]. The additional
flexibility of such nucleoside analogues is a significant advantage and in the case of resistant
pathogens makes it possible for a potential drug to “adjust” to the binding site containing
point mutations and retain inhibitory activity [30].

In this work, we present the synthesis of several new fleximer ribo-, 2′-deoxyribo-, and
5′-norcarbocyclic derivatives of the 8-aza-7-deazahypoxanthine scaffold and the testing
of 8-aza-7-deazapurine nucleoside analogues against Gram-positive and Gram-negative
bacteria and mycobacteria.

2. Results
2.1. Synthesis of the Target Compounds

We have previously compared the chemical and chemoenzymatic methods for the
synthesis of fleximer adenosine analogues [32]. It was shown that fleximer analogues of
8-aza-7-deazaadenine are useful substrates for purine nucleoside phosphorylase E. coli
(PNP E. coli) in the synthesis of corresponding modified nucleosides. Fleximer 8-aza-7-
deazaadenine ribonucleosides can be obtained through both methods with comparable ef-
fectiveness. In contrast, the chemical synthesis of 2′-deoxynucleoside analogues resulted in
mixtures of α- and β-anomers, so an additional purification step is needed. Thus, enzymatic
transglycosylation proved to be the preferred route for the 2′-deoxyribonucleosides [32].
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In an effort to explore these routes for other fleximer aza/deaza purines, we have
compared the chemical and chemo-enzymatic methods of 8-aza-7-deazainosine fleximer
synthesis. In that regard, a series of experiments was carried out to determine the substrate
specificity of E. coli purine nucleoside phosphorylase to heterocyclic bases 1a and 1b. In the
case of 1a, the transglycosylation reaction (Scheme 1) proceeded with the formation of side
products for both the riboside and 2′-deoxyriboside (see Supplementary file). This occurs
due to the availability of several glycosylation sites. Base 1a contains four nitrogen atoms
and lacks functional group protection. In the case of the fleximer base 1b, the reaction
proceeds selectively with the formation of just one product, as observed by chromatography
(see Supplementary file). The presence of benzyl protecting groups creates steric hindrance
for the enzyme for glycosylation of the pyrimidine, thereby ensuring the regioselectivity
of the reaction. Thus, we chose to use the chemoenzymatic glycosylation method for the
synthesis of the nucleoside analogues of the 8-aza-7-deazahypoxanthine fleximer using the
protected flex-base 1b.
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Scheme 1. Synthesis of fleximer analogues. A—chemo-enzymatic synthesis: PNP and UP E. coli
uridine or 2′-deoxyuridine; B—chemical synthesis: (i) HMDS, Py, (NH4)2SO4; (ii) Ac4Rib, TMSOTf;
(iii) 7N NH3/MeOH, 36 ◦C; a: Pd/C, H2, MeOH, TFA; b: H2, Pd/C, EtOH.

Protype reactions were carried out to determine the best donor of ribose and 2′-
deoxyribose for base 1b. In the first series of experiments, uridine, guanine, adenine,
and inosine were chosen as the potential carbohydrate donors. In the second series, 2′-
deoxyuridine, 2′-deoxyguanosine, 2′-deoxyadenosine, and 2′-deoxyinosine were chosen.
The reactions were carried out in a phosphate buffer pH 7.0 at 50 ◦C. Interestingly, there
was no difference in glycosylation efficiency when the natural purine nucleosides inosine,
guanosine, and adenosine were used as donors. However, for uridine the formation of
the target nucleoside proceeded faster (conversion 97% after 1 h). As a result, uridine and
2′-deoxyuridine, respectively, were chosen as the ribose/deoxyribose donors.

Nucleoside analogues 2 and 3 were then synthesized chemoenzymatically using
uridine phosphorylase (UP E. coli), PNP E. coli, and 1-(4-benzyloxypyrimidin-5-yl)pyrazole
1b as the base. Removal of the benzyl protective group by a hydrogenation reaction on a
palladium catalyst (Scheme 1) afforded fleximer nucleosides 4 and 5 in 25–26% yield.

For chemical synthesis of fleximer ribonucleoside 5, protected flex-base 1b was also
chosen (Scheme 1). Using classical Vorbruggen coupling methodology [33], compound 1b
was refluxed in hexamethyldisilazane, followed by glycosylation with β-D-ribofuranose
1,2,3,5-O-tetraacetate in the presence of trimethylsilyl trifluoromethanesulfonate. Protected
β-D-ribonucleoside 3 was obtained as the main product with 75% yield. Removal of the
acetyl and benzyl protecting groups led to the target fleximer analogue 5 (18% yield).

