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Abstract: Earlier studies have reported that elevated protein levels in the aqueous humor (AH)
are associated with corneal endothelial cell dysfunction (CECD), but the details of the underlying
mechanism as well as specific biomarkers for CECD remain elusive. In the present study, we aimed
to identify protein markers in AH directly associated with changes to corneal endothelial cells
(CECs), as AH can be easily obtained for analysis. We carried out an in-depth proteomic analysis of
patient-derived AH as well as transcriptomic analysis of CECs from the same patients with bullous
keratopathy (BK) resulting from CECD. We first determined differentially expressed genes (DEGs)
and differentially expressed proteins (DEPs) from CECs and AH in CECD, respectively. By combining
transcriptomic and proteomic analyses, 13 shared upregulated markers and 22 shared downregulated
markers were observed between DEGs and DEPs. Among these 35 candidates from biomarker
profiling, three upregulated markers were finally verified via data-independent acquisition (DIA)
proteomic analysis using additional individual AH samples, namely metallopeptidase inhibitor 1
(TIMP1), Fc fragment of IgG binding protein (FCGBP), and angiopoietin-related protein 7 (ANGPTL7).
Furthermore, we confirmed these AH biomarkers for CECD using individual immunoassay valida-
tion. Conclusively, our findings may provide valuable insights into the disease process and identify
biofluid markers for the assessment of CEC function during BK development.

Keywords: corneal endothelial cell dysfunction; aqueous humor; biomarker; proteomics;
transcriptomics

1. Introduction

Corneal endothelial cells (CECs) are located on the posterior surface of the cornea and
form a single layer of hexagonal cells. This layer is indispensable for corneal clarity due to its
critical role in maintaining the appropriate corneal hydration status [1–3]. Unlike epithelial
cells, CECs are severely limited in their ability to regenerate following damage [4,5]. Thus,
damage to CECs resulting in a loss of barrier integrity, solute transporter dysfunction,
or a significant decrease in cellular density leads to visual impairment due to a cloudy
cornea [6].

CEC dysfunction (CECD) contributes to bullous keratopathy (BK), which is caused by
an insufficient number and density of CECs, eventually resulting in vision loss. At present,
the treatment for CECD is the transplantation of healthy CECs; however, the supply of
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donor corneas is globally limited [7,8]. Although it is well known that conditions such
as uveitis and diabetes accelerate CEC loss, the detailed underlying mechanism as well
as specific biomarkers for CECD remain elusive [9–11]. Evaluating the morphological
characteristics of the CECs is crucial for diagnosing and monitoring patients with corneal
disorders. Currently, the predominant approach to assess the risk of CECD involves metic-
ulous analysis of CECs using specular microscopy and in vivo confocal microscopy [12].
However, the accuracy of these methodologies is not guaranteed, and they come with a
high cost. This underscores the urgent need to identify disease-specific markers for early
detection. Research into easily accessible biofluids, particularly the aqueous humor (AH),
could offer significant insights [13].

AH is a pure intraocular biofluid which remains in direct contact with the inside of
the eye. Accordingly, it has a unique advantage over plasma and other fluids in its ability
to reflect biochemical alterations of the eye including the posterior cornea [9,14,15]. In
particular, changes in the protein content of AH can reflect the condition of CECs, as the area
where CECs come into contact with AH within the eyeball accounts for more than 60% of
total AH contact area [16]. Furthermore, CECs can secrete their metabolic products directly
into the AH [14,16,17]. As AH also mediates immune responses and helps modulate ocular
cell proliferation, differentiation, and wound healing, it may contribute to the regulation of
CEC properties [18–21]. Nevertheless, most of the studies that have conducted proteomic
analysis of AH have focused on glaucoma or retinal disorders [17,22–26]. Recently, a
number of studies have reported that immune response in AH can increase oxidative
stress and cause senescence of CECs, leading to CECD or graft failure [27–29]. In the
present study, we aimed to investigate protein markers in AH directly associated with the
changes to CECs, as AH can be easily obtained for analysis. We carried out an in-depth
proteomic profiling of patient-derived AH, as well as RNA-sequencing of CECs from the
same patients with CECD. Furthermore, we confirmed AH biomarkers for CECD using
individual data-independent acquisition (DIA) verification and immunoassay validation
(Figure 1). Our findings may provide valuable insights into the disease process as well as
diagnostic targets for CECD.
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Figure 1. Schematic representation of experimental design for profiling, verification, and validation of
the aqueous humor biomarkers for corneal endothelial cell dysfunction. Corneal endothelial cell (CEC)
layers were obtained for transcriptome analysis from patients with corneal endothelial cell dysfunction
(CECD) after surgical stripping during Descemet membrane endothelial keratoplasty (n = 5). Normal
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CECs were obtained from donor corneas (n = 5). For label-free quantitative discovery shotgun
proteomics, aqueous humor (AH) samples were simultaneously obtained from patients with CECD
as well as from patients with cataracts as controls (n = 5/group). After biomarker profiling via inte-
gration of CEC transcriptomics and AH proteomics, verification was performed via data-independent
acquisition (DIA) proteomic analysis using additional individual AH samples (n = 7/group). Fi-
nally, biomarker candidates were validated via enzyme-linked immunosorbent assay (ELISA) using
additional individual AH samples (n = 12/group).

