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1. Abbreviations 

Table S1. Abbreviations in model equations 

Membrane excitation 

𝑉𝑚 membrane potential (mV) 

𝐼𝑡𝑜𝑡_𝑐𝑒𝑙𝑙  total current of ion channels and exchangers (pA/pF) 

𝐼𝑡𝑜𝑡_𝑋_𝑎 total current of ion ‘X’ channels and exchangers at space ‘a’ (pA/pF) 

𝐼𝑎𝑝𝑝_𝑏𝑙𝑘 current applied through a patch electrode (pA/pF) 

𝐸𝑋 
reversal potential of ion ‘X’ , determined from the slope conductance of IX-Vm 

relationship, or by the Nernst equation (mV) 

𝐶𝑚 membrane capacitance (pF) 

𝐺𝐼 conductance of current ‘I’ (pA/mV/pF) 

𝐺𝐻𝐾𝑋_𝑎 a modified Goldman-Hodgkin-Katz equation of ion ‘X’ at a space ‘a’ (mM) 

𝑘, 𝛼, 𝛽, 𝜈
 

rate constant (/ms) 

𝐾𝑑_𝑋

 
dissociation constant for ion ‘X’ (/mM) 

𝑃𝐼(_𝑋)

 
converting factor of current ‘I’ from GHKX (pA/mM/pF) 

𝑣𝑐𝑦𝑐_𝑇 turnover rate of transporter ‘T’ (/ms) 

𝑝(𝑆)(_𝑎)

 
probability of state ‘S’ in a scheme of state transitions at a space ‘a’ 

𝑝(𝑂)𝐼(_𝑎) open probability of current ‘I’ at space ‘a’ 

𝑉𝑋

 
total volume of space ‘X’ (m3) 

[𝑋𝑡𝑜𝑡𝑎𝑙]𝑎

 
total concentration of substance ‘X’ at space ‘a’ (mM) 

[𝑋𝑓𝑟𝑒𝑒]𝑎

 
free concentration of substance ‘X’ at space ‘a’ (mM) 

[𝑋]𝑎

 
concentration of ion ‘X’ at space ‘a’ (mM) 

𝐽𝑋

 
total flux of ion ‘X’ (amol/ms) 

𝑧𝑋

 
valence of ion ‘X’ 

𝑑[𝑋]𝑎

𝑑𝑡
 

rate of change of ‘X’ concentration at space ‘a’ (mM/ms) 

 

2. Model parameters 

Physical constants  

Table S2. Physical constants 

𝑅 8.3143 C ･mV/mmol/K 

𝑇 310 K  

𝐹 96.4867 C/mmol 
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Ion concentrations 

Table S3. Ionic composition of external solution 

[𝐾+]𝑜 4.5 mM 

[𝑁𝑎+]𝑜 140 mM 

[𝐶𝑎2+]𝑜 1.8 mM 

Substrates 

TableS4. Substrates 

[𝐻+]𝑐𝑦𝑡 0.0001 mM 

[𝑀𝑔2+]𝑐𝑦𝑡 0.8 mM 

[𝑆𝑃𝑀] 5 mM 

 

Cell volume 

Table S5. Cell compartments 

Cell configuration (Vcell)  120 ⋅ 37.62 ⋅ 8.4 fL 

Bulk space (Vblk) 0.68 ⋅ 𝑉𝑐𝑒𝑙𝑙  fL 

Intermediate zone (Viz) 0.035 ⋅ 𝑉𝑐𝑒𝑙𝑙  fL 

Junction space (Vjnc) 0.008 ⋅ 𝑉𝑐𝑒𝑙𝑙  fL 

Cytsol volume (Vcyt) 0.723 ⋅ 𝑉𝑐𝑒𝑙𝑙  fL 

Total SR space (VSRt) 0.06 ⋅ 𝑉𝑐𝑒𝑙𝑙  fL 

SR releasing site volume (VSRrl) 0.2 ⋅ 𝑉𝑆𝑅𝑡 fL 

SR uptake site volume (VSRup) 0.8 ⋅ 𝑉𝑆𝑅𝑡 fL 

Input capacitance (Cm) 192.46 pF 

 

Ca2+ buffer 

The detailed set of buffer species (1) used in the GPB model was adopted after several 

simplifications as described in our previous paper (2). In short, we deleted the myosin, Na+ and 

Mg2+ buffers, and fixed [Mg2+]. The low affinity binding of Ca2+ to troponin (TnCl) was replaced 

by a contraction model (3) and the amount of the high affinity site (TnCh) was adjusted. 

 

Table S6. Ca2+ buffer 

𝐶𝑎𝑀 calmodulin (mM) 

𝐶𝑎𝑀𝐶𝑎 CaM-calcium complex (mM) 

[𝐵𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑀] total buffer concentration of CaM, 0.0216 (mM) 
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𝑇𝑛𝐶ℎ troponin C with a high affinity 

𝑇𝑛𝐶ℎ𝐶𝑎 TnCh-calcium complex 

[𝐵𝑡𝑜𝑡𝑎𝑙𝑇𝑛𝐶ℎ] total buffer concentration of TnCh, 0.108 (mM) 

𝑆𝑅𝐶𝑎 calcium buffer by SR membrane-Calcium complex 

[𝐵𝑡𝑜𝑡𝑎𝑙𝑆𝑅] total buffer concentration on SR membrane, 0.01539 (mM) 

[𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑆𝑅𝑟𝑙  total calcium concentration in release site of the SR (mM) 

[𝐶𝑎2+]𝑆𝑅𝑟𝑙  
free calcium concentration in release site of the SR (mM) 

[𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑖𝑧 
total sarcolemmal calcium buffer concentration with a high affinity in iz space, 

0.2178 (mM) 

[𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑖𝑧 
total sarcolemmal calcium buffer concentration with a low affinity in iz space, 

0.6078 (mM) 

[𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑗𝑛𝑐 
total sarcolemmal calcium buffer concentration with a high affinity in jnc space, 

0.398 (mM) 

[𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑗𝑛𝑐 
total sarcolemmal calcium buffer concentration with a low affinity in jnc space, 

1.1095 (mM) 

𝐿𝑏 calcium-sarcolemmal buffer complex with a low affinity 

𝐻𝑏 calcium-sarcolemmal buffer complex with a high affinity 

𝐵𝑡𝑜𝑡𝑎𝑙𝐶𝑆𝑄𝑁 total buffer concentration of calsequestrin, 3.0 (mM) 

Bulk space (blk)
 

𝑑[𝐶𝑎𝑀𝐶𝑎]

𝑑𝑡
= 𝑘𝑜𝑛_𝐶𝑎𝑀 ⋅ [𝐶𝑎2+]𝑏𝑙𝑘 ⋅ ([𝐵𝑡𝑜𝑡𝑎𝑙𝐶𝑎𝑀] − [𝐶𝑎𝑀𝐶𝑎]) − 𝑘𝑜𝑓𝑓_𝐶𝑎𝑀 ⋅ [𝐶𝑎𝑀𝐶𝑎]  

𝑘𝑜𝑓𝑓_𝐶𝑎𝑀 = 0.238, 𝑘𝑜𝑛_𝐶𝑎𝑀 = 34  

𝑑[𝑇𝑛𝐶ℎ𝐶𝑎]

𝑑𝑡
= 𝑘𝑜𝑛_𝑇𝑛𝐶ℎ ⋅ [𝐶𝑎2+]𝑏𝑙𝑘 ⋅ ([𝐵𝑡𝑜𝑡𝑎𝑙𝑇𝑛𝐶ℎ] − [𝑇𝑛𝐶ℎ𝐶𝑎]) − 𝑘𝑜𝑓𝑓_𝑇𝑛𝐶ℎ ⋅ [𝑇𝑛𝐶ℎ𝐶𝑎]

    

𝑘𝑜𝑓𝑓_𝑇𝑛𝐶ℎ = 0.000032, 𝑘𝑜𝑛_𝑇𝑛𝐶ℎ = 2.37   

𝑑[𝑆𝑅𝐶𝑎]

𝑑𝑡
= 𝑘𝑜𝑛_𝑆𝑅 ⋅ [𝐶𝑎2+]𝑏𝑙𝑘 ⋅ ([𝐵𝑡𝑜𝑡𝑎𝑙𝑆𝑅] − [𝑆𝑅𝐶𝑎]) − 𝑘𝑜𝑓𝑓_𝑆𝑅 ⋅ [𝑆𝑅𝐶𝑎]

                 

𝑘𝑜𝑓𝑓_𝑆𝑅 = 0.06, 𝑘𝑜𝑛_𝑆𝑅 = 100 
 

Intermediate zone (iz) 

[𝐿𝑓𝑟𝑒𝑒]𝑖𝑧 =
[𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑖𝑧

1+
[𝐶𝑎2+]𝑖𝑧

𝐾𝑑𝐿_𝑖𝑧

                                  

𝐾𝑑𝐿_𝑖𝑧 =
𝑘𝑜𝑓𝑓_𝐿_𝑖𝑧

𝑘𝑜𝑛_𝐿_𝑖𝑧
, 𝑘𝑜𝑓𝑓_𝐿_𝑖𝑧 = 1.3, 𝑘𝑜𝑛_𝐿_𝑖𝑧 = 100 

 

 
[𝐻𝑓𝑟𝑒𝑒]𝑖𝑧 =

[𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑖𝑧

1+
[𝐶𝑎2+]𝑖𝑧
𝐾𝑑𝐻_𝑖𝑧

                                  

𝐾𝑑𝐻_𝑖𝑧 =
𝑘𝑜𝑓𝑓_𝐻_𝑖𝑧

𝑘𝑜𝑛_𝐻_𝑖𝑧
, 𝑘𝑜𝑓𝑓_𝐻_𝑖𝑧 = 0.03, 𝑘𝑜𝑛_𝐻_𝑖𝑧 = 100 
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[𝐶𝑎2+]𝑖𝑧 =
[𝐶𝑎𝑡𝑜𝑡]𝑖𝑧

1+
[𝐿𝑓𝑟𝑒𝑒]𝑖𝑧

𝐾𝑑𝐿_𝑖𝑧
+

[𝐻𝑓𝑟𝑒𝑒]𝑖𝑧

𝐾𝑑𝐻_𝑖𝑧

                            

Junctional space (jnc) 

[𝐿𝑓𝑟𝑒𝑒]𝑗𝑛𝑐 =
[𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑗𝑛𝑐

1+
[𝐶𝑎2+]𝑗𝑛𝑐

𝐾𝑑𝐿_𝑗𝑛𝑐

                               

𝐾𝑑𝐿_𝑗𝑛𝑐 =
𝑘𝑜𝑓𝑓_𝐿_𝑗𝑛𝑐

𝑘𝑜𝑛_𝐿_𝑗𝑛𝑐
, 𝑘𝑜𝑓𝑓_𝐿_𝑗𝑛𝑐 = 1.3, 𝑘𝑜𝑛_𝐿_𝑗𝑛𝑐 = 100 

 

[𝐻𝑓𝑟𝑒𝑒]𝑗𝑛𝑐 =
[𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑗𝑛𝑐

1+
[𝐶𝑎2+]𝑗𝑛𝑐

𝐾𝑑𝐻_𝑗𝑛𝑐

                               

𝐾𝑑𝐻_𝑗𝑛𝑐 =
𝑘𝑜𝑓𝑓_𝐻_𝑗𝑛𝑐

𝑘𝑜𝑛_𝐻_𝑗𝑛𝑐
, 𝑘𝑜𝑓𝑓_𝐻_𝑗𝑛𝑐 = 0.03, 𝑘𝑜𝑛_𝐻_𝑗𝑛𝑐 = 100  

 

 
[𝐶𝑎2+]𝑗𝑛𝑐 =

[𝐶𝑎𝑡𝑜𝑡]𝑗𝑛𝑐

1+
[𝐿𝑓𝑟𝑒𝑒]𝑗𝑛𝑐

𝐾𝑑𝐿_𝑗𝑛𝑐
+

[𝐻𝑓𝑟𝑒𝑒]𝑗𝑛𝑐

𝐾𝑑𝐻_𝑗𝑛𝑐
  

Release site of the SR(SRrl)                                                                              

𝐾𝑑_𝐶𝑆𝑄𝑁_𝐶𝑎 =
𝑘𝑜𝑓𝑓_𝐶𝑆𝑄𝑁

𝑘𝑜𝑛_𝐶𝑆𝑄𝑁
  

𝑘𝑜𝑓𝑓_𝐶𝑆𝑄𝑁 = 65, 𝑘𝑜𝑛_𝐶𝑆𝑄𝑁 = 100 

 𝑎 = 1  

𝑏 = [𝐵𝑡𝑜𝑡𝑎𝑙𝐶𝑆𝑄𝑁] − [𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑆𝑅𝑟𝑙 + 𝐾𝑑_𝐶𝑆𝑄𝑁_𝐶𝑎  