So, in the case of the 8-aza-7-deazainosine fleximer 3, synthesis started from 1-(4-
benzyloxypyrimidin-5-yl)pyrazole 1b, and both methods worked with equal efficiency.
Chemoenzymatic synthesis gave compound 3 in 77% yield and chemical synthesis in
71% yield.
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5′-Norcarbocyclic derivatives of fleximer 8-aza-7-deazahypoxantine were also syn-
thesized from 1-(4-benzyloxypyrimidin-5-yl)pyrazole 1b and the known 5′-norcarbocyclic
precursor 6-oxobicyclo[3.1.0.]hex-2-ene [34] using the Trost condensation protocol [35].

The 5′-norcarbocyclic analogue of 8-aza-7-deazainosine 9 was synthesized by oxidation
of the double bond of compound 6 with osmium tetraoxide in dioxane–water (10:1), and
subsequent removal of the benzyl protecting group of 8 with palladium on carbon under
a hydrogen atmosphere (Scheme 2). Product 9 was obtained in a 38% yield in two steps.
An attempt to directly remove the benzyl group from compound 6 through hydrogenation
produced compound 7 in a 63% yield.
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2.2. Antimicrobial Studies

In order to evaluate the antimicrobial effect of the fleximers, heterocyclic base ana-
logues 1a and 1b, the new derivatives of 8-aza-7-deazahypoxanthine fleximers 2–9, and the
previously reported 8-aza-7-deazapurine fleximer nucleoside analogues 10–22 [32,36,37]
(Figure 1), were tested against a number of microorganisms.
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Figure 1. 8-Aza-7-deazapurine fleximer nucleoside analogues.

The antimicrobial activity of the compounds was studied as previously described [38]
by measuring their ability to inhibit the growth in vitro of Gram-positive and Gram-
negative bacteria as well as fungi. Among the strains tested were Bacillus subtilis ATCC 6633;
methicillin-resistant Staphylococcus aureus strain INA 00761 (MRSA); methicillin-sensitive
Staphylococcus aureus FDA 209P (MSSA); Micrococcus luteus NCTC 8340; vancomycin-
resistant Leuconostoc mesenteroides VKPM B-4177 (VKPM); M. smegmatis mc2 155; Escherichia
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coli ATCC 25922; Pseudomonas aeruginosa ATCC 27853 (causes nosocomial infections of-
ten refractory to antibiotic therapy due to multidrug resistance); baking yeast Saccha-
romyces cerevisiae INA 01129; fungal test culture Aspergillus niger INA 00760. The results re-
vealed that only 1-(β-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19) and 1-(2′,3′,4′-
trihydroxycyclopent-1′-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) inhibited the growth of
M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL, respectively.

The ability of the fleximer analogues to inhibit the growth of M. tuberculosis H37Rv
was also tested. The growth of M. tuberculosis laboratory strain H37Rv was exposed to
the compounds at concentrations of 10–40 µg/mL; these were identical to those observed
in the control group (culture, growing on the medium without the tested compound).
Only 4-(4-aminopyridin-3-yl)-1H-pyrazol (10) at concentrations (MIC99) of 40 µg/mL and
1-(4′-hydroxy-2′-cyclopenten-1′-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6) at concentra-
tions of 20 µg/mL caused 99% inhibition of bacterial growth. Compound (6) completely
suppressed the growth of the culture at a concentration of 40 µg/mL.

3. Discussion

In this work, we continue to study the importance and biological scope of these flexible
nucleoside analogues known as fleximers. Earlier [32], we have shown that fleximer ana-
logues of 8-aza-7-deazaadenine are useful substrates for purine nucleoside phosphorylase
E. coli (PNP E. coli). It also provided the opportunity to further investigate and compare the
two routes of synthesis using chemical methods and enzymatic transglycosylation, in this
case for the 8-aza-7-deazainosine fleximer scaffold. It was found during the experiments,
through the determination of the substrate specificity of E. coli PNP to heterocyclic bases
1a and 1b, that the benzyl protective group is required for ensuring the regioselectivity of
the reaction. As a result, protected flex-base 1b was chosen for enzymatic glycosylation
as well as for the chemical synthesis of ribonucleoside 3 using the classical Vorbruggen
procedure. In the case of the synthesis of the 8-aza-7-deazainosine fleximer 3 starting from
1-(4-benzyloxypyrimidin-5-yl)pyrazole 1b, both methods worked with equal efficiency.