2. Results
2.1. Transcriptomic Analysis of Dysfunctional CECs

A total of 22,123 and 25,161 mRNAs were identified in CECs from the CECD and con-
trol groups, respectively. Gene ontology cellular component (GOCC) analysis revealed that
the mRNAs identified in the CECs were particularly involved in the intracellular region, or-
ganelles, and cytoplasmic parts (Figure 2B). To identify specific changes to gene expression
during CECD, we compared gene expression between CECD samples and controls. A total
of 2685 upregulated differentially expressed genes (UP-DEGs) and 1832 downregulated
differentially expressed genes (DN-DEG) were identified in CECD compared to controls
(Figure 2C and Table S1). Multidimensional scaling analysis revealed a clear spatial distance
between the two groups with 55% for component 1 (Figure S1).
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Figure 2. Transcriptomic analysis of dysfunctional human corneal endothelial cells. (A) Venn dia-
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Figure 2. Transcriptomic analysis of dysfunctional human corneal endothelial cells. (A) Venn diagram
showing total mRNAs from corneal endothelial cells (CECs) in controls and patients with corneal
endothelial cell dysfunction (CECD) (n = 5/group). (B) Pie chart showing the top 10 significantly
enriched terms for gene ontology cellular components (GOCC). (C) Volcano plot displaying the
difference in gene expression of CECs between two groups. (D) Representative gene ontology
biological process (GOBP) network and reactome pathway analysis using upregulated (UP-) and
downregulated (DN-) differentially expressed genes (DEGs).

To gain insight into the functional characteristics of DEGs in CECs, we analyzed
the gene ontology biological process (GOBP) network and reactome pathway. UP-DEGs
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were mainly involved in five categories, namely, the cytokine signaling pathway, bio-
logical adhesion, ion transport, development, and exocytosis (Figure 2D and Table S2A).
DN-DEGs were also mainly enriched in five categories, namely, carbohydrate metabolic
process, localization, cellular component organization, cell death, and response to stimulus
(Figure 2D and Table S2B).

2.2. Global Proteome Profiling of AH from Patients with CECD

To identify proteins altered in pathological AH, we conducted proteomic analysis us-
ing patient-derived AH. In total, 839 proteins and 815 proteins were identified in the CECD
and control groups, respectively. GOCC functional enrichment analysis revealed that iden-
tified AH proteins were mostly involved in the extracellular region, extracellular exosome,
membrane-bounded vesicle, extracellular matrix, and secretory granule (Figure 3B). A
total of 51 upregulated differentially expressed proteins (UP-DEPs) and 78 downregulated
differentially expressed proteins (DN-DEPs) were identified (Figure 3C and Table S3).
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Figure 3. Global proteome profiling analysis of aqueous humor in corneal endothelial cell dysfunction.
(A) Venn diagram showing total proteins of aqueous humor (AH) from the control and CECD
group (n = 5/group). (B) Pie chart shows the top 10 significantly enriched terms for gene ontology
cellular components (GOCC). (C) Volcano plot displaying the difference in protein expression in
AH between two groups. (D) Representative gene ontology biological process (GOBP) network
and reactome pathway analysis using upregulated (UP-) and downregulated (DN-) differentially
expressed proteins (DEPs).

GOBP analysis revealed that UP-DEPs were mainly involved in three categories,
namely, immune response, proteolysis, and exocytosis (Figure 3D and Table S4A). Immune
response was the term most enriched with significantly UP-DEPs, including cystatin S
(CST4), lipocalin 1 (LCN1), CD163, TIMP1, ANGPTL7, and FCGBP. DN-DEPs were mainly
involved in three categories, namely, carbohydrate metabolic process, developmental
process, and cell adhesion (Figure 3D and Table S4B). As compared to changes in mRNA
expression in CECs, it was confirmed that immunological responses such as cytokine
signaling were significantly upregulated. In contrast, a commonly downregulated pathway
at both the mRNA and protein levels was the carbohydrate metabolic process.
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2.3. AH Proteome Alterations Are Associated with CEC Transcriptome Changes in CECD

There was a significant correlation between AH protein and CEC mRNA expression
under CECD (Figure 4A).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 16 
 

 

reactome pathway analysis using upregulated (UP-) and downregulated (DN-) differentially ex-
pressed proteins (DEPs). 