 
𝑐 = −𝐾𝑑_𝐶𝑆𝑄𝑁_𝐶𝑎 ⋅ [𝐶𝑎𝑡𝑜𝑡𝑎𝑙

2+ ]𝑆𝑅𝑟𝑙   

[𝐶𝑎2+]𝑆𝑅𝑟𝑙 =
−𝑏+√𝑏2−4⋅𝑎⋅𝑐

2⋅𝑎
       

Boundary Ca2+ diffusion 

Ca2+ transfer between cytosolic compartments 

𝐽𝐶𝑎_𝑗𝑛𝑐𝑖𝑧 = 𝐺𝑑𝐶𝑎_𝑗𝑛𝑐𝑖𝑧 ⋅ ([𝐶𝑎2+]𝑗𝑛𝑐 − [𝐶𝑎2+]𝑖𝑧)
     

𝐺𝑑𝐶𝑎_𝑗𝑛𝑐𝑖𝑧 = 3395.88 ⋅ 𝑓𝐿 ⋅ 𝑚𝑠−1  

𝐽𝐶𝑎_𝑖𝑧𝑏𝑙𝑘 = 𝐺𝑑𝐶𝑎_𝑖𝑧𝑏𝑙𝑘 ⋅ ([𝐶𝑎2+]𝑖𝑧 − [𝐶𝑎2+]𝑏𝑙𝑘)
                                      

 

𝐺𝑑𝐶𝑎_𝑗𝑧𝑏𝑙𝑘 = 3507.78 ⋅ 𝑓𝐿 ⋅ 𝑚𝑠−1 
 

Ca2+ transfer from SR uptake site to release site 

𝐽𝑡𝑟𝑎𝑛𝑠_𝑆𝑅 = 𝑃𝑡𝑟𝑎𝑛𝑠 ⋅ ([𝐶𝑎2+]𝑆𝑅𝑢𝑝 − [𝐶𝑎2+]𝑆𝑅𝑟𝑙)  

𝑃𝑡𝑟𝑎𝑛𝑠 = 4.8037  

 

3. Rate of change in the membrane potential and ion concentrations 

Membrane potential 
𝑑𝑉𝑚

𝑑𝑡
= −(𝐼𝑡𝑜𝑡_𝑐𝑒𝑙𝑙 + 𝐼𝑎𝑝𝑝)         (Eq. S1) 

𝐼𝑡𝑜𝑡_𝑐𝑒𝑙𝑙 = 𝐼𝑡𝑜𝑡_𝑁𝑎 + 𝐼𝑡𝑜𝑡_𝐶𝑎 + 𝐼𝑡𝑜𝑡_𝐾        (Eq. S2) 

𝐼𝑡𝑜𝑡_𝐶𝑎 = 𝐼𝑡𝑜𝑡_𝐶𝑎_𝑗𝑛𝑐 + 𝐼𝑡𝑜𝑡_𝐶𝑎_𝑖𝑧 + 𝐼𝑡𝑜𝑡_𝐶𝑎_𝑏𝑙𝑘       (Eq. S3) 
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𝐼𝑡𝑜𝑡_𝐶𝑎_𝑗𝑛𝑐 = 𝐼𝐶𝑎𝐿_𝐶𝑎_𝐿𝑅 + 𝐼𝐶𝑎𝐿_𝐶𝑎_𝐿0       (Eq. S4) 

𝐼𝑡𝑜𝑡_𝐶𝑎_𝑖𝑧 = 𝐼𝐶𝑎𝐿_𝐶𝑎_𝑖𝑧 + 𝐼𝑃𝑀𝐶𝐴_𝑖𝑧 + 𝐼𝑁𝐶𝑋_𝐶𝑎_𝑖𝑧 + 𝐼𝐶𝑎𝑏_𝑖𝑧     (Eq. S5) 

𝐼𝑡𝑜𝑡_𝐶𝑎_𝑏𝑙𝑘 = 𝐼𝐶𝑎𝐿_𝐶𝑎_𝑏𝑙𝑘 + 𝐼𝑃𝑀𝐶𝐴_𝑏𝑙𝑘 + 𝐼𝑁𝐶𝑋_𝐶𝑎_𝑏𝑙𝑘+ 𝐼𝐶𝑎𝑏_𝐶𝑎_𝑏𝑙𝑘     (Eq. S6) 

𝐼𝑡𝑜𝑡_𝑁𝑎 = (𝐼𝐶𝑎𝐿_𝑁𝑎_𝑗𝑛𝑐 + 𝐼𝐶𝑎𝐿_𝑁𝑎_𝑖𝑧 + 𝐼𝐶𝑎𝐿_𝑁𝑎_𝑏𝑙𝑘) + ( 𝐼𝑁𝐶𝑋_𝑁𝑎_𝑖𝑧 + 𝐼𝑁𝐶𝑋_𝑁𝑎_𝑏𝑙𝑘)   (Eq. S7) 

+(𝐼𝐾𝑠_𝑁𝑎_𝑖𝑧 + 𝐼𝐾𝑠_𝑁𝑎_𝑏𝑙𝑘) + 𝐼𝑁𝑎𝑇_𝑁𝑎 + 𝐼𝑁𝑎𝐿_𝑁𝑎 + 𝐼𝑁𝑎𝐾_𝑁𝑎 + 𝐼𝐾𝑡𝑜_𝑁𝑎 + 𝐼𝑏𝑁𝑆𝐶_𝑁𝑎  

+(𝐼𝐿𝐶𝐶𝑎_𝑁𝑎_𝑖𝑧 + 𝐼𝐿𝐶𝐶𝑎_𝑁𝑎_𝑏𝑙𝑘)  

𝐼𝑡𝑜𝑡_𝐾 = (𝐼𝐶𝑎𝐿_𝐾_𝑗𝑛𝑐 + 𝐼𝐶𝑎𝐿_𝐾_𝑖𝑧 + 𝐼𝐶𝑎𝐿_𝐾_𝑏𝑙𝑘) + 𝐼𝑁𝑎𝑇_𝐾 + 𝐼𝑁𝑎𝐿_𝐾 + 𝐼𝐾1_𝐾 + 𝐼𝐾𝑟_𝐾    (Eq. S8) 

+(𝐼𝐾𝑠_𝐾_𝑖𝑧 + 𝐼𝐾𝑠_𝐾_𝑏𝑙𝑘) + 𝐼𝐾𝑡𝑜_𝐾 + 𝐼𝐾𝑝𝑙 + 𝐼𝑁𝑎𝐾_𝐾 + 𝐼𝐾𝐴𝑇𝑃_𝐾_𝑐𝑦𝑡 + 𝐼𝑏𝑁𝑆𝐶_𝐾   9 

+(𝐼𝐿𝐶𝐶𝑎_𝐾_𝑖𝑧 + 𝐼𝐿𝐶𝐶𝑎_𝐾_𝑏𝑙𝑘)  

Ion concentrations 

𝑑[𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑗𝑛𝑐

𝑑𝑡
= −

𝐼𝑡𝑜𝑡_𝐶𝑎_𝑗𝑛𝑐∙𝐶𝑚

𝑉𝑗𝑛𝑐∙2∙𝐹
+

𝐽𝐶𝑎_𝑟𝑒𝑙

𝑉𝑗𝑛𝑐
−

𝐽𝐶𝑎_𝑗𝑛𝑐𝑖𝑧

𝑉𝑗𝑛𝑐
        (Eq. S9) 

𝑑[𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑖𝑧

𝑑𝑡
= −

𝐼𝑡𝑜𝑡_𝐶𝑎_𝑖𝑧∙𝐶𝑚

𝑉𝑖𝑧∙2∙𝐹
+

𝐽𝐶𝑎_𝑗𝑛𝑐𝑖𝑧

𝑉𝑖𝑧
−

𝐽𝐶𝑎_𝑖𝑧𝑏𝑙𝑘

𝑉𝑖𝑧
       (Eq. S10) 

𝑑[𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑏𝑙𝑘

𝑑𝑡
= −

𝐼𝑡𝑜𝑡_𝐶𝑎_𝑏𝑙𝑘∙𝐶𝑚

𝑉𝑏𝑙𝑘∙2∙𝐹
+

𝐽𝐶𝑎_𝑆𝐸𝑅𝐶𝐴

𝑉𝑏𝑙𝑘
−

𝐽𝐶𝑎_𝑖𝑧𝑏𝑙𝑘

𝑉𝑏𝑙𝑘
        (Eq. S11) 

𝑑[𝐶𝑎2+]𝑆𝑅𝑢𝑝

𝑑𝑡
= −

𝐽𝑆𝐸𝑅𝐶𝐴

𝑉𝑆𝑅𝑢𝑝
−

𝐽𝑡𝑟𝑎𝑛𝑠_𝑆𝑅

𝑉𝑆𝑅𝑢𝑝
         (Eq. S12) 

𝑑[𝐶𝑎𝑡𝑜𝑡𝑎𝑙
2+ ]𝑆𝑅𝑟𝑙

𝑑𝑡
= −

𝐽𝑡𝑟𝑎𝑛𝑠_𝑆𝑅

𝑉𝑆𝑅𝑟𝑙
−

𝐽𝑟𝑒𝑙_𝑆𝑅

𝑉𝑆𝑅𝑟𝑙
         (Eq. S13) 

𝑑[𝑁𝑎+]𝑖

𝑑𝑡
= −

𝐼𝑡𝑜𝑡_𝑁𝑎∙𝐶𝑚

𝑉𝑐𝑦𝑡∙𝐹
         (Eq. S14) 

𝑑[𝐾+]𝑖

𝑑𝑡
= −

(𝐼𝑡𝑜𝑡_𝐾+(𝐼𝑎𝑝𝑝)∙𝐶𝑚

𝑉𝑐𝑦𝑡∙𝐹
         (Eq. S15) 

Free Ca2+ concentrations as calculated below are used as intracellular Ca2+ concentrations in each 

compartment. 

[𝐶𝑎𝑓𝑟𝑒𝑒
2+ ]𝑗𝑛𝑐 = [𝐶𝑎𝑡𝑜𝑡𝑎𝑙

2+ ]
𝑗𝑛𝑐

− ([𝐿𝑏𝑖𝑛𝑑]
𝑗𝑛𝑐

+ [𝐻𝑏𝑖𝑛𝑑]
𝑗𝑛𝑐

) 

[𝐿𝑏𝑖𝑛𝑑]𝑗𝑛𝑐 = [𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑗𝑛𝑐 − [𝐿𝑓𝑟𝑒𝑒]𝑗𝑛𝑐 

[𝐻𝑏𝑖𝑛𝑑]𝑗𝑛𝑐 = [𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑗𝑛𝑐 − [𝐻𝑓𝑟𝑒𝑒]𝑗𝑛𝑐 

[𝐶𝑎𝑓𝑟𝑒𝑒
2+ ]𝑖𝑧 = [𝐶𝑎𝑡𝑜𝑡𝑎𝑙

2+ ]
𝑖𝑧

− ([𝐿𝑏𝑖𝑛𝑑]
𝑖𝑧

+ [𝐻𝑏𝑖𝑛𝑑]
𝑖𝑧

) 

[𝐿𝑏𝑖𝑛𝑑]𝑖𝑧 = [𝐵𝑡𝑜𝑡𝑎𝑙𝐿]𝑖𝑧 − [𝐿𝑓𝑟𝑒𝑒]𝑖𝑧 

[𝐻𝑏𝑖𝑛𝑑]𝑖𝑧 = [𝐵𝑡𝑜𝑡𝑎𝑙𝐻]𝑖𝑧 − [𝐻𝑓𝑟𝑒𝑒]𝑖𝑧 

[𝐶𝑎𝑓𝑟𝑒𝑒
2+ ]𝑏𝑙𝑘 = [𝐶𝑎𝑡𝑜𝑡𝑎𝑙

2+ ]𝑏𝑙𝑘 − ([𝐶𝑎𝑀𝐶𝑎] + [𝑇𝑛𝐶ℎ𝐶𝑎] + [𝑆𝑅𝐶𝑎] + 𝑛𝐶𝑎𝐵𝑆 ∙
(𝑐𝑀𝐷𝑃+𝑐𝐴𝑀𝐷𝑃𝑤+𝑐𝐴𝑀𝐷𝑠+𝑐𝐴𝑀𝑇+𝑐𝑀𝐷𝑃𝑡)

1000
)  
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4. Ion channels and transporters 

GHK equation 

The magnitudes of ion channel currents were described by the ohmic equation or by the GHK 

equation. In the latter case, the term to convert mM to pA (permeability times zF) in the original 

GHK equation was represented by a lumped converting factor, P in a unit of pA.mM-1, because of 

unknown total number of channels within a cell and single channel ion permeability. Then, the 

fully-activated current amplitude (I) for an ion X was given by, 

 𝐼 = 𝑃 ⋅ 𝐺𝐻𝐾𝑋                                                               

where GHKX is, 

𝐺𝐻𝐾𝑋 =
𝑧𝑋𝐹𝑉𝑚

𝑅𝑇
⋅

([𝑋]𝑖−[𝑋]𝑜⋅𝑒𝑥𝑝(
−𝑧𝑋𝐹𝑉𝑚

𝑅𝑇
))

(1−𝑒𝑥𝑝(
−𝑧𝑋𝐹𝑉𝑚

𝑅𝑇
))

                                 

Nernst equation 

𝐸𝑋 =
𝑅⋅𝑇

𝑧𝑋⋅𝐹
⋅ 𝑙𝑜𝑔 (

[𝑋]𝑜

[𝑋]𝑖
)      

                                     

L-type Ca2+ current (ICaL, LCC) 

The model developed by Himeno et al.(4) was used after adjusting PCaL_Ca, which was 

multiplied by 2.1.ICaL is composed of Ca2+, Na+ and K+ components, which are described with 

GHKX for each cation. 