In addition to fleximers with traditional ribose or 2′-deoxyribose, we synthesized
derivatives of 8-aza-7-deazahypoxanthine bearing a 5′-norcarbocyclic fragment as the
sugar moiety. 5′-Norcarbocyclic nucleoside analogues [39] have a number of advantages.
One of them is the absence of 5′-CH2 group, which prevents phosphorylation thereby
resulting in decreasing cytotoxicity. At the same time, biological properties not associated
with phosphorylation are retained. This feature also helps to exclude classical nucleoside
polymerases inhibition [40], but at the same time several 5′-norcarbocyclic nucleoside ana-
logues have been shown to act as nonnucleoside inhibitors of viral RNA polymerases [41]
or reverse transcriptase [42,43].

Fleximer heterocyclic base analogues, derivatives of 8-aza-7-deazahypoxanthine fleximers
as well as the 8-aza-7-deazapurine fleximer analogues were also studied against a number of
microorganisms.

Antibacterial screening has shown that flexible analogues of 8-aza-7-deazapurine
nucleosides, compounds 9 and 19, inhibited the growth of M. smegmatis mc2 155 in 13
and 50 µg/mL, respectively. Analogues 6 and 10 caused 99% inhibition of M. tuberculosis
H37Rv, at concentrations of 20 and 40 µg/mL, respectively. It was not surprising that
different compounds were active against M. smegmatis and M. tuberculosis, since they are
not closely related groups of mycobacteria. M. tuberculosis is slow-growing mycobacteria,
and M. smegmatis is fast-growing one, so these two types of microorganisms may have
differential sensitivities to the various fleximer analogues. Nevertheless, the data obtained
will help guide for further optimization of new fleximer scaffolds in the search for new and
more effective antibacterial agents.



Int. J. Mol. Sci. 2023, 24, 15421 6 of 12

4. Materials and Methods
4.1. Chemistry

Commercial reagents for reactions (Acros, Aldrich, Thermo Fisher Scientific, Tokyo
Chemical Industry, and Fluka) were used without purification; anhydrous solvents were
purified according to standard procedures. Column chromatography was performed on
Silica Gel 60 0.040–0.063 mm (Merck, Darmstadt, Germany) columns, Dowex-50 (H+).
Preparative liquid chromatography (PLC) was performed on Silica Gel 60 F254 with con-
centrating zone glass plates (Merck, Germany). Thin layer chromatography (TLC) was
performed on Silica Gel 60 F254 aluminum-backed plates (Merck, Germany).

NMR spectra were recorded on Bruker Avance III 300 spectrometer (Bruker BioSpin,
Rheinstetten, Germany) or Bruker Avance II 700 spectrometer (Bruker BioSpin, Rheinstetten,
Germany) in CDCl3, CD3OD, or DMSO-d6 at 30 ◦C.

Liquid chromatography mass spectrometry was performed using an Agilent 6210 TOF
LC–MS system (Agilent Technologies, Santa Clara, CA, USA).

The UV spectra were recorded using a Beckman DU-530 spectrophotometer (Beckman
Coulter Inc., Brea, CA, USA)

Analytical HPLC was performed using the Waters system (Waters 1525, Waters 2489,
Breeze 2, (Waters Inc., Milford, MA, USA); column Supelco Ascentis® Express C18, 2.7 µm
7.5 × 3.0 mm, eluent A—0.1% TFA/H2O, eluent B—70% acetonitrile in 0.1% TFA/H2O,
flow rate 0.5 mL/min, detection at 280 nm. Gradient 0–50% B, 20 min.

High-resolution mass spectra (HRMS) were obtained on a Bruker Daltonics micrOTOF
II instrument using electrospray ionization (ESI). The measurements were acquired in
a positive ion mode with the following parameters: interface capillary voltage–4500 V;
mass range from m/z 50 to 3000; internal calibration (ESI Tuning Mix, Agilent); nebulizer
pressure—0.3 Bar; flow rate—3 µL/min; dry gas nitrogen (4.0 L/min); interface temperature
was set at 180 ◦C. Syringe injection was used.