2.3. AH Proteome Alterations Are Associated with CEC Transcriptome Changes in CECD 
There was a significant correlation between AH protein and CEC mRNA expression 

under CECD (Figure 4A). 

 
Figure 4. Aqueous humor proteome alterations associated with corneal endothelial transcriptome 
changes in corneal endothelial cell dysfunction. (A) Correlation between the level of expression of 
aqueous humor (AH) proteins and corneal endothelial cell (CEC) mRNAs in the corneal endothelial 
cell dysfunction (CECD) group as compared to the control (n = 5/group). (B,C) The number and list 
of upregulated and downregulated AH differentially expressed proteins (DEPs), which showed the 
same pattern of differential expression as observed for their respective transcripts in CECs. (D) Gene 
ontology biological processes of AH DEPs correlated to CEC differentially expressed genes (DEGs). 
(E) Protein–protein interaction network model showing significantly enriched biological processes 
in AH for CECD. The colors of the nodes represent highly increased (red) or decreased (blue) pro-
teins in CECD. The connection between nodes (grey lines) indicates either a regulatory role or phys-
ical interaction between proteins. Large nodes represent a high degree of connectivity with other 
proteins. 

Figure 4. Aqueous humor proteome alterations associated with corneal endothelial transcriptome
changes in corneal endothelial cell dysfunction. (A) Correlation between the level of expression of
aqueous humor (AH) proteins and corneal endothelial cell (CEC) mRNAs in the corneal endothelial
cell dysfunction (CECD) group as compared to the control (n = 5/group). (B,C) The number and list
of upregulated and downregulated AH differentially expressed proteins (DEPs), which showed the
same pattern of differential expression as observed for their respective transcripts in CECs. (D) Gene
ontology biological processes of AH DEPs correlated to CEC differentially expressed genes (DEGs).
(E) Protein–protein interaction network model showing significantly enriched biological processes in
AH for CECD. The colors of the nodes represent highly increased (red) or decreased (blue) proteins
in CECD. The connection between nodes (grey lines) indicates either a regulatory role or physical
interaction between proteins. Large nodes represent a high degree of connectivity with other proteins.

As demonstrated by the Venn diagram in Figure 4B, there were 13 commonly upreg-
ulated DEGs and DEPs, namely, ANGPTL7, FCGBP, SERPINF2, F10, PROS1, SERPIND1,
HABP2, TMSB10, TIMP1, LYZ, SLPI, TMSB4X, and C1R. Interestingly, all of them were
related to the immune response (Figure 4C). In contrast, we found 22 proteins that were
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downregulated at both the mRNA and protein levels. These are listed in the heat map
and include MDH1, MAN1A, B4GAT1, GPI, ENO1, ALDOA, PGAM1, TPI1, GALNT2,
TKT, TGFBI, LYNX1, PSAP, CPQ, SERPINI1, COL9A3, APP, CLSTN1, LGALS3BP, CA2,
ATP6AP1, and APLP2. Of these, 41% were related to the carbohydrate metabolic process,
41% to the developmental process, and 18% to ion transport (Figure 4C). There were seven
proteins exhibiting conflicting trends between their mRNA and protein levels. Among
them, six proteins, including C2orf40, ENPP2, C3, VCAN, S100A9, and DKK3, were in-
creased at the mRNA level in CECs yet decreased at the protein level in AH. In contrast,
POLCE was decreased at the mRNA level, whereas its protein levels in AH were increased
(Figure S2A,B).

To provide further insight into the physiological processes underlying CECD, protein–
protein interaction network analysis was carried out based on 32 DEPs and DEGs, which
are commonly altered (Figure 4D). As shown in Figure 4D, four pathways were significantly
enriched, namely, immune response, carbohydrate metabolic process, developmental pro-
cess, and ion transport. Of note, 13 upregulated proteins, including TIMP1, ANGPTL7,
FCGBP, LYZ, and C1R, participate in diverse immune responses, acting as aberrant ac-
tivators of innate immune system in CECD. In particularly, TIMP1, ANGPTL7, FCGBP,
and LYZ were crucial proteins with the highest centrality within the immune response
network. Conversely, commonly downregulated transcripts of CECs and their protein
products in AH were enriched in carbohydrate metabolic process (e.g., ALDOA, ENO1,
MAN1A1), ion transport (e.g., CA2), and developmental process (e.g., APP, SERPINI1,
TGFBI). Similarly, seven molecules, which were inversely altered at the mRNA and protein
levels, were identified as having pivotal roles in the developmental process.