𝐼𝐶𝑎𝐿 = (𝐼𝐶𝑎𝐿_𝐶𝑎_𝑗𝑛𝑐 + 𝐼𝐶𝑎𝐿_𝑁𝑎_𝑗𝑛𝑐 + 𝐼𝐶𝑎𝐿_𝐾_𝑗𝑛𝑐) + (𝐼𝐶𝑎𝐿_𝐶𝑎_𝑖𝑧 + 𝐼𝐶𝑎𝐿_𝑁𝑎_𝑖𝑧 + 𝐼𝐶𝑎𝐿_𝐾_𝑖𝑧)     (Eq. S16) 

+(𝐼𝐶𝑎𝐿_𝐶𝑎_𝑏𝑙𝑘 + 𝐼𝐶𝑎𝐿_𝑁𝑎_𝑏𝑙𝑘 + 𝐼𝐶𝑎𝐿_𝐾_𝑏𝑙𝑘) 

𝐼𝐶𝑎𝐿_𝑋_𝑎 = 𝑓𝐶𝑎𝐿_𝑎 ⋅ 𝑃𝐶𝑎𝐿_𝑋 ⋅ 𝐺𝐻𝐾𝑋_𝑎 ⋅ 𝑝𝑂𝐿𝐶𝐶_𝑎 ⋅
1

1+(
1.4

[𝑀𝑔𝐴𝑇𝑃_𝑐𝑦𝑡]
)

3          (Eq. S17) 

𝑝𝑂𝐿𝐶𝐶_𝑎 = 𝑌𝑜𝑜𝑜 + 𝑌𝑜𝑜𝑐             𝑎 = (𝑏𝑙𝑘, 𝑖𝑧, 𝑗𝑛𝑐) 𝑋 = (𝐶𝑎, 𝑁𝑎, 𝐾)           (Eq. S18) 

fraction of ICaL 

𝑓𝐶𝑎𝐿_𝑗𝑛𝑐 = 0.75, 𝑓𝐶𝑎𝐿_𝑏𝑙𝑘 = 0.1, 𝑓𝐶𝑎𝐿_𝑖𝑧 = 0.15  

Converting factors 

𝑃𝐶𝑎𝐿_𝐶𝑎 = 14.21 ⋅ 𝐶𝑚  

𝑃𝐶𝑎𝐿_𝑁𝑎 = 0.0000185 ⋅ 𝑃𝐶𝑎𝐿_𝐶𝑎  

𝑃𝐶𝑎𝐿_𝐾 = 0.000367 ⋅ 𝑃𝐶𝑎𝐿_𝐶𝑎  

Rate constants for Vm-gate(𝛂+, 𝛂−) and Ca2+-gate(𝛆+, 𝛆−) 

𝛼+ =
1

3.734⋅𝑒𝑥𝑝(−
𝑉𝑚
8.5

)+0.35⋅𝑒𝑥𝑝(−
𝑉𝑚

3500
)
        (Eq. S19) 

𝛼− =
1

4.65⋅𝑒𝑥𝑝(
𝑉𝑚
15

)+1.363⋅𝑒𝑥𝑝(
𝑉𝑚
100

)
        (Eq. S20) 
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𝜀+ =
[𝐶𝑎2+]𝑛𝑑⋅𝛼+

𝑇𝐿⋅𝐾𝐿
          (Eq. S21) 

𝜀− =
1

8084⋅𝑒𝑥𝑝(
𝑉𝑚
10

)+158⋅𝑒𝑥𝑝(
𝑉𝑚

1000
)

+
1

134736⋅𝑒𝑥𝑝(−
𝑉𝑚

5
)+337⋅𝑒𝑥𝑝(−

𝑉𝑚
2000

)
      (Eq. S22) 

 

Sodium current(INa) 

The model developed by Asakura et al. (2) was used. To facilitate calculation of rapid gating 

kinetics of the current, integration of the parameters was conducted using Rush-Larsen 

method(5). The whole cell INa was given by a sum of INaT and INaL with a fraction(fL) of 0.13125 

for INaL. The current was carried by both Na+ and K+ at ratio of permeability, PNa/PK, of 10. 

𝐼𝑁𝑎 = 𝐼𝑁𝑎𝑇 + 𝐼𝑁𝑎𝐿         (Eq. S23) 

𝑓𝐿 = 0.13125, 𝑃𝑁𝑎 = 8.1072 ∙ 𝐶𝑚 (𝑝𝐴/𝑚𝑀)        

Transient component(INaT) 

𝐼𝑁𝑎𝑇 = (1 − 𝑓𝐿) ⋅ 𝑃𝑁𝑎 ⋅ (𝐺𝐻𝐾𝑁𝑎 + 0.1 ⋅ 𝐺𝐻𝐾𝐾) ⋅ 𝑝(𝑂)𝑁𝑎𝑇     (Eq. S24) 
𝑑𝑝(𝐶)𝑁𝑎𝑇

𝑑𝑡
= 𝑘𝑂𝐶 ⋅ 𝑝(𝑂)𝑁𝑎𝑇 + 𝑘𝐼2𝐶 ⋅ 𝑝(𝐼2)𝑁𝑎𝑇 + 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝑇 −      (Eq. S25) 

          (𝑘𝐼𝑠𝑓 + 𝑓𝐶_𝑁𝑎 ⋅ (𝑘𝐶2𝑂 + 𝑘𝐶2𝐼2)) ⋅ 𝑝(𝐶)𝑁𝑎𝑇

                                                                                         

𝑑𝑝(𝑂)𝑁𝑎𝑇

𝑑𝑡
= 𝑘𝐼2𝑂 ⋅ 𝑝(𝐼2)𝑁𝑎𝑇 + 𝑓𝐶_𝑁𝑎 ⋅ 𝑘𝐶2𝑂 ⋅ 𝑝(𝐶)𝑁𝑎𝑇 − (𝑘𝑂𝐶 + 𝑘𝑂𝐼2) ⋅ 𝑝(𝑂)𝑁𝑎𝑇    (Eq. S26) 

𝑑𝑝(𝐼2)𝑁𝑎𝑇

𝑑𝑡
= 𝑓𝐶𝑁𝑎

⋅ 𝑘𝐶2𝐼2 ⋅ 𝑝(𝐶)𝑁𝑎𝑇 + 𝑘𝑂𝐼2 ⋅ 𝑝(𝑂)𝑁𝑎𝑇 + 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝑇    (Eq. S27) 

         −(𝑘𝐼2𝐶 + 𝑘𝐼2𝑂 + 𝑘𝐼𝑠𝑓) ⋅ 𝑝(𝐼2)𝑁𝑎𝑇  
𝑑𝑝(𝐼𝑠)𝑁𝑎𝑇

𝑑𝑡
= 𝑘𝐼𝑠𝑓 ⋅ 𝑝(𝐼2)𝑁𝑎𝑇 + 𝑘𝐼𝑠𝑓 ⋅ 𝑝(𝐶)𝑁𝑎𝑇 − 2 ⋅ 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝑇

       
(Eq. S28)

                     
𝑓𝐶_𝑁𝑎 =

𝐶2

(𝐶1+𝐶2)
=

1

1+𝑒𝑥𝑝(−
𝑉𝑚+48

7
)
                          (Eq. S29) 

𝑘𝐶2𝑂 =
0.5

0.0025⋅𝑒𝑥𝑝(
𝑉𝑚
−8.0

)+0.15⋅𝑒𝑥𝑝(
𝑉𝑚

−100.0
)
 

       

(Eq. S30)

                            

 

𝑘𝑂𝐶 =
0.5

30.0⋅𝑒𝑥𝑝(
𝑉𝑚
12.0

)+0.53⋅𝑒𝑥𝑝(
𝑉𝑚
50.0

)
        (Eq. S31) 

         

 

𝑘𝑂𝐼2 =
1

0.0433⋅𝑒𝑥𝑝(
𝑉𝑚

−27.0
)+0.34⋅𝑒𝑥𝑝(

𝑉𝑚
−2000.0

)
      (Eq. S32) 

𝑘𝐼2𝑂 = 0.0001312
                                                         

 

𝑘𝐶2𝐼2 =
0.5

1.0+
𝑘𝐼2𝑂⋅𝑘𝑂𝐶

𝑘𝑂𝐼2⋅𝑘𝐶2𝑂

                                    

(Eq. S33) 

𝑘𝐼2𝐶 = 0.5 − 𝑘𝐶2𝐼2                                                         
(Eq. S34) 

𝑘𝐼𝑠𝑏 =
1

300000.0⋅𝑒𝑥𝑝(
𝑉𝑚
10.0

)+50000.0⋅𝑒𝑥𝑝(
𝑉𝑚
16.0

)

                      

(Eq. S35) 

𝑘𝐼𝑠𝑓 =
1

0.016⋅𝑒𝑥𝑝(
𝑉𝑚
−9.9

)+8.0⋅𝑒𝑥𝑝(
𝑉𝑚

−45.0
)
        (Eq. S36) 
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Scheme 1. INaT model 

Late component(INaL) 

The kI1I2, kOI1, kI1O, kI1C and kC2I1 are specific for INaL, and other rate constants are the same as in 

INaL. 

𝐼𝑁𝑎𝐿 = 𝑓𝐿 ⋅ 𝑃𝑁𝑎 ⋅ (𝐺𝐻𝐾𝑁𝑎 + 0.1 ⋅ 𝐺𝐻𝐾𝐾) ⋅ 𝑝(𝑂)𝑁𝑎𝐿     (Eq. S37) 
𝑑𝑝(𝐶)𝑁𝑎𝐿

𝑑𝑡
= 𝑘𝑂𝐶 ⋅ 𝑝(𝑂)𝑁𝑎𝐿 + 𝑘𝐼1𝐶 ⋅ 𝑝(𝐼1)𝑁𝑎𝐿 + 𝑘𝐼2𝐶 ⋅ 𝑝(𝐼2)𝑁𝑎𝐿 + 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝐿    (Eq. S38) 

− (𝑘𝐼𝑠𝑓 + 𝑓𝐶_𝑁𝑎 ⋅ (𝑘𝐶2𝑂 + 𝑘𝐶2𝐼2 + 𝑘𝐶2𝐼1)) ⋅ 𝑝(𝐶)𝑁𝑎𝐿   

         

 

𝑑𝑝(𝑂)𝑁𝑎𝐿

𝑑𝑡
= 𝑘𝐼1𝑂 ⋅ 𝑝(𝐼1)𝑁𝑎𝐿 + 𝑓𝐶_𝑁𝑎 ⋅ 𝑘𝐶2𝑂 ⋅ 𝑝(𝐶)𝑁𝑎𝐿 − (𝑘𝑂𝐶 + 𝑘𝑂𝐼1) ⋅ 𝑝(𝑂)𝑁𝑎𝐿   (Eq. S39) 

𝑑𝑝(𝐼1)𝑁𝑎𝐿

𝑑𝑡
= 𝑘𝑂𝐼1 ⋅ 𝑝(𝑂)𝑁𝑎𝐿 + 𝑓𝐶_𝑁𝑎 ⋅ 𝑘𝐶2𝐼1 ⋅ 𝑝(𝐶)𝑁𝑎𝐿 − (𝑘𝐼1𝑂 + 𝑘𝐼1𝐶 + 𝑘𝐼1𝐼2) ⋅ 𝑝(𝐼1)𝑁𝑎𝐿   (Eq. S40) 