1-(4-benzyloxypyrimidin-5-yl)pyrazole (1b). To 5-Bromo-4-benzyloxypyrimidine
(1.3 g, 5 mmol) in 1,2-dimethoxyethane (100 mL), tetrakis(triphenylphosphine)palladium
(5 mol %) was added under argon atmosphere and stirred for 15 min. Then, 4-(4,4,5,5-
tetramethyl-1,3,2-dioxoboran-2-yl)-1H-pyrazole (1.1 g, 5.5 mmol) in 1,2-dimethoxyethane
(15 mL) and a saturated aq. solution of sodium bicarbonate (10 mL) were added. The
reaction mixture was refluxed at 90 ◦C for 4 h, then concentrated in vacuo and partitioned
between water (30 mL) and chloroform (100 mL). The organic layer was washed with brine,
dried (Na2SO4), concentrated in vacuo, and the residue was purified by column chromatog-
raphy on silica gel in CH3Cl: MeOH (95:5) system to give flexible base 1b (795 mg) in 63%
yield. 1H NMR (300 MHz, CD3OD) δ: 8.41 (s, 1H, H-2B), 8.27 (s, 1H, H-5A), 8.24 (s, 2H,
H-6B, H-3A), 7.30–7.40 (m, 5H, benzyl group), 5.24 (s, 2H, CH2) ppm. 13C NMR (75.5 MHz,
CD3OD) δ: 159.3, 148.9, 147.95, 145.6, 142.1, 134.9, 132.6, 128.9, 128.4, 127.9, 120.5, 113.1,
50.4, 24.1 ppm. HRMS, m/z: calculated for C12H14N4O [M + H]+ 253.1084, found [M + H]+

253.1088. UV λmax 310 nm.
1-(4-pyrimidin-4(3H)-on-5-yl)pyrazole (1a). Deprotection of compound 1b (200 mg,

0.8 mmol) was carried out in methanol (10 mL) with addition of 10% Pd/C (30 mg) and
TFA (2 mL) under an H2 atmosphere (1 bar). The reaction mixture was stirred for 12 h. The
solvent was removed in vacuo and the residue was purified on a silica gel column to give
compound 1a (50 mg) in 40% yield. 1H NMR (300 MHz, DMSO-d6) δ: 8.38 (s, 2H, H-2B,
H-5A), 8.06 (s, 2H, H-6B, H-3A) ppm. 13C NMR (75.5 MHz, DMSO-d6) δ: 148.1, 147.4, 137.2,
127.7, 126.3, 120.8, 113.5 ppm. HRMS, m/z: calculated for C7H6N4O [M + H]+ 163.0614,
found [M + H]+ 163.0593. UV λmax 310 nm.

4.2. General Procedure for the Enzymatic Synthesis of Fleximer Nucleosides

The flex-base 1b and 2′-deoxyuridine/uridine at ratios of 1:2 were dissolved in 70 mL
10 mM potassium phosphate buffer (pH 7.0) at 40–50 ◦C. The enzymes 3.2 e.u./mL PNP and
4.0 e.u./mL UP E. coli were added. The reaction mixtures were incubated at 50 ◦C until the
conversion reached 98–100%, according to the RP-HPLC data. When the conversion reached
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the maximal value, the reaction was terminated by ultrafiltration using Amicon® Ultra-4
Centrifugal Filter Unit (10 kDa, Merck Millipore, Darmstadt, Germany) and concentrated
in vacuo to a minimum volume (5 mL). The isolation of the fleximer nucleosides 2–3 was
performed using reverse-phase column chromatography (silica gel C18, Merck), using a
column of 20 mm × 550 mm. Nucleosides were eluted from the column with gradient
eluent A 100% water–eluent B 50:50% ethanol/water.

1-(β-D-2′-Deoxyribofuranosyl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (2). 1H NMR
(700 MHz, DMSO-d6) δ: 8.61 (s, 1H, H-2B), 8.52 (s, 1H, H-5A), 8.42 (s, 1H, H-6B), 8.12 (s,
1H, H-3A), 7.36 and 7.30 (m, 4H and m, 1H, Ph), 6.13 (t, J = 6.32 Hz, 1H, H-1′), 5.22 (br.s,
0.78 H, 5′-OH), 5.20 (s, 2H, -CH2-), 4.80 (br.t, 0.78 H, 3′-OH), 4.36 (br.s, 0.78 H, H-3′), 3.82
(m, 1 H, H-4′), 3.51 (m, 1H, Ha-5′), 3.40 (m, 1H, Hb-5′), 2.59 (m, 1H, Ha-2′), 2.29 (m, 1H,
Ha-2′) ppm. 13C NMR (176 MHz, DMSO-d6) δ: 158.57, 149.66, 147.20, тa137.54, 136.81,
128.51, 127.62, 128.57, 119.04, 114.54, 88.95, 87.67, 70.79, 62.10, 49.82, 39.94 ppm. 15N NMR
(71 MHz, DMSO-d6) δ: 301.30 (N2A), 244.30 (N1B), 226.43 (N1A), 186.32 (N3B) ppm. HRMS,
m/z: calculated for C19H20N4O4, [M + H]+ 369.1557, found [M + H]+ 369.1564. Yield 71.6%,
33.4 mg. Purity 99.54%. Rt 8.33 min. UV λmax 305, 299, 253 nm, ε 10550 (299 nm).