2.4. Individual AH Analysis for Marker Verification via DIA Proteomics in CECD

To verify altered protein expression, we performed individual DIA analysis of CECD
and control groups. A heat map of protein expression profiles indicated that AH samples
of the CECD and control groups were mostly separated into two clusters (Figure 5A).
As demonstrated by the volcano plot in Figure 5B, there were 106 significantly increased
proteins and 66 significantly decreased proteins in CECD patient samples as compared
to controls. DEPs obtained via label-free quantitative shotgun proteomics (LFQ) profiling
and DIA analysis are presented in the Venn diagram (Figure S3 and Table S5). A total
of 22 proteins were found to be increased in both analyses. Further, three targets were
increased at both the transcript and protein levels, namely, TIMP1, FCGBP, and ANGPTL7,
whereas there were no commonly decreased targets (Figure 5C).
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entially expressed proteins (DEPs) in the corneal endothelial cell dysfunction (CECD) group and
control group after data-independent acquisition (DIA) proteomic analysis (n = 7/group). (B) Vol-
cano plot displaying the difference in protein expression in aqueous humor (AH) between the two
groups. (C) Three AH proteins were identified as CECD markers based on AH DIA proteomics
combined to CEC transcriptomics (RNA-seq) and AH label-free quantitative shotgun proteomics
(LFQ) (n = 7/group; two-tailed Student’s t-test). (D) Validation of candidate marker proteins in
the AH of patients with CECD via enzyme-linked immunosorbent assay. Bar graphs represent the
mean ± standard error of the mean (n = 12/group; ***, p < 0.001 by two-tailed Student’s t-test).

2.5. Validation of AH Marker Candidates for CECD

To validate marker candidates identified in the proteomics analyses, we performed
enzyme linked immunosorbent assay (ELISA) to quantify AH protein concentrations of the
three biomarkers TIMP1, ANGPTL7, and FCGBP. In accordance with proteomics results,
ELISA revealed that the concentration of TIMP1 and ANGPTL7 in AH was significantly
increased in an independent group of patients with CECD as compared to the control group
(Figure 5D). In addition, FCGBP was slightly increased in the CECD group compared to
the control group, although these associations were not significant (p = 0.0737). These data
indicated that TIMP1, ANGPTL7, and FCGBP may serve as ocular biofluid biomarkers,
reflecting dysfunction of CECs.

3. Discussion

As AH is a good liquid biopsy source for ocular disease, various earlier works have
focused on the analysis and identification of specific proteins or metabolites in AH for
conditions such as primary open angle glaucoma [23,30], uveal melanoma [22], and pseudo-
exfoliation syndrome [26,31]. However, there has been no confirmative evidence for disease-
specific biomarkers, which can be used for diagnosis, prognosis, or treatment monitoring.
Further, few studies have been performed for the identification of DEPs in CEC disease [27].
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Although tools such as specular microscopy, in vivo confocal biomicroscopy, and slit-lamp
facilitate the morphological assessment of the cornea, there remains a gap in methodologies
for determining the functional status of CECs. Biomarkers are therefore necessary for
the evaluation of CEC status and treatment, as well as for the prevention of further CEC
damage and progress to end-stage CEC failure.

Herein, via transcriptomic and proteomic analyses, we measured mRNA expression
and protein levels in CECs and AH, respectively, comparing these between patients with
CECD and controls. The analyses provided the data basis for identifying biomarkers for
CEC function. Employing “OMICS” usually results in the identification of hundreds of
markers [32,33]. Thus, it is not easy to find and confirm reliable markers via a single OMICS
analytical approach. To identify markers more precisely and reliably, we decided to use
both transcriptomics and proteomics. Based on data from both analyses, 13 markers were
upregulated both at the gene and protein levels, leading us to some interesting findings.

First, endopeptidase inhibitors and protease inhibitors such as ITIH3, SERPINF2,
and FeTuB were significantly increased in the AH of patients with CECD. Regulation of
proteolysis is vital for maintaining the transparency of ocular tissues, as the aggregation of
proteolytic products and accumulation of unprocessed protein, acting as antichaperones,
may lead to functional impairment [34]. In agreement with our findings, Kliuchnikova et al.
reported that endopeptidase inhibitors and protease inhibitors are significantly enriched in
the AH of patients with glaucoma [26].

Second, among the 13 upregulated markers, many were already reported in the AH
of patients with glaucoma (e.g., TIMP1, FCGBP). Although the patients included in the
present study did not exhibit intraocular pressure (IOP) elevation or glaucoma, it is well
known that glaucoma may affect CEC function and vice versa [35–37]. To validate OMICS
evidence, we performed an ELISA assay for TIMP1, FCGBP, and ANGPTL7 in AH, and
we found that all three markers were significantly elevated in samples from patients with
CECD (Figure 5).