𝑑𝑝(𝐼2)𝑁𝑎𝐿

𝑑𝑡
= 𝑓𝐶𝑁𝑎

⋅ 𝑘𝐶2𝐼2 ⋅ 𝑝(𝐶)𝑁𝑎𝐿 + 𝑘𝐼1𝐼2 ⋅ 𝑝(𝐼1)𝑁𝑎𝐿 + 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝐿     (Eq. S41) 

         −(𝑘𝐼2𝐶 + 𝑘𝐼𝑠𝑓) ⋅ 𝑝(𝐼2)𝑁𝑎𝐿 
 

𝑑𝑝(𝐼𝑠)𝑁𝑎𝐿

𝑑𝑡
= 𝑘𝐼𝑠𝑓 ⋅ 𝑝(𝐼2)𝑁𝑎𝐿 + 𝑘𝐼𝑠𝑓 ⋅ 𝑝(𝐶)𝑁𝑎𝐿 − 2 ⋅ 𝑘𝐼𝑠𝑏 ⋅ 𝑝(𝐼𝑠)𝑁𝑎𝐿    (Eq. S42)

 
𝑘𝐼1𝐼2 = 0.00534  

𝑘𝑂𝐼1 = 𝑘𝑂𝐼2  

𝑘𝐼1𝑂 = 0.01  

𝑘𝐼1𝐶 = 𝑘𝐼2𝐶   

𝑘𝐶2𝐼1 = 𝑘𝐶2𝐼2  

 

 

Scheme 2. INaL model 

 

Inward rectifier potassium current(IK1) 

The model developed by Yan and Ishihara (6) and Ishihara and Yan (7) was used after 

adjusting the amplitude of IK1 to obtain repolarizing rate of ~1 V/s. The gating in this model was 

described by two modes: in mode 1, Mg2+ and spermine blocks the channel in a competitive 

manner, while in mode 2, spermine instantaneously blocks the channel in a Vm-dependent 
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manner. 

𝐼𝐾1 = 𝐺𝐾1 ⋅ 𝑥𝐾1 ⋅ (𝑉𝑚 − 𝐸𝑘) ⋅ 𝑝(𝑂)𝐾1  𝐺𝐾1 = 1.353 ∙ 𝐶𝑚    (Eq. S43) 

𝑥𝐾1 =
(

[𝐾+]𝑜
4.5

)
0.4

1.0+𝑒𝑥𝑝(−
[𝐾+]𝑜−2.2

0.6
)
        (Eq. S44) 

𝑝(𝑂)𝐾1 = 𝑝𝑜𝑚𝑜𝑑𝑒1 + 𝑝𝑜𝑚𝑜𝑑𝑒2       (Eq. S45) 

𝑝𝑜𝑚𝑜𝑑𝑒1 = 𝑓𝑚𝑜𝑑𝑒1 ⋅ (1 − 𝑝𝑏𝑠𝑝𝑚) ⋅ (𝑝𝑜𝑀𝑔 +
2

3
⋅ 𝑝𝑜𝑀𝑔1 ⋅

1

3
⋅ 𝑝𝑜𝑀𝑔2)    (Eq. S46) 

𝑓𝑚𝑜𝑑𝑒1 = 0.9 

𝑝𝑜𝑚𝑜𝑑𝑒2 =
(1−𝑓𝑚𝑜𝑑𝑒1)

1.0+
[𝑆𝑃𝑀]

40.0⋅𝑒𝑥𝑝(−
𝑉𝑚−𝐸𝑘

9.1 )

                (Eq. S47) 

The Mg2+-block in the mode1 

𝑝𝑜𝑀𝑔 = 𝑓𝑂 ⋅ 𝑓𝑂 ⋅ 𝑓𝑂         (Eq. S48) 

𝑝𝑜𝑀𝑔1 = 3.0 ⋅ 𝑓𝑂 ⋅ 𝑓𝑂 ⋅ 𝑓𝐵        (Eq. S49) 

𝑝𝑜𝑀𝑔2 = 3.0 ⋅ 𝑓𝑂 ⋅ 𝑓𝐵 ⋅ 𝑓𝐵        (Eq. S50) 

𝑓𝑂 =
𝛼𝑀𝑔

𝛼𝑀𝑔+𝛽𝑀𝑔
, 𝑓𝐵 =

𝛽𝑀𝑔

𝛼𝑀𝑔+𝛽𝑀𝑔
       (Eq. S51) 

𝛼𝑀𝑔 = 12.0 ⋅ 𝑒𝑥𝑝(−0.025 ⋅ (𝑉𝑚 − 𝐸𝑘))       (Eq. S52) 

𝛽𝑀𝑔 = 28 ⋅ [𝑀𝑔2+]𝑐𝑦𝑡 ⋅ 𝑒𝑥𝑝(0.025 ⋅ (𝑉𝑚 − 𝐸𝑘))      (Eq. S53) 

The SPM-block in the mode2 
𝑑𝑃𝑏𝑠𝑝𝑚

𝑑𝑡
= 𝛽𝑆𝑃𝑀 ⋅ 𝑝𝑜𝑀𝑔 ⋅ (1 − 𝑃𝑏𝑠𝑝𝑚) − 𝛼𝑆𝑃𝑀 ⋅ 𝑃𝑏𝑠𝑝𝑚      (Eq. S54) 

𝛼𝑆𝑃𝑀 =
0.17⋅𝑒𝑥𝑝(−0.07⋅(𝑉𝑚−𝐸𝑘)+8[𝑀𝑔2+]𝑐𝑦𝑡))

1.0+0.01⋅𝑒𝑥𝑝(0.12⋅((𝑉𝑚−𝐸𝑘)+8[𝑀𝑔2+]𝑐𝑦𝑡))
       (Eq. S53) 

𝛽𝑀𝑔 =
0.28⋅[𝑆𝑃𝑀]⋅𝑒𝑥𝑝(0.15⋅(𝑉𝑚−𝐸𝑘)+8[𝑀𝑔2+]𝑐𝑦𝑡))

1.0+0.01⋅𝑒𝑥𝑝(0.13⋅((𝑉𝑚−𝐸𝑘)+8[𝑀𝑔2+]𝑐𝑦𝑡))
      (Eq. S54) 

   

Delayed rectifier K+ current, fast component (IKr) 

The model was taken from Asakura et al. (2) was used after adjusting the conductance of IKr, 

GKr. The current amplitude is described with an ohmic equation. 

𝐼𝐾𝑟 = 𝐺𝐾𝑟 ⋅ (𝑉𝑚 − 𝐸𝐾) ⋅ 𝑝(𝑂)𝐾𝑟 ⋅ (
[𝐾+]𝑜

4.5
)

0.2

       (Eq. S55) 

𝐺𝐾𝑟 = 0.02 ⋅ 0.83 ⋅ 1.6 ∙ 𝐶𝑚  

The open probability of the channel is described with three gating parameters, y1, y2 and y3. 

𝑝(𝑂)𝐾𝑟 = (0.6 ⋅ 𝑦1 + 0.4 ⋅ 𝑦2) ⋅ 𝑦3       (Eq. S56) 
𝑑𝑦1

𝑑𝑡
= 𝛼𝑦1 ⋅ (1.0 − 𝑦1) − 𝛽𝑦1 ⋅ 𝑦1       (Eq. S57) 

𝑑𝑦2

𝑑𝑡
= 𝛼𝑦2 ⋅ (1.0 − 𝑦2) − 𝛽𝑦2 ⋅ 𝑦2       (Eq. S58) 

𝑑𝑦3

𝑑𝑡
= 𝛼𝑦3 ⋅ (1.0 − 𝑦3) − 𝛽𝑦3 ⋅ 𝑦3       (Eq. S59) 
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𝛼𝑦1 =
1.0

35.0⋅𝑒𝑥𝑝(−
𝑉𝑚
10.5

)+75.0⋅𝑒𝑥𝑝(−
𝑉𝑚

100.0
)
       (Eq. S60) 

𝛽𝑦1 =
1.0

470.0⋅𝑒𝑥𝑝(
𝑉𝑚
8.3

)+220.0⋅𝑒𝑥𝑝(
𝑉𝑚
29.0

)
       (Eq. S61) 

𝛼𝑦2 =
1.0

350.0⋅𝑒𝑥𝑝(−
𝑉𝑚
10.5

)+300.0⋅𝑒𝑥𝑝(−
𝑉𝑚

100.0
)
       (Eq. S62) 

𝛽𝑦2 =
1.0

1850.0⋅𝑒𝑥𝑝(
𝑉𝑚
8.3

)+2200.0⋅𝑒𝑥𝑝(
𝑉𝑚
29.0

)
       (Eq. S63) 

𝛼𝑦3 =
1.0

0.015⋅𝑒𝑥𝑝(
𝑉𝑚
6.0

)+7.0⋅𝑒𝑥𝑝(
𝑉𝑚
60.0

)
       (Eq. S64) 

𝛽𝑦3 =
1.0

0.114⋅𝑒𝑥𝑝(−
𝑉𝑚
9.2

)+2.3⋅𝑒𝑥𝑝(−
𝑉𝑚

1000.0
)
        (Eq. S65) 

 

Delayed rectifier K+ current, slow component (IKs) 

The model developed by Asakura et al.(2) was used after adjusting PKs_K. IKs is composed of K+ 

and Na+ components described with the modified GHK equations. The permeability ratio is 

PNa/PK=0.04. 

𝐼𝐾𝑠 = (𝐼𝐾𝑠_𝐾_𝑖𝑧 + 𝐼𝐾𝑠_𝑁𝑎_𝑖𝑧) + (𝐼𝐾𝑠_𝐾_𝑏𝑙𝑘 + 𝐼𝐾𝑠_𝑁𝑎_𝑏𝑙𝑘)     (Eq. S66) 

𝐼𝐾𝑠_𝑋_𝑎 = 𝑓𝐾𝑠_𝑎 ⋅ 𝑃𝐾𝑠_𝑋 ⋅ 𝐺𝐻𝐾𝑋 ⋅ 𝑝(𝑂)𝐾𝑠_𝑎      𝑎 = (𝑏𝑙𝑘, 𝑖𝑧),   𝑋 = (𝐾, 𝑁𝑎)   (Eq. S67) 

Converting factors 

𝑃𝐾𝑠_𝐾 = 0.9  

𝑃𝐾𝑠_𝑁𝑎 = 0.04 ⋅ 𝑃𝐾𝑠_𝐾  

 

Ten percent of the channel population is distributed to jnc, and the rest in blk. 

𝑓𝐾𝑠_𝑖𝑧 = 0.1  

𝑓𝐾𝑠_𝑏𝑙𝑘 = 0.9  

𝑝(𝑂)𝐾𝑠_𝑎 = (𝑝(𝑂𝑣))2 ⋅ (0.99 ⋅ 𝑝𝑎(𝑂𝑐) + 0.01)      (Eq. S68) 

A basal active fraction of 1% was assumed in the Ca2+ gate. 

Voltage gate 

𝑑𝑝(𝑂𝑣)

𝑑𝑡
= 𝛼1 ⋅ (1.0 − 𝑝(𝑂𝑣)) − 𝛽1 ⋅ 𝑝(𝑂𝑣)       (Eq. S69) 

𝛼1 =
1.0

150.0⋅𝑒𝑥𝑝(−
𝑉𝑚
25.0

)+900.0⋅𝑒𝑥𝑝(−
𝑉𝑚

200.0
)
       (Eq. S70) 
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𝛽1 =
1.0

1000.0⋅𝑒𝑥𝑝(
𝑉𝑚
13.0

)+220.0⋅𝑒𝑥𝑝(
𝑉𝑚
50.0

)
        (Eq. S71) 

Calcium gate 

The Ca2+-dependent activation gate was represented with a three-state scheme; sequential C1, 

C2 and Oc states. Ca2+-binding reaction was couples with the transition from C2 to Oc. 𝛼2𝑎 was 

slightly changed from 2.24. 

𝑑𝑝𝑎(𝑂𝑐)

𝑑𝑡
= 𝛼2𝑎 ∙ 𝑝𝑎(𝐶2) − 𝛽2 ∙ 𝑝𝑎(𝑂𝑐)       (Eq. S72) 

𝑑𝑝𝑎(𝐶2)

𝑑𝑡
= 𝛼3 ∙ 𝑝𝑎(𝐶1) − 𝛽3 ∙ 𝑝𝑎(𝐶2) − 𝛼2𝑎 ∙ 𝑝𝑎(𝐶2) + 𝛽2 ∙ 𝑝𝑎(𝑂𝑐)    (Eq. S73) 

𝑝𝑎(𝐶1) = 1 − 𝑝𝑎(𝐶2) − 𝑝𝑎(𝑂𝑐)   𝑎 = (𝑏𝑙𝑘, 𝑖𝑧)                      (Eq. S74) 

𝛼2𝑎 = 2.25 ∙ [𝐶𝑎2+]𝑎    

𝛽2 = 0.000296  

𝛼3 = 0.0003 

𝛽3 = 0.03 

 

Transient outward K+ current(IKto) 

The model was taken from Asakura et al. (2) was used after adjusting PKto_K. 