1-(β-D-Ribofuranosyl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (3). 1H NMR (700 MHz,
DMSO-d6) δ: 8.62 (s, 1H, H-2B), 8.56 (s, 1H, H-5A), 8.42 (s, 1H, H-6B), 8.14 (s, 1H, H-3A),
7.36 and 7.31 (m, 4H and m, 1H, Ph), 5.69 (d, J = 4.43 Hz, 1H, H-1′), 5.34 (d, J = 5.92 Hz, 1H,
2′-OH), 5.20 (s, 2H, -CH2-), 5.08 (d, J = 5.48 Hz, 1H, 3′-OH), 4.84 (t, J = 5.66 Hz, 1H, 5′-OH),
4.34(q, J = 4.98; 5.66 Hz, 1H, H-2′), 4.12 (q, J = 4.97; 5.16 Hz, 1H, H-3′), 3.91 (q, J = 4.85; 4.58 Hz,
1H, H-4′), 3.59 (m, 1H, Ha-5′), 3.48 (m, 1H, Hb-5′), ppm. 13C NMR (176 MHz, DMSO-d6) δ:
158.92, 150.30, 147.83, 138.35, 136.94, 129.26, 128.20, 129.12, 119.63, 114.54, 93.80, 85.58, 74.98,
71.05, 62.40. 49.82 ppm. 15N NMR (71 MHz, DMSO-d6) δ: 302.61 (N2A), 244.33 (N1B), 222.35
(N1A) 186.45(N3B) ppm. HRMS, m/z: calculated for C19H20N4O5, [M + H]+ 385.1506, found
[M + H]+ 385.1539. Yield 76.6%, 40.9 mg. Purity 97.03%. Rt 7.78 min. UV λmax 305, 299,
253 nm, ε 9890 (299 nm).

4.3. The Palladium-on-Carbon (Pd/C)-Catalyzed Hydrogenative Deprotection of the
N-Benzyl-Protecting Group

Protected fleximer nucleosides 2–3 (10 mg, 0.027 mmol) were dissolved in ethanol
(2 mL). The solution diluted with ethanol (10 mL), and 10% Pd/C (10 mg) was added. The
reaction mixture was stirred under an H2 atmosphere (1 bar) for 12 h. Aliquots (60 µL)
were taken from the reaction mixture, and the progress of the reactions was monitored
using HPLC. When the conversion reached the maximal value, the reaction mixture was
passed through a filter, and the filtrate was concentrated in vacuo. Isolation of the fleximers
nucleosides 4–5 was performed using Phenomenex Strata C18-E cartridge (200 mg/3 mL).
Nucleosides were eluted from the column with gradient eluent A 100% water–eluent B
50:50% ethanol/water.

1-(β-D-2′-Deoxyribofuranosyl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (4). 1H NMR
(700 MHz, DMSO-d6) δ: 8.51 (s, 1H, H-5A), 8.38 (s, 1H, H-6B), 8.11 (s, 1H, H-3A), 8.09 (s,
1H, H-2B), 6.14 (t, J = 6.34 Hz, 1H, H-1′), 5.22 (d, J = 4.36 Hz), 4.80 (t, J = 5.59 Hz, 1H, 5′-OH),
4.36 (m, 1H, H-2′), 4.34 (m, 1H, H-3′), 3.83 (m, 1H, H-4′), 3.52 (m, 1H, Ha-5′), 3.42 (m,1H,
Hb-5′), 2.61 (m, 1H, Ha-2′), 2.24 (m, 1H, Ha-2′) ppm. Yield 26%, 2 mg. Purity 96.84%. Rt
4.29 min. HRMS, m/z: calculated for C12H14N4O4 [M + H]+ 279.1088, found [M + H]+

279.1103. UV λmax 305, 298, 251 nm.
1-(β-D-Ribofuranosyl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (5). 1H NMR (700 MHz,

