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Abstract: Despite rapid improvements in the accessibility of whole-genome sequencing (WGS),
understanding the extent of human genetic variation is limited by the scarce availability of genome
sequences from underrepresented populations. Developing the population-scale reference database
of Latvian genetic variation may fill the gap in European genomes and improve human genomics
research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected
from the Genome Database of the Latvian Population. An assessment of variant type, location in
the genome, function, medical relevance, and novelty was performed, and a population-specific
imputation reference panel (IRP) was developed. We identified more than 18.2 million variants in total,
of which 3.3% so far are not represented in gnomAD and dbSNP databases. Moreover, we observed a
notable though distinct clustering of the Latvian cohort within the European subpopulations. Finally,
our findings demonstrate the improved performance of imputation of variants using the Latvian
population-specific reference panel in the Latvian population compared to established IRPs. In
summary, our study provides the first WGS data for a regional reference genome that will serve as
a resource for the development of precision medicine and complement the global genome dataset,
improving the understanding of human genetic variation.

Keywords: whole-genome sequencing; genetic variation; population-specific reference panel; imputation
performance; Latvian genomes

1. Introduction

Human population genetics benefitted from the completion of the human genome
sequence [1], which was further advanced by creating the reference of global genome
variation [2] and, finally, the establishment of regional references assessing fine details of
local variation in whole-genome sequences. Although European populations are relatively
well represented in this respect, compared to other parts of the world, in many countries
the data on genetic variability are still lacking [3]. The population of Latvia is of particular
interest, being the most distant European population from African and Asian clusters of
principal component analysis (PCA) [4–8] and, together with neighbouring Baltic popula-
tions, exhibit relatively high ancestry proportion of two European founding populations,
Western European hunter-gatherer and Yamnaya [6,9,10].
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Genomic diversity in the population of Latvia is closely related to other European
populations and was shaped by three principal migration events [6,9]. The first traces
back to Western European hunter-gatherers (WHG), who expanded from the refuges of
the last glacial maxima to the rest of the European continent. The Early European Farmer
(EEF) migration from Anatolia started around 7000 BC and spread throughout mainly
South-Central Europe with a modest contribution to the population of Latvia [6,10]. Lastly,
beginning around 3000 BC, the Indo-European language speaking Western Steppe Herder
(WSH) Yamnaya population spread rapidly from the Eurasian steppe throughout Europe,
establishing the last major contribution to the underlying genetic makeup of Latvian and
other European populations [6,9,10].

Currently, there are no studies representing detailed whole-genome variation in the
Latvian population. Such a dataset would be beneficial for various applications, including
the discovery of new medically relevant variations [11], assessing population-wide genetic
risks [12], and improving genome imputation in related populations [13]. In the current
study, we sequenced, analysed, and tested the whole-genome sequencing data of 502 in-
dividuals from the population of Latvia. We assessed the quality of sequences, selected
confidently called variants, compared the accuracy to genotypes, performed population
stratification, and annotated a diverse set of variants. We then imputed unrelated geno-
types using a Latvian-population-specific imputation panel and compared its performance
versus the 1000 Genomes Project and TOPMed imputation reference panels.

2. Results
2.1. Characteristics of the Cohort

Overall, 887 participants had their genomes sequenced and deposited in the Genome
Database of the Latvian population (LGDB) in July 2022. Out of them, 295 sequences
were not further processed due to missing data for structural variants and mobile element
insertions, excess heterozygosity (n = 33), relatedness (n = 20), and the age threshold set for
study participants < 18 years (n = 37). The regional distribution of the study participants
according to their self-reported place of birth (which was restricted to indicating one of
the five regions of Latvia without specifying the exact birthplace), self-reported ethnicity,
as well as their age and sex, are provided in Table 1. The final study group consisted of
502 individuals denoted as LVBMC (Latvian Biomedical Research and Study centre) dataset.
The majority (62%) were females and age of participants ranged from 18 to 91. All of the
regions and most common ethnic groups of Latvia were well represented, with Latvians
comprising the majority (62.5%) of the study participants.