The magnitude of IKto is composed of K+ and Na+ components described with GHK and a 

pNa/pK ratio = 0.09. The conductance as well as the gating were determined separately for the 

end(Endo)- and epi(Epi)-cardium. In the present study, the Endo model was used. Replacement 

by Epi IKto model for the Endo type in the cell model well reconstructed the Epi AP(not shown). 

𝐼𝐾𝑡𝑜 = 𝐼𝐾𝑡𝑜_𝑁𝑎 + 𝐼𝐾𝑡𝑜_𝐾        (Eq. S75) 

𝐼𝐾𝑡𝑜_𝑋 = 𝑃𝐾𝑡𝑜_𝑋 ⋅ 𝐺𝐻𝐾𝑥 ⋅ 𝑝(𝑂)𝐾𝑡𝑜     𝑋 = (𝐾, 𝑁𝑎)      (Eq. S76) 

Converting factors in Asakura et al. (2014) model were multiplied by 0.73. 

𝑃𝐾𝑡𝑜_𝐾 = 0.01825 ⋅ 0.73(𝐸𝑛𝑑𝑜) ∙ 𝐶𝑚,  0.08553 ⋅ 0.73 ∙ 𝐶𝑚(𝐸𝑝𝑖)  

𝑃𝐾𝑡𝑜_𝑁𝑎 = 0.09 ⋅ 𝑃𝐾𝑡𝑜𝐾
(𝐸𝑛𝑑 𝑎𝑛𝑑 𝐸𝑝𝑖)  

The gating is determined by an activation gate (y1) and inactivation gate (y2), both of which are 

described by the two-state gating scheme.  

𝑝(𝑂)𝐾𝑡𝑜 = 𝑦1𝐾𝑡𝑜 ⋅ 𝑦2𝐾𝑡𝑜        (Eq. S77) 

𝑑𝑦1𝐾𝑡𝑜

𝑑𝑡
= 𝛼𝑦1𝐾𝑡𝑜 ⋅ (1.0 − 𝑦1𝐾𝑡𝑜) − 𝛽𝑦1𝐾𝑡𝑜 ⋅ 𝑦1𝐾𝑡𝑜     (Eq. S78) 

𝑑𝑦2𝐾𝑡𝑜

𝑑𝑡
= 𝛼𝑦2𝐾𝑡𝑜 ⋅ (1.0 − 𝑦2𝐾𝑡𝑜) − 𝛽𝑦2𝐾𝑡𝑜 ⋅ 𝑦2𝐾𝑡𝑜     (Eq. S79) 

Endocardium 
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𝛼𝑦1𝐾𝑡𝑜 =
1.0

9.0⋅𝑒𝑥𝑝(−
𝑉𝑚
20.0

)
          (Eq. S80) 

𝛽𝑦1𝐾𝑡𝑜 =
1.0

2.1⋅𝑒𝑥𝑝(
𝑉𝑚
60.0

)
         (Eq. S81) 

𝛼𝑦2𝐾𝑡𝑜 =
1.0

950.0⋅𝑒𝑥𝑝(
𝑉𝑚

500.0
)
        (Eq. S83) 

𝛽𝑦2𝐾𝑡𝑜 =
1.0

40.0⋅𝑒𝑥𝑝(−
𝑉𝑚
9.0

)
+ 13.0 ⋅ 𝑒𝑥𝑝 (−

𝑉𝑚

1000.0
)       (Eq. S84) 

Epicardium 

𝛼𝑦1𝐾𝑡𝑜 =
1.0

9.0⋅𝐸𝑥𝑝(−
𝑉𝑚
20.0

)
         (Eq. S86) 

𝛽𝑦1𝐾𝑡𝑜 =
1.0

2.1⋅𝐸𝑥𝑝(
𝑉𝑚
36.5

)
          (Eq. S87) 

𝛼𝑦2𝐾𝑡𝑜 =
1.0

365.0⋅𝐸𝑥𝑝(
𝑉𝑚
8.65

)+9.4⋅𝐸𝑥𝑝(
𝑉𝑚

5000.0
)
         (Eq. S88) 

𝛽𝑦2𝐾𝑡𝑜 =
1.0

4.0⋅𝐸𝑥𝑝(−
𝑉𝑚
8.5

)+8.0⋅𝐸𝑥𝑝(−
𝑉𝑚

5000.0
)
       (Eq. S89) 

 

Time-independent current 

All equations for these currents were taken from Takeuchi et al. (8) as described in Asakura et 

al.(2)  

 

Voltage-dependent potassium current (plateau current)(IKpl) 

PKpl in the original model was multipled by 0.4. 

𝐼𝐾𝑝𝑙 = 𝑃𝐾𝑝𝑙 ⋅ 𝑝(𝑂)𝑘𝑝𝑙 ⋅ 𝐺𝐻𝐾𝐾       (Eq. S90) 

𝑃𝐾𝑝𝑙 = 0.000043 ⋅ 0.4 ⋅ 𝐶𝑚 ∙ (
[𝐾+]𝑜

5.4
)

0.16

      (Eq. S91) 

𝑝(𝑂)𝑘𝑝𝑙 =
𝑉𝑚

1−𝑒𝑥𝑝(−
𝑉𝑚
13.0

)
        (Eq. S92) 

Background calcium current(ICab) 

PCab in the original model was multipled by 0.1. 

𝐼𝐶𝑎𝑏 = 𝐼𝐶𝑎𝑏_𝑖𝑧 + 𝐼𝐶𝑎𝑏_𝑏𝑙𝑘        (Eq. S93) 

𝐼𝐶𝑎𝑏_𝑎 = 𝑃𝐶𝑎𝑏_𝑎 ⋅ 𝑓𝐶𝑎𝑏_𝑎 ⋅ 𝐺𝐻𝐾𝐶𝑎 ,  𝑎 = (𝑏𝑙𝑘,  𝑖𝑧)      (Eq. S94) 

𝑃𝐶𝑎𝑏_𝑎 = 0.0006822 ⋅ 0.1 ⋅ 𝐶𝑚        

Fraction of ICab  
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𝑓𝐶𝑎𝑏_𝑖𝑧 = 0.1,  𝑓𝐶𝑎𝑏_𝑏𝑙𝑘 = 0.9   

Background non-selective cation current(IbNSC)  

𝐼𝑏𝑁𝑆𝐶 = 𝑃𝑏𝑁𝑆𝐶_𝐾 + 𝑃𝑏𝑁𝑆𝐶_𝑁𝑎       (Eq. S95) 

𝐼𝑏𝑁𝑆_𝑋 = 𝑃𝑏𝑁𝑆𝐶_𝑋 ⋅ 𝐺𝐻𝐾𝑋 ,  𝑋 = (𝐾,  𝑁𝑎)       (Eq. S96) 

𝑃𝑏𝑁𝑆𝐶_𝐾 = 0.00014 ⋅ 𝐶𝑚,  𝑃𝑏𝑁𝑆𝐶_𝑁𝑎 = 0.00035 ⋅ 𝐶𝑚   

Calcium-activated background cation current(Il(Ca)) 

𝐼𝑙(𝐶𝑎) = 𝐼𝑙(𝐶𝑎)_𝑁𝑎_𝑖𝑧 + 𝐼𝑙(𝐶𝑎)_𝐾_𝑖𝑧 + 𝐼𝑙(𝐶𝑎)_𝑁𝑎_𝑏𝑙𝑘 + 𝐼𝑙(𝐶𝑎)_𝐾_𝑏𝑙𝑘    (Eq. S97) 

𝐼𝑙(𝐶𝑎)_𝑋_𝑎 = 𝑃𝑙(𝐶𝑎)_𝑋 ⋅ 𝑓𝑙(𝐶𝑎)_𝑎 ⋅ 𝐺𝐻𝐾𝑋 ⋅ 𝑝(𝑂)𝑎 𝑋 = (𝑁𝑎,  𝐾),  𝑎 = (𝑏𝑙𝑘,  𝑖𝑧)   (Eq. S98) 

𝑃𝑙(𝐶𝑎)_𝑁𝑎 = 0.00273 ⋅ 𝐶𝑚  

𝑃𝑙(𝐶𝑎)_𝐾 = 𝑃𝑙(𝐶𝑎)_𝑁𝑎 

𝑝(𝑂)𝑎 =
1.0

1.0+(
0.0012

[𝐶𝑎2+]𝑎
)

3         (Eq. S99) 

Fraction of Il(Ca) 

𝑓𝑙(𝐶𝑎)_𝑖𝑧 = 0.1,  𝑓𝑙(𝐶𝑎)_𝑏𝑙𝑘 = 0.9  

ATP-sensitive potassium current(IKATP) 

𝐼𝐾𝐴𝑇𝑃 = 𝐺𝐾𝐴𝑇𝑃 ⋅ (𝑉𝑚 − 𝐸𝐾) ⋅ 𝑝(𝑂)𝐾𝐴𝑇𝑃 ⋅ 𝑥𝐼𝐾𝐴𝑇𝑃     (Eq. S100) 

𝐺𝐾𝐴𝑇𝑃 = 17.674 ⋅ 𝐶𝑚   

𝑝(𝑂)𝐾𝐴𝑇𝑃 =
0.8

1.0+(
[𝐴𝑇𝑃]𝑐𝑦𝑡

0.1
)

2        (Eq. S101) 

𝑥𝐼𝐾𝐴𝑇𝑃 = 0.0236 ⋅ ([𝐾+]𝑜)0.24      (Eq. S102) 

 

Na+/K+ pump current(INaK) 

The Na+/K+ pump model developed by Oka et al. (9) on the framework of Smith and Crampin 

(10) was used after adjusting AmpNaK. 

𝐼𝑁𝑎𝐾 = 𝐴𝑚𝑝𝑁𝑎𝐾 ⋅ 𝑉𝑐𝑦𝑡_𝑁𝑎𝐾        (Eq. S103) 

𝐴𝑚𝑝𝑁𝑎𝐾 = 25.1779 ⋅ 𝐶𝑚 

𝑉𝑐𝑦𝑡_𝑁𝑎𝐾 = 𝑉𝑠𝑡𝑒𝑝1        (Eq. S104) 

𝑉𝑠𝑡𝑒𝑝1 = 𝛼1
+ ⋅ 𝑃1_6 − 𝛼1

− ⋅ 𝑃7        (Eq. S105) 

𝑉𝑠𝑡𝑒𝑝2 = 𝛼2
+ ⋅ 𝑃7 − 𝛼2

− ⋅ 𝑃8_13       (Eq. S106) 

𝑉𝑠𝑡𝑒𝑝3 = 𝛼3
+ ⋅ 𝑃8_13 − 𝛼3

− ⋅ 𝑃14_15       (Eq. S107) 

𝑉𝑠𝑡𝑒𝑝4 = 𝛼4
+ ⋅ 𝑃14_15 − 𝛼4

− ⋅ 𝑃1_6       (Eq. S108) 

𝐼𝑁𝑎𝐾_𝑁𝑎 = 𝑆𝑡𝑜𝑖𝑁𝑎𝐾_𝑁𝑎 ⋅ 𝐼𝑁𝑎𝐾 𝑆𝑡𝑜𝑖𝑁𝑎𝐾_𝑁𝑎 = 3      (Eq. S109) 

𝐼𝑁𝑎𝐾_𝐾 = 𝑆𝑡𝑜𝑖𝑁𝑎𝐾_𝐾 ⋅ 𝐼𝑁𝑎𝐾 𝑆𝑡𝑜𝑖𝑁𝑎𝐾_𝐾 = −2             (Eq. S110) 
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The state transition is described by the four-state model. 