DMSO-d6) δ: 8.53 (s, 1H, H-5A), 8.32 (s, 1H, H-6B), 8.10 (s, 1H, H-3A), 8.07 (s, 1H, H-2B),
5.68 (t, J = 5.68 Hz, 1H, H-1′), 4.86 (br.s, 0.55 H, 5′-OH), 4.35 (t, J = 4.41 Hz, 1H, H-2′), 4.13 (t,
J = 4.89 Hz, 1H, H-3′), 3.90 (q, J = 4.72; 4.79 Hz, 1H, H-4′), 3.59 (m, 1H, Ha-5′), 3.49 (m,1H,
Hb-5′). 13C NMR (176 MHz, DMSO-d6) δ: 161.70 (C4B), 148.92 (C2B), 147.75 (C6B), 137.52
(C3A), 128.21 (C5A), 118.59 (C4A), 114.91 (C5B), 93.78 (C1′), 84.95 (C4′), 74.35 (C2′), 70.48
(C3′), 61.89 (C5′). 15N NMR (71 MHz, DMSO-d6) δ: 300.79 (N2A), 240.54 (N1B), 221.45
(N1A), 194.27 (N3B) ppm. HRMS, m/z: calculated for C12H14N4O5 [M + H]+ 295.1037,
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found [M + H]+ 295.1028. Yield 25%, 2 mg. Purity 97.16%, Rt 4.38 min. UV λmax 305, 298,
251 nm.

4.4. Chemical Synthesis of Fleximer Nucleosides

1-(β-D-(2′,3′,5′-Triacetylribofuranosyl))-4-(4-benzyloxypyrimidin-5-yl)pyrazole. To
1-(4-benzyloxypyrimidin-5-yl)pyrazole 1b (100 mg, 0.6 mmol) (NH4)2SO4 (10 mg), HMDS
(20 mL) and Py (2 mL) were added. The reaction mixture was refluxed for 3 h at 150 ◦C. The
solvent then was concentrated and the residue dissolved in acetonitrile. β-D-Ribofuranose-
1,2,3,5-tetraacetate (150 mg, 0.6 mmol) and Trf were added and left overnight. The solvent
was evaporated and purification by preparative chromatography in Hex:EtOAc + MeOH
(1:3 + 1%) gave the product as a white powder (170 mg, yield 75%). 1H NMR (300 MHz,
CDCl3) δ: 9.03 (s, 1H, H-6B), 8.52 (s, 1H, H-2B), 8.21 (d, J = 15.9 Hz, 1H, H-3A), 8.01 (s, 1H,
H-5A), 7.43 (m, 5H, Ph), 5.94 (d, J = 3.3 Hz, 1H, H-1′), 5.79 (dd, J = 5.2, 3.4 Hz, 1H, H-2′), 5.68
(d, J = 5.3 Hz, 1H, H-3′), 5.33 (s, 2H -CH2-), 4.40–4.43 (m, 3H, Ac-5′), 4.17–4.25 (m, 3H, H-5′),
2.11 (s, 6H, 2xAc), 1.37 (m, 4H, H-4′) ppm. 13C NMR (75 MHz, CDCl3) δ: 233.8, 225.1, 222.3,
199.6, 182.0, 170.7, 169.4, 158.0, 148.6, 140.6, 138.6, 134.1, 130.3, 129.9, 129.2, 128.5, 113.8, 91.6,
80.2, 77.0, 76.6, 74.4, 71.0, 63.4, 51.2, 21.1 ppm.

1-(β-D-Ribofuranosyl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (3). 1-(β-D-(2′,3′,5′-
Triacetylribofuranosyl))-4-(4-benzyloxypyrimidin-5-yl)pyrazole (100 mg, 0.2 mmol) was
dissolved in 7N ammonia in methanol (20 mL). The reaction mixture was kept at 36 ◦C
for 3 h. Purification with preparative chromatography on silica gel glass plate in chloro-
form/methanol (95:5) system, gave the riboside (3) as a white powder (71 mg) with 95%
yield.

1-(β-D-Ribofuranosyl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (5). Riboside (3) (50 mg,
0.13 mmol) was dissolved in methanol (10 mL), and 10% Pd/C (30 mg) and TFA (2 mL)
were added. The reaction mixture was stirred under an H2 atmosphere (1 bar) for 12 h.
After completion of the reaction, the mixture was filtered through a pad of Celite and the
filtrate evaporated to dryness. The residue was purified via a silica gel column eluting with
chloroform/methanol (8:2) to give compound 5 as a white powder (32 mg, 18% on 3 steps).