TIMP1 expression has also been reported in several corneal disease conditions, includ-
ing BK and keratoconus [38]. Interestingly, TIMP1 was found to be an essential factor for
CEC migration and proliferation [39]. Considering the general function of TIMP1, which
is the inhibition of matrix proteinase and enhancement of extracellular matrix deposition,
TIMP may inhibit normal deposit-clearing activities of CECs, leading to the accumulation
of metabolic waste and eventual dampening of normal CEC functions.

ANGPTL7 was profoundly increased at both the gene and protein levels in CECs and
AH from patients with CECD, respectively. Earlier publications reported that ANGPTL7
is closely related with several pathologic conditions, including increased IOP [40,41] and
corneal vascularization [42]. Considering the known role of ANGPTL7 in the Wnt/β-
catenin signaling pathway and matrix protein assembly, accumulation and disposal of
extracellular matrix protein are closely related to BK pathophysiology.

FCGBP is an immunoglobulin FC-binding protein known to be involved in immunity
and inflammation. Sharma et al. also reported that FCGBP plays an important role in
inflammatory processes associated with glaucoma [23]. Considering the above-described
findings from earlier studies, we identified biomarkers through two OMICS approaches
and validated their levels in AH from patients with CECD by ELISA. Thus, the current
results strongly supported the specificity of these markers for CECD.

Apart from the upregulated genes, 22 targets were identified as downregulated at
both the transcriptional and protein levels, labeled as DN-DEPs and DN-DEGs, respec-
tively. Most markers downregulated in CECD were associated with metabolic processes.
Downregulation of carbohydrate metabolic process proteins such as phosphoglycerate
mutase 1 (PGAM1), mannosidase alpha class 1A member 1 (MAN1A1), and beta-1,4-
glucuronyltransferase 1 (B4GAT1) may indicate impaired antioxidant defense as well as
impaired energy production for Na-K+ ATPase in the AH of patients with CECD. With
regard to the metabolic aspect, decreased levels of GPI, ENO1, PGAM1, and ALDOA were
indicative of a lower glycolytic capacity in patients with BK as compared to controls. In ad-
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dition, Wnt pathway antagonists such as PEDF and DKK3 were downregulated in patients
with BK, which is indicative of a possible role of Wnt signaling in the pathophysiology of
CECD. It is plausible to presume that the iron transport might be reduced in BK. As Na-K+
ATPase enzymes are abundant in CECs, we initially considered the possibility that the
non-membrane-bound Na-K+ ATPase in AH could be a CECD marker. However, Na-K+
ATPase was not differentially expressed. Of note, other ion transporters, namely, CA2 and
ATP6AP1, were found to be decreased in both AH and CECs of patients with BK.

There are some limitations of the current study. First, even though we selected cases
without other ocular pathologies, the patient group could not be homogeneous. Secondly,
our initial global profiling relied on technical replicates combined into pooled samples. This
decision stemmed from challenges related to the limited protein content and the inherent
scarcity of samples. While this method offered certain advantages, we recognized its
potential drawbacks. To address this and ensure a more comprehensive understanding, we
subsequently employed biological replicates in our DIA proteomics and ELISA experiments.
Third, we chose markers that were differentially expressed at both the transcriptional and
protein levels. As proteomics generally yields a smaller number of markers compared to
transcriptomics, some novel markers, which might be specific to CECD and were identified
exclusively in the transcriptomic analysis, were filtered out. However, we are confident
that the more sensitive and reliable proteomic method (i.e., MaxLFQ, DIA) addresses this
potential limitation.

In conclusion, using the compiled data from both mRNA sequencing and proteomics,
we identified several novel AH markers indicative of CEC dysfunction in patients with
BK using the compiled data from both mRNA sequencing and proteomics. We believe
that our protein markers will provide a basis for an improved understanding of CECD
in BK development. As there are no functional assays for CECs in the clinic, our AH
biomarkers may be useful as liquid biopsy targets for the assessment of CEC function in
patients with BK.