 

Scheme 3. Na/K pump model 

𝑑(𝑃1_6)

𝑑𝑡
= −𝛼1

+ ⋅ 𝑃1_6 + 𝛼1
− ⋅ 𝑃7 + 𝛼4

+ ⋅ 𝑃14_15 − 𝛼4
− ⋅ 𝑃1_6      (Eq. S111) 

𝑑(𝑃7)

𝑑𝑡
= −𝛼2

+ ⋅ 𝑃7 + 𝛼2
− ⋅ 𝑃8_13 + 𝛼1

+ ⋅ 𝑃1_6 − 𝛼1
− ⋅ 𝑃7     (Eq. S112) 

𝑑(𝑃8_13)

𝑑𝑡
= −𝛼3

+ ⋅ 𝑃8_13 + 𝛼3
− ⋅ 𝑃14_15 + 𝛼2

+ ⋅ 𝑃7 − 𝛼2
− ⋅ 𝑃8_13    

 (Eq. S113) 

𝑃14_15 = 1 − 𝑃16
− 𝑃7 − 𝑃8_13       (Eq. S114) 

Rate constants 

𝛼1
+ =

𝑘1
+Na𝑖

3

(1+Na𝑖)3+(1+𝐾𝑖)2−1
         (Eq. S115) 

𝛼2
+ = 𝑘2

+ 

𝛼3
+ =

𝑘3
+𝐾𝑜

2

(1+Na𝑜)3+(1+𝐾𝑜)2−1
         (Eq. S116) 

𝛼4
+ =

𝑘4
+MgATP

1+MgATP
          (Eq. S117) 

𝛼1
− = 𝑘1

−[𝑀𝑔𝐴𝑇𝑃]𝑐𝑦𝑡         (Eq. S118) 

𝛼2
− =

𝑘2
−Na𝑜

3

(1+Na𝑜)3+(1+𝐾𝑜)2−1
         (Eq. S119) 

𝛼3
− =

𝑘3
−[𝑃𝑖][𝐻+]

1+MgATP
          (Eq. S120) 

𝛼4
− =

𝑘4
−𝐾𝑖

2

(1+Na𝑖)3+(1+𝐾𝑖)2−1
               (Eq. S121) 

𝑘1
+ = 0.72, 𝑘1

− = 0.08, 𝑘2
+ = 0.08, 𝑘2

− = 0.008, 𝑘3
+ = 4, 𝑘3

− = 8000, 𝑘4
+ = 0.3, 𝑘4

− = 0.2  

Na𝑖 =
[Na+]𝑖

𝐾𝑑,𝑁𝑎𝑖
            (Eq. S122) 

P1-6

P8-13

P14-15 P7

a1
+

a1
-

a2
+a3

+

a4
+

a2
-

a4
-

a3
-
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Na𝑜 =
[Na+]𝑜

𝐾𝑑,𝑁𝑎𝑜
           (Eq. S123) 

𝐾𝑖 =
[𝐾+]𝑖

𝐾𝑑,𝐾𝑖
             (Eq. S124) 

𝐾𝑜 =
[𝐾+]𝑜

𝐾𝑑,𝐾𝑜
           (Eq. S125) 

MgATP =
[𝑀𝑔𝐴𝑇𝑃]𝑐𝑦𝑡

𝐾𝑑,𝑀𝑔𝐴𝑇𝑃
         (Eq. S126) 

𝐾𝑑,𝑁𝑎𝑜 = 𝐾𝑑,𝑁𝑎𝑜
0 ⋅ 𝐸𝑥𝑝

𝛥𝑁𝑎𝑜⋅𝐹𝑉𝑚

𝑅𝑇
        (Eq. S127) 

𝐾𝑑,𝑁𝑎𝑖 = 𝐾𝑑,𝑁𝑎𝑖
0 ⋅ 𝐸𝑥𝑝

𝛥𝑁𝑎𝑖⋅𝐹𝑉𝑚

𝑅𝑇
        (Eq. S128) 

𝐾𝑑,𝐾𝑜 = 𝐾𝑑,𝐾𝑜
0 ⋅ 𝐸𝑥𝑝

𝛥𝐾𝑜⋅𝐹𝑉𝑚

𝑅𝑇
         (Eq. S129) 

𝐾𝑑,𝐾𝑖 = 𝐾𝑑,𝐾𝑖
0 ⋅ 𝐸𝑥𝑝

𝛥𝐾𝑖⋅𝐹𝑉𝑚

𝑅𝑇
       (Eq. S130) 

𝐾𝑑,𝑁𝑎𝑖
0 = 5, 𝐾𝑑,𝑁𝑎𝑜

0 = 26.8, 𝐾𝑑,𝐾𝑖
0 = 18.8, 𝐾𝑑,𝐾𝑜

0 = 0.8, 𝐾𝑑,𝑀𝑔𝐴𝑇𝑃 = 0.6  

𝛥𝑁𝑎𝑖 = −0.14, 𝛥𝑁𝑎𝑜 = 0.44, 𝛥𝐾𝑖 = −0.14, 𝛥𝐾𝑜 = 0.23  

  

Na+/Ca+ exchange current (INCX) 

The NCX model developed by Takeuchi et al. (8) was used after adjusting the amplitude factor 

AmpNCX. 

21

2211

111

4321

222 )1(

II

yCaEENaE

kkkk

yCaEENaE

KmCaiKmNai

KmCaoKmNao

aa

⎯⎯ →⎯⎯ →

a

−⎯⎯ →⎯⎯ →

 

Scheme 4. NCX model 

𝑎 = (𝑏𝑙𝑘,  𝑖𝑧) 

𝐼𝑁𝐶𝑋 = 𝐼𝑁𝐶𝑋_𝑖𝑧
+ 𝐼𝑁𝐶𝑋_𝑏𝑙𝑘

        (Eq. S131) 

𝑓𝑁𝐶𝑋_𝑖𝑧
= 0.1, 𝑓𝑁𝐶𝑋_𝑏𝑙𝑘

= 0.9 

𝐼𝑁𝐶𝑋_𝑁𝑎_𝑎 = 3 ∙ 𝐼𝑁𝐶𝑋_𝑎        (Eq. S132) 

𝐼𝑁𝐶𝑋_𝐶𝑎_𝑎 = −2 ∙ 𝐼𝑁𝐶𝑋_𝑎        (Eq. S133) 

𝐼𝑁𝐶𝑋_𝑎
= 𝑓𝑁𝐶𝑋_𝑎

⋅ 𝐴𝑚𝑝𝑁𝐶𝑋 ∙ 𝑉𝑐𝑦𝑐_𝑁𝐶𝑋_𝑎
       (Eq. S134) 
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𝐴𝑚𝑝𝑁𝐶𝑋 = 61.06 ⋅ 0.5 ⋅ 𝐶𝑚 

𝑉𝑐𝑦𝑡_𝑁𝐶𝑋_𝑎 = 𝑘1 ⋅ 𝑞𝑎(𝐸1𝑁𝑎) ⋅ 𝑞(𝐸1)𝑁𝐶𝑋_𝑎
− 𝑘2 ⋅ 𝑞𝑎(𝐸2𝑁𝑎) ⋅ 𝑞(𝐸2)𝑁𝐶𝑋_𝑎

   (Eq. S135) 

Fraction of INCX 

𝑓𝑁𝐶𝑋_𝑖𝑧
= 0.1, 𝑓𝑁𝐶𝑋_𝑏𝑙𝑘

= 0.9 

𝑑𝑝(𝐸1)𝑁𝐶𝑋𝑎

𝑑𝑡
= 𝑝(𝐸2)𝑁𝐶𝑋𝑎

⋅ 𝛼𝐸 + 𝑝(𝐼1)𝑁𝐶𝑋𝑎
⋅ 𝛽1𝑎

+ 𝑝(𝐼2)𝑁𝐶𝑋𝑎
⋅ 𝛽2𝑎

    (Eq. S136) 

            −𝑝(𝐸1)𝑁𝐶𝑋𝑎
⋅ (𝛽𝐸𝑎

+ 𝛼1_𝑋 + 𝛼2_𝑋)  

𝑑𝑝(𝐼1)𝑁𝐶𝑋_𝑎

𝑑𝑡
= 𝑝(𝐸1)𝑁𝐶𝑋_𝑎 ⋅ 𝛼1_𝑎 − 𝑝(𝐼1)𝑁𝐶𝑋_𝑎 ⋅ 𝛽1_𝑎       (Eq. S137) 

𝑑𝑝(𝐼2)𝑁𝐶𝑋_𝑎

𝑑𝑡
= 𝑝(𝐸1)𝑁𝐶𝑋_𝑎 ⋅ 𝛼2_𝑎 − 𝑝(𝐼2)𝑁𝐶𝑋_𝑎 ⋅ 𝛽2_𝑎      (Eq. S138) 

𝑝(𝐸2)𝑁𝐶𝑋_𝑎 = 1 − 𝑝(𝐸1)𝑁𝐶𝑋_𝑎 − 𝑝(𝐼1)𝑁𝐶𝑋_𝑎 − 𝑝(𝐼2)𝑁𝐶𝑋_𝑎     (Eq. S139) 

𝑞𝑎(𝐸1𝑁𝑎) =
1.0

(1.0+(
𝐾𝑚,𝑁𝑎𝑖

[𝑁𝑎+]𝑖
)

3

)⋅(1.0+
[𝐶𝑎2+]𝑎
𝐾𝑚,𝐶𝑎𝑖

)

          (Eq. S140) 

𝑞𝑎(𝐸1𝐶𝑎) =
1.0

(1.0+
𝐾𝑚,𝐶𝑎𝑖

[𝐶𝑎2+]𝑎
)⋅(1.0+(

[𝑁𝑎+]𝑖
𝐾𝑚,𝑁𝑎𝑖

)
3

)

       (Eq. S141) 

𝑞(𝐸2𝑁𝑎) =
1.0

(1.0+(
𝐾𝑚,𝑁𝑎𝑜

[𝑁𝑎+]𝑜
)

3

)⋅(1.0+
[𝐶𝑎2+]𝑜
𝐾𝑚,𝐶𝑎𝑜

)

        (Eq. S142) 

𝑞(𝐸2𝐶𝑎) =
1.0

(1.0+
𝐾𝑚,𝐶𝑎𝑜

[𝐶𝑎2+]𝑎
)⋅(1.0+(

[𝑁𝑎+]𝑜
𝐾𝑚,𝑁𝑎𝑜

)
3

)

       (Eq. S143) 

𝛼1_𝑎 = 𝑞𝑎(𝐸1𝑁𝑎) ⋅ (𝑓𝐶𝑎𝑖𝑛𝑎_𝑎 ⋅ 𝛼1_𝑜𝑛 + (1 − 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎) ⋅ 𝛼1_𝑜𝑓𝑓)     (Eq. S144) 

𝛽1_𝑎 = 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎 ⋅ 𝛽1_𝑜𝑛 + (1 − 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎) ⋅ 𝛽1_𝑜𝑓𝑓     (Eq. S145) 

𝛼2_𝑎 = 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎 ⋅ 𝛼2_𝑜𝑛 + (1 − 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎) ⋅ 𝛼2_𝑜𝑓𝑓     (Eq. S146) 

𝛽2_𝑎 = 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎 ⋅ 𝛽2_𝑜𝑛 + (1 − 𝑓𝐶𝑎𝑖𝑛𝑎_𝑎) ⋅ 𝛽2_𝑜𝑓𝑓     (Eq. S147) 

𝛼1_𝑜𝑛 = 0.002, 𝛼1_𝑜𝑓𝑓 = 0.0015, 𝛽1_𝑜𝑛 = 0.0012, 𝛽1_𝑜𝑓𝑓 = 0.0000005   

𝛼2_𝑜𝑛 = 0.00006, 𝛼2_𝑜𝑓𝑓 = 0.02, 𝛽2_𝑜𝑛 = 0.18, 𝛽2_𝑜𝑓𝑓 = 0.0002    

𝛼𝐸 = 𝑘2 ⋅ 𝑞(𝐸1𝑁𝑎) + 𝑘4 ⋅ 𝑞(𝐸2𝐶𝑎)        (Eq. S148) 

𝛽𝐸_𝑎 = 𝑘1 ⋅ 𝑞𝑎(𝐸1𝑁𝑎) + 𝑘3 ⋅ 𝑞𝑎(𝐸2𝐶𝑎)       (Eq. S149) 

𝑘1 = 𝑒𝑥𝑝 (
0.32⋅𝐹⋅𝑉𝑚

𝑅⋅𝑇
)           (Eq. S150) 

𝑘2 = 𝑒𝑥𝑝 (
(0.32−1)⋅𝐹⋅𝑉𝑚

𝑅⋅𝑇
)          (Eq. S151) 

𝑘3 = 1.0,  𝑘4 = 1.0  
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𝑓𝐶𝑎𝑖𝑛𝑎_𝑎 =
[𝐶𝑎2+]𝑎

[𝐶𝑎2+]𝑎+𝐾𝑚,𝑎𝑐𝑡
         (Eq. S153) 

𝐾𝑚,𝑎𝑐𝑡 = 0.004  

𝐾𝑚,𝑁𝑎𝑜 = 87.5,  𝐾𝑚,𝑁𝑎𝑖 = 20.74854, 𝐾𝑚,𝐶𝑎𝑜 = 1.38, 𝐾𝑚,𝐶𝑎𝑖 = 0.0184 

 

Plasma membrane Ca2+-ATPase current (IPMCA) 

The model equation used in Grandi et al. (11) was used for iz and blk after adjusting the 

amplitude factor AmpPMCA. H+ was neglected for convenience. 