1-(4′-Hydroxy-2′-cyclopenten-1′-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). 1-
(4-Benzyloxypyrimidin-5-yl)pyrazole 1 (250 mg, 1 mmol) were dissolved in DMF and
re-evaporated 2 times. Then, 6-oxybicyclo [3.1.0.]hex-2-ene (1.3 eq) in 2–3 mL THF and
Pd(PPh3)4 5 mol% were added. The reaction mixture was stirred for 18h and the solvents
evaporated. The product was purified by column chromatography on silica gel eluting
with chloroform/methanol (98:2) to give 254 mg of compound 6 in 75% yield. 1H NMR
(300 MHz, CD3OD) δ: 8.39 (s, 1H, H-2B), 8.22 (s, 1H, H-5A), 8.12 (s, 1H, H-3A), 7.92 (s, 1H,
H-6B), 7.30–7.44 (m, 5H, Ph), 6.31 dt, J = 5.6, 1.8 Hz, (1H, H-2′), 5.97 (dd, J = 5.5, 2.5 Hz,
1H, H-3′), 5.21–5.18 (m, 3H, CH2, H-1′), 4.75–4.77 (m, 1H, H-4′), 2.62–2.72 (m, 1H, H-5′a),
2.1–2.04 (m, 1H, H-5′b) ppm. 13C NMR (75.5 MHz, CDCl3) δ: 159.4, 148.0, 146.6, 139.2,
137.1, 129.3, 129.1(*2), 128.5(*2), 128.1(*2), 113.6, 74.7, 65.6, 50.3, 40.5 ppm. HRMS, m/z:
calculated for C19H18N4O2 [M + H]+ 335.1503, found [M + H]+ 335.1500; calculated for
C19H18N4O2 [M + Na]+ 357.1322, found [M + Na]+ 357.1316; calculated for C19H18N4O2
[M + K]+ 373.1061, found [M + K]+ 373.1053; UV λmax 315 nm.

1-(4′-Hydroxycyclopent-1′-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (7). To a solu-
tion of 6 (50 mg, 0.15 mmol) in anhydrous MeOH (10 mL), 10% Pd/C (40 mg) was added
under a H2 atmosphere, and the reaction mixture was stirred at room temperature under a
H2 atmosphere for 18 h. The mixture was filtered through a pad of Celite and the filtrate
evaporated to dryness. The residue was purified via a silica gel column eluting with
chloroform/methanol (9:1) to give compound 7 as an off-white powder (23 mg, 63%). 1H
NMR (300 MHz, DMSO-d6) δ: 12.62 (s, 1H, NH), 8.41 (s, 1H, H-2B), 8.35 (s, 1H, H-5A),
8.06 (s, 1H, H-3A), 8.03 (s, 1H, H-6B), 4.87 (d, J = 4.8 Hz, 1H, H-1′), 4.63–4.82 (m, 1H, OH),
4.16–4.21 (m, 1H, H-4′), 2.37–2.39 (m, 1H, H-5′a), 1.91–2.17 (m, 2H, CH2), 1.91–1.59 (m, 3H,
CH2, H-5′b) ppm. 13C NMR (75.5 MHz, DMSO-d6) δ: 159.8, 147.8, 147.4, 136.8, 128.0, 120.6,
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114.0, 70.8, 61.0, 42.2, 34.5, 31.3 ppm. HRMS, m/z: calculated for C12H14N4O2 [M + Na]+

269.1009, found [M + Na]+ 269.1018. UV λmax 310 nm.
1-(2′,3′,4′-Trihydroxycyclopent-1′-yl)-4-(4-benzyloxypyrimidine-5-yl)pyrazole (8).

Compound 6 (200 mg, 0.6 mmol) was dissolved in dioxane/water (10:1) system. NMMO
(10 equiv.) and osmium tetroxide (0.25 equiv.) were added to the solution. The reaction
mixture was stirred for 6 h and the solvents were evaporated. The residue was purified on
a silica gel column eluting with chloroform/methanol (9:1) to give the product as a white
powder in 89% yield. 1H NMR (300 MHz, CD3OD) δ: 8.39–8.45 (m, 2H, H-2B, H-5A), 8.32
(s, 1H, H-3A), 8.07 (s, 1H, H-6B), 7.28–7.41 (m, 5H, Ph), 5.25 (s, 2H, CH2), 4.63 (dt, J = 9.3,
7.7 Hz, 1H, H-2′), 4.43 (dd, J = 7.4, 5.1 Hz, 1H, H-3′), 4.06–4.10 (m, 1H, H-1′), 3.91–3.97 (m,
1H, H-4′), 2.67–2.78 (m, 1H, H-5′a), 1.93–2.02 (m, 1H, H-5′b) ppm. 13C NMR (75.5 MHz,
CD3OD) δ: 159.4, 149.1, 146.5, 137.2, 135.9, 129.1, 128.5, 127.9, 127.7, 120.3, 113.7, 77.2, 76.2,
74.1, 65.9, 49.8, 36.1 ppm. HRMS, m/z: calculated for C19H20N4O4 [M + H]+ 369.1557,
found [M + H]+ 369.1553; calculated for C19H20N4O4 [M + Na]+ 391.1377, found [M + Na]+

391.1370; calculated for C19H20N4O4 [M + K]+ 407.1116, found [M + K]+ 407.1110. UV
λmax 315 nm.