4. Materials and Methods
4.1. Participants and Sample Collection

This study was conducted in accordance with the ethical principles specified in the
Declaration of Helsinki and Good Clinical Practice Guidelines. It was approved by the
Institutional Review Board of Yonsei University College of Medicine (Seoul, Republic
of Korea; IRB No. 3-2017-0361) before study initiation, and written informed consent
was obtained from each patient prior to participation in the study. Participants had no
other corneal disease except BK from CECD. We excluded patients younger than 20 years;
those with any ocular history even in the other eye, such as ocular surgery, ocular trauma,
ocular infection, allergy, ocular inflammation (i.e., uveitis), glaucoma, or retinal diseases
including macular edema; patients using topical eye drops other than artificial tears;
contact lens wearers; and those with any systemic disease including autoimmune disease,
diabetes, and cerebrovascular disease. Detailed demographic data are summarized in
Table 1. We simultaneously collected CEC layers and AH biofluid from five patients with
CECD during Descemet’s membrane endothelial keratoplasty (DMEK) (Figure 1). Normal
CECs were obtained from sex-matched domestic donor corneas with postmortem time less
than 24 h. The procedure was also approved by the IRB (No. 3-2017-0361) and written
informed consent was obtained from the donor’s family. And normal AH was obtained
from age/sex-matched patients with cataract during surgery. Approximately 150 µL of AH
was sampled from the anterior chamber during surgery. All samples were stored at −80 ◦C
until measurement.



Int. J. Mol. Sci. 2023, 24, 15354 10 of 15

Table 1. Demographic characteristics and clinical parameters of patients enrolled in the present study.
(A). Transcriptome analysis of CECs using RNA-sequencing. (B). Global proteome profiling of AH
using LFQ analysis. (C). Individual analysis of AH using DIA proteomics. (D). Validation of AH
markers for CECD using ELISA.

(A)

Control (Donor) (n = 5) CECD (n = 5)

Age, y 43.75 ± 6.55 69.25 ± 3.86 *
Sex, n (Female:Male) 2:3 2:3
CEC density, /mm2 2998.25 ± 112.87 Not available
Corneal thickness, µm 555.25 ± 5.44 Bullous

(B)

Control (n = 5) CECD (n = 5)

Age, y 61.54 ± 9.22 69.25 ± 3.86
Sex, n (Female:Male) 2:3 2:3
CEC density, /mm2 2523.32 ± 114.42 Not available
Corneal thickness, µm 546.50 ± 6.32 Bullous

(C)

Control (n = 7) CECD (n = 7)

Age, y 68.14 ± 6.36 69.42 ± 7.04
Sex, n (Female:Male) 3:4 3:4
CEC density, /mm2 2611.32 ± 122.32 Not available
Corneal thickness, µm 548.25 ± 5.23 Bullous

(D)

Control (Donor) (n = 12) CECD (n = 12)

Age, y 60.5 ± 4.19 55.17 ± 12.91
Sex, n (Female:Male) 7:5 7:5
CEC density, /mm2 2549.43 ± 103.67 Not available
Corneal thickness, µm 551.14 ± 4.27 Bullous

CEC layers and AH biofluids were simultaneously collected from five patients with CECD. For marker validation,
DIA and ELISA experiments were subsequently conducted using different patient sets. Data are presented as
mean ± standard deviation. p-values for comparisons of clinical values between two groups were determined
using Student’s t test. *, p < 0.05; CECD, corneal endothelial cell dysfunction; CECs, corneal endothelial cells;
AH, aqueous humor; LFQ, label-free quantitative shotgun proteomics; RNA-seq, RNA sequencing; DIA, data
independent acquisition; ELISA, enzyme-linked immunosorbent assay.

4.2. RNA Preparation and Sequencing of CECs

From the remnant donor tissue after corneal transplantation, human CEC layers for the
control group were harvested according to the well-known procedure used for preparation
of the donor tissue for DMEK [43–45]. Briefly, the CEC monolayer, along with its Descemet’s
membrane (DM), was carefully peeled away from the posterior stroma of the cornea with
gentle manual dissection after mounting the donor corneoscleral rim on a fixation device
with the endothelial side up. For CECs of the CECD group, the diseased recipient CEC
monolayer with DM was stripped with a descemetorhexis during the DMEK operation as
described previously [46]. The CEC layers were then lysed in 700 µL of QIAzol lysis reagent
(Qiagen, Valencia, CA, USA), and stored at −80 ◦C until used for experiments. Preparation
of the libraries and RNA sequencing analysis was conducted by Macrogen, Inc. (Seoul,
Republic of Korea). cDNA was prepared using SMARTer procedure with the SMART-Seq
v4 Ultra Low Input RNA Kit (Takara Bio USA, San Jose, CA, USA) for Illumina Sequencing.
Human corneal endothelium mRNA profiles of normal and CECD were generated via
deep sequencing in triplicate, using NovaSeq 6000 (Illumina, San Diego, CA, USA). We
preprocessed the raw reads obtained from the sequencer to remove low-quality reads and
adapter sequences before analysis. High-quality reads were then aligned to the Homo
sapiens (GRCh38) reference genome using HISAT2 v2.1.0. The reference genome sequence
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of Homo sapiens (GRCh38) and annotation data were downloaded from National Center
for Biotechnology Information. Transcript assembly of known transcripts was processed by
StringTie v1.3.4d. Based on the results, expression abundance of transcripts was calculated
as read count or fragments per kilobase of exon per million fragments mapped (FPKM)
value per sample. The relative abundance of transcripts was measured in read count using
StringTie. For the DEG set, hierarchical clustering analysis was performed using complete
linkage and Euclidean distance as measures of similarity.