𝐼𝑃𝑀𝐶𝐴 = 𝐼𝑃𝑀𝐶𝐴_𝑖𝑧 + 𝐼𝑃𝑀𝐶𝐴_𝑏𝑙𝑘       (Eq. S154) 

𝐼𝑃𝑀𝐶𝐴_𝑎 = 𝑓𝑃𝑀𝐶𝐴_𝑎
∙ 𝐴𝑚𝑝𝑃𝑀𝐶𝐴 ∙

([𝐶𝑎2+]
𝑎

)1.6

(𝐾𝑚)1.6+([𝐶𝑎2+])1.6      (Eq. S155) 

𝑎 = (𝑏𝑙𝑘,  𝑖𝑧) 

𝑓𝑃𝑀𝐶𝐴_𝑖𝑧 = 0.1,   𝑓𝑃𝑀𝐶𝐴_𝑏𝑙𝑘 = 0.9,   𝐴𝑚𝑝𝑃𝑀𝐶𝐴 = 0.19 ⋅ 𝐶𝑚,   𝐾𝑚 = 0.0005  

 

CaRU 

LCC 

The tightly coupled LCC-RyR kinetic model developed by Hinch et al. (12) was used after 

decreasing 𝑃𝑅𝑦𝑅  to 5191  from 5967.67 (fL/ms). The new LCC model is described in the 

section of the L-type Ca2+ current. 

RyR channel 

The state taransition of a RyR is defined by the two-state transition with the activation rate, kCO 

and deactivation rate kOC. Q10 is a temperature factor(Q10=3) 

𝑘𝑐𝑜 = 𝑄10 ∙
0.4

1+(
0.025

[𝐶𝑎2+]𝑛𝑑
)

2.7         (Eq. S156) 

The [Ca2+]nd for the activation is, 

[Ca2+]nd = CaL0 for LCC-dependent activation of a RyR 

[Ca2+]nd = Ca00 for spontaneous activation of a RyR 

𝑘𝑜𝑐 = 𝑄10 ∙ 0.5664                     (Eq. S157) 

𝑓𝑡 =
𝑘𝑐𝑜

𝑘𝑐𝑜+𝑘𝑜𝑐
         (Eq. S158) 

The state transition of couplon at the regenerative step is also described by the two-state 

transition scheme. 

Scheme 5. Two-state model 



20 
 

The activation rate krco and the deactivation rate kroc are, 

𝑘𝑟𝑐𝑜 = 𝑓𝑛 ∙ 𝑓𝑡 ∙ 𝑘𝑐𝑜 ∙ (𝑠𝑙𝑜𝑐0 + [𝐶𝑎2+]
𝑆𝑅𝑟𝑙

)       (Eq. S159) 

𝑓𝑛 = 7, 𝑠𝑙𝑜𝑐0 = 0.1  

[Ca2+]nd = CaLR for LCC-dependent activation, 

[Ca2+]nd = Ca0R for RyR-dependent spontaneous activation, 

𝑘𝑟𝑜𝑐 = 𝑘𝑐𝑜 ∙ 𝑝𝐶
((𝑁𝑅𝑦𝑅−1)∙0.74)

   𝑝𝐶 =
𝑘𝑜𝑐

𝑘𝑜𝑐+𝑓𝑡∙
𝑘𝑟𝑐𝑜

𝑓𝑛

      (Eq. S160) 

The ft is calculated using Ca00. NRyR is the number of RyRs in a couplon and assumed to be 10. 

The [Ca2+]nd is defined as Ca00, Ca0R, CaL0 or CaLR. 

LCC closed; RyR closed: 

𝐶𝑎00 = [𝐶𝑎2+]𝑗𝑛𝑐        (Eq. S161) 

LCC closed; RyR open: 

𝐶𝑎0𝑅 =
𝐶𝑎00+𝑓𝑅∙[𝐶𝑎2+]𝑆𝑅𝑟𝑙

1+𝑓𝑅
         (Eq. S162) 

𝑓𝑅 = 0.31 

LCC open; RyR closed: 

𝐶𝑎𝐿0 =
𝐶𝑎00+𝑓𝐿∙

𝛿𝑉∙𝑒−𝛿𝑉

1−𝑒−𝛿𝑉 [𝐶𝑎2+]𝑜

(1+𝑓𝐿∙
𝛿𝑉

1−𝑒−𝛿𝑉)
        (Eq. S163) 

𝑓𝐿 = 0.014  

LCC open; RyR open: 

𝐶𝑎𝐿𝑅 =
𝐶𝑎00+𝑓𝑅∙[𝐶𝑎2+]𝑆𝑅𝑟𝑙+𝑓𝐿∙

𝛿𝑉∙𝑒−𝛿𝑉

1−𝑒−𝛿𝑉 [𝐶𝑎2+]𝑜

1+𝑓𝑅+𝑓𝐿∙
𝛿𝑉

1−𝑒−𝛿𝑉

       (Eq. S164) 

𝛿 =
2∙𝐹

𝑅∙𝑇
          (Eq. S165) 

p(O)𝑡 = 𝑝(𝑂) + 𝑝(𝑂)𝑏𝑎𝑠𝑒        (Eq. S166) 

𝑝(𝑂)𝑏𝑎𝑠𝑒 = 0.000075 

𝑝(𝑂) = 𝑌𝑜𝑜𝑜 + 𝑌𝑐𝑜𝑜 + 𝑌𝑐𝑐𝑜 + 𝑌𝑜𝑐𝑜       (Eq. S167) 

𝐽𝐶𝑎_𝑟𝑒𝑙 = 𝑃𝑅𝑦𝑅 ∙  p(O)𝑡 ∙ ([𝐶𝑎2+]
𝑆𝑅𝑟𝑙

− [𝐶𝑎2+]
𝑗𝑛𝑐

) ∙ 𝑆𝑐_𝑐𝑒𝑙𝑙     (Eq. S168) 

𝑃𝑅𝑦𝑅 = 5191(𝑓𝐿 ∙ 𝑚𝑠−1)    (𝑤ℎ𝑜𝑙𝑒 𝑐𝑒𝑙𝑙) 

Sarcoplasmic reticulum Ca2+ pump (SERCA) current (JSERCA) 

The three-state model developed by Trans et al. (13) was used after several minor modifications 

as described Asakura et al. (2). The limiting amplitude of JSERCA, ampSERCA, was modified. 
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Scheme 6. SERCA model 

𝐽𝑆𝐸𝑅𝐶𝐴 =
𝑎𝑚𝑝𝑆𝐸𝑅𝐶𝐴∙𝑉𝑐𝑦𝑐

2∙𝐹⋅1000
∙ 𝑆𝑐_𝑐𝑒𝑙𝑙        (Eq. S169) 

𝑎𝑚𝑝𝑆𝐸𝑅𝐶𝐴 = 106444.8 (𝑚𝑚𝑜𝑙 ∙ 𝑚𝑠−1) 

𝑉𝑐𝑦𝑐 =
6.86∙(𝛼1∙𝛼2∙𝛼3−𝛽1∙𝛽2∙𝛽3)

𝛼2∙𝛼3+𝛽1∙𝛽2+𝛼1∙𝛼3+𝛽2∙𝛼1+𝛽2∙𝛽3+𝛼1∙𝛼2+𝛽3∙𝛽1+𝛽3∙𝛼2
     (Eq. S170) 

𝛼1 = 25900 ∙ [𝑀𝑔𝐴𝑇𝑃]𝑐𝑦𝑡        (Eq. S171) 

𝛼2 =
2540

1+(
𝐾𝑑𝐶𝑎𝑖

[𝐶𝑎𝑓𝑟𝑒𝑒
2+ ]𝑏𝑙𝑘

)

1.7         (Eq. S172) 

𝛼3 =
5.35

1+(
[𝐶𝑎2+]𝑆𝑅𝑢𝑝

𝐾𝑑𝐶𝑎𝑠𝑟
)

1.7         (Eq. S173) 

𝛽1 =
0.1972

1+(
[𝐶𝑎𝑓𝑟𝑒𝑒

2+ ]𝑏𝑙𝑘

𝐾𝑑𝐶𝑎𝑖
)

1.7         (Eq. S174) 

𝛽2 =
25435∙[𝑀𝑔𝐴𝐷𝑃]𝑐𝑦𝑡

1+(
𝐾𝑑𝐶𝑎𝑠𝑟

[𝐶𝑎2+]𝑆𝑅𝑢𝑝
)

1.7          (Eq. S175) 

𝛽3 = 149 ∙ [𝑃𝑖]          (Eq. S176) 

𝐾𝑑𝐶𝑎𝑖 = 0.0027(𝑚𝑀),  𝐾𝑑𝐶𝑎𝑠𝑟 = 1.378(𝑚𝑀) 

 

5. Contraction 

The original model Negroni and Lascano (14) was used. Six states of troponin systems (TS), each 

system composed by 3 adjacent troponin-propomyosin regulatory units acting cooperatively: 

free TS; Ca2+ bound to TS without attached CBs (TSCa3), Ca2+ bound to TS with attached CBs in 

the weak state (TSCa3w), Ca2+ bound to TS without attached CBs in the power state(TSCa3s), TS 

without Ca2+ with attached CBs in the power state (TSs) and TS without Ca2+ with attached CBs 

in the weak state (TSw). 

The rate of ATP hydrolysis by myosin ATPase(ATPcontraction) is calculated by Eq.S177; 

𝑑𝐴𝑇𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑑𝑡
= ratioATP ∙ (𝑌𝑝 ∙ [𝑇𝑆𝐶𝑎𝑤] + 𝑍𝑞 ∙ [𝑇𝑆𝑤]) ∙ 𝑉𝑐𝑒𝑙𝑙          (Eq. S177) 

where ratioATP is the stoichiometry of myosin ATPase for each troponin contraction.  
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Dynamics of the eCB elongation(h) 

All equations to calculate the eCB dynamics are the same as in the original model of Negroni and 

Lascano (14). The half sarcomere length (halfSL) was represented as a sum of the elongation of 

the equivalent crossbridge (eCB) and the rest X for each of the powered and weakly-bound eCBs. 

hp and hw represent elongation of the elastic component of the strong-bound CB state and weak-

bound CB state. 

𝑋𝑝 = ℎ𝑎𝑙𝑓𝑆𝐿 − ℎ𝑝        (Eq. S178) 

𝑋𝑤 = ℎ𝑎𝑙𝑓𝑆𝐿 − ℎ𝑤       (Eq. S179) 

The rate of change in X(dX/dt) is, 

𝑑𝑋𝑝

𝑑𝑡
= 𝐵 ∙ (ℎ𝑝 − ℎ𝑝𝑟)        (Eq. S180) 

𝑑𝑋𝑤

𝑑𝑡
= 𝐵 ∙ (ℎ𝑤 − ℎ𝑤𝑟)        (Eq. S181) 

Rated parameters are given in Table S7, and Ap and Aw are the stiffness summed for each type 

eCBs within a cell. The Le and Ke are the spring constant of the parallel elastic component. 

 

Developed tension 

CB force 

CB force (Fb) is given by the sum of weak CB force (Fbw) and powered CB force (Fbp).  

𝐹𝑏 = 𝐹𝑏𝑤 + 𝐹𝑏𝑝         (Eq. S182) 

𝐹𝑏𝑤 = 𝑛𝐶𝑎𝐵𝑆 ∙ 𝐴𝑤 ∙ ([𝑇𝑆𝐶𝑎3𝑤] + [𝑇𝑆𝑤]) ∙  ℎ𝑤      (Eq. S183) 

𝐹𝑏𝑝 = 𝑛𝐶𝑎𝐵𝑆 ∙ 𝐴𝑝 ∙ ([𝑇𝑆𝐶𝑎3𝑠] + [𝑇𝑆𝑠]) ∙  ℎ𝑝      (Eq. S184) 

The force of the parallel elastic element 

𝐹𝑝 = 𝐾𝑒 ∙ (𝐿hSL − 𝐿0)5 + 𝐿𝑒 ∙ (𝐿hSL − 𝐿0)      (Eq. S185) 

The detachment rates of CB 

𝑔 = 𝑍𝑎 ∙ 𝑌𝑣 ∙ (1 − 𝑒−𝛾∙(ℎ𝑤−ℎ𝑤𝑟)2
)      (Eq. S186) 

𝑔𝑑 = 𝑌𝑑 ∙ 𝑌𝑐 ∙ (𝐿 − 𝐿𝑐 )
2 + 𝑌𝑣𝑑 ∙ (1 − 𝑒−𝛾∙(ℎ𝑤−ℎ𝑤𝑟)2

)     (Eq. S187) 

𝐹ℎ = {
0.1; ℎ𝑤 > ℎ𝑤𝑟

1; ℎ𝑤 ≤ ℎ𝑤𝑟
         (Eq. S188) 

Calculation of state transitions of the model 

Yb, Zb, f, g, Yp, Zp, Yr, Zr, Yq, Zq and gd are rate constants of the reaction. 