1-(2′,3′,4′-Trihydroxycyclopent-1′-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9). To a
solution of 8 (100 mg, 0.27 mmol) in anhydrous MeOH (10 mL), 10% Pd/C (60 mg) was
added and the reaction mixture was stirred at room temperature under a H2 atmosphere for
48 h. The mixture was filtered through a pad of Celite and the filtrate evaporated to dryness.
The residue was purified via a silica gel column eluting with chloroform/methanol (8:2)
to give compound 9 as a white powder (54 mg, 72%). 1H NMR (300 MHz, DMSO-d6) δ:
12.71 (s, 1H, NH), 8.32–8.44 (m, 2H, H-2B, H-5A), 7.86–8.14 (m, 2H, H-3A, H-6B), 5.02 (d,
J = 4.2 Hz, 1H, OH), 4.91 (d, J = 6.8 Hz, 1H, OH), 4.82 (d, J = 3.8 Hz, 1H, OH), 4.44–4.56 (m,
1H, H-2′), 4.23–4.25 (m, 1H, H-3′), 3.83–3.94 (m, 1H, H-1′), 3.70–3.71 (m, 1H, H-4′), 1.75–1.84
(m, 1H, H-5′a), 0.92–0.94 (m, 1H, H-5′b) ppm. 13C NMR (75.5 MHz, DMSO-d6) δ: 158.6,
148.0, 137.0, 129.0, 119.7, 115.7, 77.4, 76.4, 73.8, 65.7, 37.0, 29.4 ppm. HRMS, m/z: calculated
for C12H14N4O4 [M + H]+ 279.1088, found [M + H]+ 279.1081. UV λmax 310 nm.

4.5. Antimicrobial Activity

The antimicrobial activity of the compounds was determined by the method of two-
fold serial dilutions in the #2 Gause medium of the following composition (g/L): glucose-
10, peptone-5, tryptone-3, sodium chloride-5; tap water. Eight strains of bacteria and
two strains of fungi were used as test cultures: Bacillus subtilis ATCC 6633, Leuconostoc
mesenteroides VKPM B-4177, Micrococcus luteus NCTC 8340, Staphylococcus aureus FDA 209P
(MSSA), S. aureus INA 00761 (MRSA), Mycobacterium smegmatis mc2 155, Escherichia coli
ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and fungi Saccharomyces cerevisiae RIA
259 and Aspergillus niger INA 00760. The inoculation of the medium was 106 CFU/mL.
Fungi and L. mesenteroides VKPM B-4177 were incubated at 28 ◦C and the remaining
bacterial strains were incubated at 37 ◦C. The duration of the incubation was 24 h except for
the A. niger INA 00760 and M. smegmatis mc2 155, which were cultivated for two days. MIC
corresponded to the complete absence of growth. As a control, test strains were incubated
in a medium without test substances, as well as in a medium with the addition of a solvent
(methanol at a maximum concentration of 3 vol.%).

4.6. Antituberculosis Tests

The virulent laboratory strain M. tuberculosis H37Rv was standardized by the number
of CFU and growth phase, as described previously [21]. Antimycobacterial activity was
determined through the growth of the M. tuberculosis H37Rv culture on Middlebrook 7H9
liquid nutrient medium in the BACTEC MGIT960 automated system (BD, New Jersey, USA)
in the presence of compounds at concentrations of 10, 20, and 40 µg/mL. M. tuberculosis
H37Rv cultured on a medium containing no drugs (negative control), a medium with anti-
tuberculosis drugs at critical concentrations: rifampicin 1 µg/mL and isoniazid 0.1 µg/mL
(positive control) and a medium with a solvent (solvent control). DMSO:H2O (30:70). This
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was added to the culture medium in a volume equal to the maximum volume of solvent
added with the test concentrations of the compounds (monitoring the effect of solvent
on culture growth). Each of the concentrations of the test compound, as well as control
samples, was studied in triplicate. The level of bacteriostatic activity of the compound
was evaluated by the method of proportions according to the principle described in the
manual for BACTEC MGIT 960 [44]. If, on the day when the culture tubes were diluted,
1:99, 1:9, 1:3, and 1:1 showed growth of 400 GU and less than 100 GU were recorded in the
test samples, then these concentrations of the compounds inhibited culture growth of at
least 99%, 90%, 75% and 50%, respectively.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms242015421/s1.
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