4.3. Sample Preparation for Proteomic Analysis

Five individual AH samples were combined in equal volumes to create a pooled
sample for the initial global profiling using LFQ. To ensure the accuracy and reproducibility
of the experimental results, each pooled sample was analyzed in triplicate. An additional
seven AH samples from each group were subjected to DIA verification. For each AH pro-
tein sample, we eliminated highly abundant proteins, which tend to obscure the detection
of potential marker proteins presented at low abundance in AH, using Seppro IgY spin
columns (Sigma Aldrich, St. Louis, MO, USA). The protein concentrations were measured
in duplicate using a bicinchoninic acid (BCA) protein assay, following the manufacturer’s
protocol (Thermo Scientific Pierce, Rockford, IL, USA). Subsequently, 100 µg of total protein
samples were digested into peptides using an in-solution digestion method as previously
described. Briefly, 10 M urea in 100 mM ammonium bicarbonate was mixed with each
sample (v/v, 1:1), resulting in a final concentration of at least 5 M, and the mixture was
incubated for 30 min at room temperature for denaturation. Approximately 10 mM dithio-
threitol for reduction and 30 mM iodoacetamide for alkylation were used to denature
proteins. Trypsin was added at a 50:1 (w/w) protein-to-protease ratio and incubated at
37 ◦C overnight. The activated trypsin reaction was quenched with 0.4% trifluoroacetic
acid, and peptides were desalted with a C18 Harvard macro spin column. The resultant
peptides were dried and stored at −80 ◦C.

4.4. Quantitative Global Profiling

For LFQ analysis, peptides were re-suspended in 0.1% formic acid in water and
analyzed using the Q Exactive orbitrap hybrid mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA) coupled with the EASY-nLC 1000 system (Thermo Fisher Scientific,
Bremen, Germany). Solvents A and B were 0.1% formic acid in water and 0.1% formic acid
in acetonitrile, respectively. A 200-min gradient (from 5% to 20% solvent B over 150 min,
from 20% to 35% solvent B over 30 min, 80% solvent B for 10 min, and 5% solvent B for
10 min) was used. The peptides were loaded onto a trap column (75 µm × 2 cm, 3 µm,
C18, 100 Å) and ionized via an EASY-spray column (50 cm × 75 µm ID) packed with 2-µm
C18 particles at an electric potential of 2.0 kV. Full MS scans were acquired in a scan range
of 350–2000 Th at a resolution of 70,000 at m/z 200. The ten most abundant ions were
fragmented via data-dependent MS/MS experiments with an isolation window of 2.0 Th
and exclusion duration of 30 s and at a normalized collision energy of 27 for higher energy
collisional dissociation (HCD). The charge state of 1 was discarded. Maximum ion injection
times were 100 ms and 50 ms for full MS and MS/MS scans, respectively. The automated
gain control (AGC) target value was set to 1.0 × 106 for both MS and MS/MS scans.

4.5. Individual Aqueous Humor Analysis and Data Processing

For DIA analysis, a retention time kit (iRT kit, Biognosys, Schlieren, Switzerland) was
used to spike samples at a concentration of 1:20 v/v and 2 µg of each peptide sample
was analyzed us-ing Q-Exactive plus (Thermo Fisher Scientific) equipped with an EASY-
nLC 1000 UHPLC System (Thermo Fisher Scientific) using a range of 500–900 m/z with a
resolution of 170,000 at 200 m/z. The AGC target was set to 1e6 with a 60-ms maximum
injection time. Twenty optimal acquisition windows covered a mass range from 500 to
900 m/z. The normalized collision energy for HCD-MS2 experiments was set to 30%, the
AGC target was set at 2 × 105, and the maximum injection time was set to 60 ms. The mass
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spectrometry proteomics data were deposited to the ProteomeXchange Consortium via the
PRIDE [47] partner repository with the dataset identifier PXD023772. The DIA data were
analyzed with Spectronaut Pulsar (version 11.0.15038.4.29119, Biognosys) using a search
archive spectral library, and the default settings were used for targeted analysis. In brief, a
dynamic window for the XIC extraction window and a non-linear iRT calibration strategy
were used. Mass calibration was set to local mass calibration. Interference correction on the
MS1 and MS2 levels was enabled, removing fragments/isotopes from quantification based
on the presence of interfering signals but keeping at least three for quantification. The FDR
was set to 1% at the peptide precursor level and 1% at the protein level.