𝑑[𝑇𝑆𝐶𝑎3]

𝑑𝑡
= 𝑌𝑏 ∙ [𝑇𝑆] ∙ ([𝐶𝑎𝑓𝑟𝑒𝑒

2+ ]
𝑏𝑙𝑘

∙ 1000)
3

− 𝑍𝑏 ∙ [𝑇𝑆𝐶𝑎3] + 𝑔 ∙ [𝑇𝑆𝐶𝑎3𝑤] − 𝑓 ∙ [𝑇𝑆𝐶𝑎3]𝑒𝑓𝑓(Eq. S189) 

𝑑[𝑇𝑆𝐶𝑎3𝑤]

𝑑𝑡
= 𝑓 ∙ [𝑇𝑆𝐶𝑎3]𝑒𝑓𝑓 − 𝑔 ∙ [𝑇𝑆𝐶𝑎3𝑤] + 𝑍𝑝 ∙ [𝑇𝑆𝐶𝑎3𝑠] − 𝑌𝑝 ∙ [𝑇𝑆𝐶𝑎3𝑤]   (Eq. S190) 
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𝑑[𝑇𝑆𝐶𝑎3𝑠]

𝑑𝑡
= 𝑌𝑝 ∙ [𝑇𝑆𝐶𝑎3𝑤] − 𝑍𝑝 ∙ [𝑇𝑆𝐶𝑎3𝑠] + 𝑍𝑟 ∙ [𝑇𝑆𝑠] ∙ ([𝐶𝑎𝑓𝑟𝑒𝑒

2+ ]
𝑏𝑙𝑘

∙ 1000)
3

− 𝑌𝑟 ∙ [𝑇𝑆𝐶𝑎3𝑠]  (Eq. S191) 

𝑑[𝑇𝑆𝑠]

𝑑𝑡
= 𝑌𝑟 ∙ [𝑇𝑆𝐶𝑎3𝑠] − 𝑍𝑟 ∙ [𝑇𝑆𝑠] ∙ ([𝐶𝑎𝑓𝑟𝑒𝑒

2+ ]
𝑏𝑙𝑘

∙ 1000)
3

+ 𝑍𝑞 ∙ [𝑇𝑆𝑤] − 𝑌𝑞 ∙ [𝑇𝑆𝑠]   (Eq. S192) 

𝑑[𝑇𝑆𝑤]

𝑑𝑡
= 𝑌𝑞 ∙ [𝑇𝑆𝑠] − 𝑍𝑞 ∙ [𝑇𝑆𝑤] − 𝑔

𝑑
∙ [𝑇𝑆𝑤]      (Eq. S193) 

[𝑇𝑆] = [𝑇𝑆𝑡𝑜𝑡] − [𝑇𝑆𝐶𝑎3] − [𝑇𝑆𝐶𝑎3𝑤] − [𝑇𝑆𝐶𝑎3𝑠] − [𝑇𝑆𝑠] − [𝑇𝑆𝑤]   (Eq. S194) 

[𝑇𝑆𝐶𝑎3]𝑒𝑓𝑓 = 𝑒−𝑅(𝐿−𝐿𝑎)2
∙ [𝑇𝑆𝐶𝑎3]      (Eq. S195) 

 

Table S7. Parameters in HyBrid model 

Parameter Hybrid model Units 

𝐴𝑝 2700 𝑚𝑁𝑚𝑚−2𝑚−1𝑀−1 

𝐴𝑤 540 𝑚𝑁𝑚𝑚−2𝑚−1𝑀−1 

𝐵𝑝 0.5 𝑚𝑠−1 

𝐵𝑤 0.2 𝑚𝑠−1 

γ 28000 𝑚−2 

f 0.0023 𝑚𝑠−1 

ℎ𝑝𝑟 0.006 𝑚 

ℎ𝑤𝑟 0.0001 𝑚 

𝐾𝑒 105000 𝑚𝑁𝑚𝑚−2𝑚−5 

𝐿𝑎 1.15 𝑚 

𝐿𝑒 10 𝑚𝑁𝑚𝑚−2𝑚−1 

[TS𝑡𝑜𝑡] 23 𝑀 

𝑛𝐶𝑎𝐵𝑆 3 unitless 

R 15 𝑚−2 

𝑌𝑏 0.1816 𝑀−3𝑚𝑠−1 

𝑌𝑐 1.0 𝑚𝑠−1𝑚−2 

𝑌𝑑 0.0333 𝑚𝑠−1 

𝑌𝑝 0.1397 𝑚𝑠−1 

𝑌𝑞 0.2328 𝑚𝑠−1 

𝑌𝑟 0.1397 𝑚𝑠−1 

𝑌𝑣 1.5 𝑚𝑠−1 

𝑍𝑎 0.0023 𝑚𝑠−1 

𝑍𝑏 0.1397 𝑚𝑠−1 

𝑍𝑝 0.2095 𝑚𝑠−1 
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𝑍𝑞 0.3724 𝑚𝑠−1 

𝑍𝑟 7.2626 𝑚𝑠−1 

 

𝐴p  parameter describing the bridge force of the power work state 

𝐴w  parameter describing the bridge force of the weak state 

𝐵  parameter describing equivalent CB kinetics  

𝐶𝐵  attached cross-bridge 

𝑓  kinetic reaction constant for the CB attaching step 

𝐹b  total CB force 

𝐹bp  CB force of attached CB in power states 

𝐹bw  CB force of attached CB in weak states 

𝐹h  parameter for asymmetry 

𝐹p  parallel force 

𝑔  parameter representing CB detachment step from cAMDpw 

𝛾  parameter describing Yv detachment pathway 

ℎp  mean elongation of attached CBs in power work state 

ℎw  mean elongation of attached CBs in weak state 

ℎpr  steady elongation of attached CBs in power work state 

ℎwr  steady elongation of attached CBs in weak state 

𝐾e  parameter describing the parallel elastic element 

𝐿hSL  half sarcomere length 

𝐿0  parameter describing the parallel elastic element 

𝐿a  parameter constraining the [cMDP], giving effective [cMDP] 

𝐿e  parameter describing the parallel elastic element 

𝑛𝐶𝑎𝐵𝑆  number nCa2+ of CBs for a single TS 

𝑅𝑎  parameter describing the kurtosis of the curve 

𝑋p  non-elastic portion of the contractile element equals to 𝐿hSL − ℎp 

𝑋w  non-elastic portion of the contractile element equals to 𝐿hSL − ℎw 

 

6. Metabolic parameters 

 

Table S8. Values of the model parameters 

Parameters Values Units 

[𝑃𝑖𝑓𝑟𝑒𝑒]𝑐𝑦𝑡 0.50872066859173026 𝑚𝑀 

[𝐴𝑀𝑃]𝑐𝑦𝑡 0.00033459021041526427 𝑚𝑀 

[𝐴𝐷𝑃𝑓𝑟𝑒𝑒]𝑐𝑦𝑡 0.0022536111580301241 𝑚𝑀 
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[𝑀𝑔𝐴𝐷𝑃]𝑐𝑦𝑡 0.025978226605534577 𝑚𝑀 

[𝐴𝑇𝑃𝑓𝑟𝑒𝑒]𝑐𝑦𝑡 0.039789862258604494 𝑚𝑀 

[𝑀𝑔𝐴𝑇𝑃]𝑐𝑦𝑡 6.631643709767415 𝑚𝑀 

[𝐶𝑟]𝑐𝑦𝑡 12.6772372798697 𝑚𝑀 

 

ATP consumption: 

𝑣𝑐𝑜𝑛𝑠 =
𝑑𝐴𝑇𝑃𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝑑𝑡
+

𝑑𝐴𝑇𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑑𝑡
       (Eq. S196) 

𝑑𝐴𝑇𝑃𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝑑𝑡
=

𝑑𝐴𝑇𝑃𝑁𝑎𝐾+𝑑𝐴𝑇𝑃𝑃𝑀𝐶𝐴_𝑏𝑙𝑘+𝑑𝐴𝑇𝑃𝑃𝑀𝐶𝐴_𝑖𝑧+𝑑𝐴𝑇𝑃𝑆𝐸𝑅𝐶𝐴

𝑣𝑐𝑦𝑡
     (Eq. S197) 

 

7. Initial values of HuVEC model 

  Vm = -91.4466885079348 

        Vo = 0 

        Vi = Vm + Vo 

 

        TnChCa = 0.110742559707052 * 0.9 

        CaMCa = 0.000228581865602447 * 0.9 

        bufferSRCa = 0.00172960014640511 * 0.9 

        Lb_jnc = 0.0218215322629436 

        Lb_iz = 0.0075621764602356 

        Hb_jnc = 0.185094540066232 

        Hb_iz = 0.0769149150028914 

 

        Nai = 6.66894310282034 

        Ki = 139.238265011042 

        Catot_jnc = 0.207176351449979 

        Catot_iz = 0.084640522722006 

        Catot_blk = 0.11279654524634 

        Ca_SRup = 0.761077662687456 

        Catot_SRrl = 2.21876221622152 

 

        O_TM = 0.000000706725155695262 

        I2_TM = 0.0117704053067285 

        Is_TM = 0.304002781414015 
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        Is_LSM = 0.2 

        I2_LSM = 0 

        C_LSM = 1.0 - Is_LSM - I2_LSM 

        fixzero_INaLslowgate = 0 

 

        Yco_iz = 0.992251726297519 

        Yoc_iz = 0.000000024556270151713 

        Yoo_iz = 0.00000314564543512061 

        Yco_blk = 0.992424981547859 

        Yoc_blk = 0.0000000240070147854924 

        Yoo_blk = 0.00000314619469048683 

 

        Yooo = 0.00000172489315884865 

        Yooc = 0.00000142034754677507 

        Ycoo = 0.0000138422676498755 

        Ycoc = 0.992110534408681 

        Ycco = 0.0000000953816272498217 

        Yoco = 0.00000000000156949238162028 

        Yocc = 0.0000000249594301562175 

 

        y1_IKr = 0.0000440909425988806      

        y2_IKr = 0.000003386                     

        y3_IKr = 0.999363731                    

 

        paraxs1_iz = 0.277482694590328 

        paraxs2_iz = 0.000131110342877451 

        paraxs1_blk = 0.277482694590328 

        paraxs2_blk = 0.000131110342877451 

 

        Ov_IKs = 0.01                                         

        C2IKs_iz = 0.2                                      

        OcIKs_iz = 0.01                                     

        C2IKs_blk = 0.2                                        

        OcIKs_blk = 0.01                                    

 

        a_IKto = 0.000793627635934239 
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        y1_IKto = 0.999756080468878 

        y2_IKto = 0.575995954010486 

 

        Pbspm = 0.594875991179992 

 

        E1NCX_iz = 0.238718640001014 

        I1NCX_iz = 0.13771129457898 

        I2NCX_iz = 0.622892868847556 

        E1NCX_blk = 0.111872123711613 

        I1NCX_blk = 0.203023555446362 

        I2NCX_blk = 0.684869019924837 

 

        P1_6_NaK = 0.435289193632868 

        P7_NaK = 0.0831770174499825 

        P8_13_NaK = 0.281082409575779 

 

        halfSL = 1.09840500012898 

        Fb = 0.0502092089156129 

        Fp = 4.94926096641491 

        TSCa3 = 0.00899891910620064 

        TSCa3W = 0.000369547640656701 

        TSCa3S = 0.000153834503967436 

        TSS = 0.000876347322180234 

        TSW = 0.000492054058977473 

        hw = 0.000100147615113241 

        hp = 0.00600014761511324 

 

        ATPt_cyt = 6.67701543987464 

        ADPt_cyt = 0.0227671477707 

        Pi_cyt = 0.381130087573153 

        PCr_cyt = 13.9261301893242 

 

        ATPt_mit = 6.20328024045349 

        Pi_mit = 2.23625256468335 

        NADH_mit = 1.60566548407208 

        H_mit = 0.0000285579652594013 
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        K_mit = 117.80018539511 

        UQr_mit = 0.201994111666095 

        ctCrd_mit = 0.0448941156153114 

        dpsi = -159.077387598919  
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