4.6. Database Search and Quantitative Analysis

For data-dependent analysis profiling, the MS2 spectra were searched with MaxQuant
(v. 1.5.7.4) against the Uniprot human database (released in 2017_06, 20,205). Carbamidomethy-
lation of cysteine as a fixed modification and N-acetylation and oxidation of methionine
as variable modifications were used for each search. An FDR cutoff of 1% was applied at
the peptide spectrum match (PSM) and protein levels. An initial precursor mass deviation
of up to 4.5 ppm and a fragment mass deviation of up to 20 ppm were allowed. Protein
identification required at least one peptide using the “razor plus unique peptides” setting in
MaxQuant. Proteins were quantified using the XIC-based LFQ algorithm in MaxQuant. The
“match between runs” option was used for nonlinear retention time alignment. The match
time window was 0.7 min, and the alignment time window was 20 min. Before loading
LFQ intensity data, hits to the reverse database, contaminants, and proteins identified only
by site were eliminated. After loading the data, all triplicate data were grouped separately.
All LFQ intensities were transformed to log2 values. Proteins that did not display all values
in at least one group were filtered out. Additionally, in cases with a missing value, missing
values were replaced via imputation based on the normal distribution (using a width of
0.3 and a downshift of 1.8). To account for nonbiological variability of MS data resulting
from many factors, including sample preparation and instrumental biases, intensities were
normalized using MaxQuant program.

4.7. Enrichment Analysis Using Gene Ontology

A GO search was performed using g-Profiler to explore GOBP and GOCC in CECs
and AH associated with CECD. GOBPs with a p-value < 0.05 were identified as enriched
by DEGs and DEPs. To construct a network depicting enriched processes, GO enrichment
analysis results were visualized and interpreted in Cytoscape using its EnrichmentMap
tool. To construct the network model for genes commonly altered in DEGs and DEPs,
we collected protein-protein interactome information from the STRING version 11 public
database. The network model was built using Cytoscape.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was conducted to verify the biomarker candidate proteins identified in tran-
scriptomic and proteomic analyses. An additional 12 AH samples from each group were
subjected to ELISA. AH proteins were measured using the human metallopeptidase in-
hibitor 1 (TIMP1) (DTM100; R&D Systems), angiopoietin-related protein 7 (ANGPTL7),
and Fc fragment of IgG binding protein (FCGBP) ELISA Kit (CSB-EL001715HU, CSB-
EL008536HU; Cusabio Technology) according to the manufacturer’s instructions [48,49].
Briefly, all samples were brought to room temperature before use and were assayed in
duplicate. 50 µL of samples or standard was added into the wells pre-coated with an
antibody specific to the antigen (human TIMP-1, human ANGPTL7, or human FCGBP) and
incubated for 2 h at room temperature. This was followed by incubation for 2 h with the
target antibody conjugates. Substrate solution was added to the samples and was incubated
for 30 min. Stop solution was added, and the absorbance of color at 450 nm was measured
using a microplate reader (Bio-Rad® Microplate Absorbance Reader, Bio-Rad Laboratories
Inc., Hercules, CA, USA). The intra-assay and inter-assay coefficients of variation within
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and between ELISA tests were <8%. All absorbance results are expressed as nanogram
per milliliter.

4.9. Statistics

This study was conducted in accordance with the ethical principles specified in the
Declaration of Helsinki and Good Clinical Practice Guidelines. It was approved by the
Institutional Review Board of Yonsei University College of Medicine (Seoul, Republic of
Korea; IRB No. 3-2017-0361) before study initiation, and written informed consent was
obtained from each patient prior to participation in the study. Statistical analyses on the
clinical data were performed using SPSS version 21.0 (IBM Corp., Armonk, NY, USA).
The Kolmogorov–Smirnov test was used to confirm normality of the data. To statistically
compare data between groups, we used the Mann–Whitney U test or Wilcoxon signed
rank test for non-normally distributed data. In all statistical tests, a p-value less than 0.05
was considered statistically significant. Statistical significance of DEGs was determined
using the edgeR exact Test and FC, in which the null hypothesis was that no difference
exists between groups. DEGs were determined via a threshold p-value < 0.05 and values of
FC > 2 from Student’s t-test. Perseus software (v.1.6.1.1) was used for the statistical and
bioinformatics analyses of proteomics data [50]. The selection criteria of DEPs were fold
change (FC) > 2 and p-value < 0.05 from Student’s t-test. Comparisons of mean protein
levels as detected by ELISA were performed by using Student’s t-test, with p-value < 0.05
being significant.
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