Table 1. Baseline description of study group included in the analysis.

Female Male Total

(N = 318) (N = 184) (N = 502)

Age
Mean (SD) 54.4 (13.6) 50.0 (14.4) 52.8 (14.0)

Median [Min; Max] 55.0 [21.0; 91.0] 50.5 [18.0; 87.0] 54.0 [18.0; 91.0]
Region

Courland 47 (14.8%) 32 (17.4%) 79 (15.7%)
Latgale 63 (19.8%) 34 (18.5%) 97 (19.3%)

Riga 53 (16.7%) 41 (22.3%) 94 (18.7%)
Semigallia 28 (8.8%) 8 (4.3%) 36 (7.2%)
Vidzeme 74 (23.3%) 49 (26.6%) 123 (24.5%)
Missing 53 (16.7%) 20 (10.9%) 73 (14.5%)

Ethnicity
Belarussian 9 (2.8%) 4 (2.2%) 13 (2.6%)
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Table 1. Cont.

Female Male Total

(N = 318) (N = 184) (N = 502)

Latvian 192 (60.4%) 124 (67.4%) 316 (62.9%)
Polish 4 (1.3%) 3 (1.6%) 7 (1.4%)

Russian 90 (28.3%) 43 (23.4%) 133 (26.5%)
Ukrainian 13 (4.1%) 3 (1.6%) 16 (3.2%)
Missing 10 (3.1%) 7 (3.8%) 17 (3.4%)

2.2. Quality of Variant Calling

Variant-calling quality assessments were performed on all 502 samples included in the
analysis, with an average sequencing depth of 35.7. The average read count was 9.15 × 108

[Interquartile Range (IQR) = 7.4 × 108–9.9 × 108] and the average mapped read proportion
was 99.86% [IQR = 99.98–99.99]. For each individual sample, we also assessed the read
coverage distribution along the genome. On average, 89.71% [IQR = 89.19–90.68] of each
genome reached at least 10× coverage, 63.09% [IQR = 52.98–73.62] reached 30×, and 19.11%
[IQR = 6.94–27.64] reached at least 50× coverage.

A significant proportion of samples in this study (316 of 502) were genotyped using
Illumina Array, allowing us to compare the accuracy of the variant calling between sequenc-
ing and genotyping platforms. Comparison of 489,918 overlapping variants revealed an
overall concordance of 98.81%, with the most frequent discrepancies being the homozygous
reference allele estimated using WGS, which was called either a heterozygote (52.6% of all
discrepancies) or homozygous alternative allele (39% of all discrepancies) when called by
genotyping. Additionally, we calculated an overall non-reference (NR) sensitivity of 0.96
and an NR discordancy rate of 0.5%.

2.3. Genetic Variation in the Latvian Population

In total, 30,919,589 SNPs and INDELs were detected with an error rate of 0.1%. An
allele count of three or more was observed for 18,266,684 variants, which were included in
all subsequent analyses. In total, 3.3% of variants were not present in the gnomAD dataset
(Table 2). The variant count ranged from 4.25 × 106 to 4.72 × 106 small polymorphisms
per sample.

We managed to detect 61,605 large variants, including structural variants and mo-
bile element insertions (Table 2). The rate of novel structural variants was an order of
magnitude higher compared to small variants, with ALU (18.65%), LINE1 (26.7%), and
non-autonomous retroelements SVA (23.7%) having the lowest proportion of novel varia-
tions. We observed considerably higher inter-sample variability in terms of the number of
mobile element insertions compared to other variant types.

As much as 97% of the annotated variations were located outside the previously known
functional elements, including upstream, downstream, intron, and intergenic variants
(Table 3). Of those found in exonic regions, most were synonymous, missense, or splice
region variants. We discovered 4105 disruptive mutations, which were mostly frameshift
(2453) and nonsense variants (1585). The median frequency of frameshifts and nonsense
variants was 0.005 [IQR = 0.003–0.018] and 0.009 [IQR = 0.004–0.052], respectively. At
the individual genome level, disruptive mutations were not common, with an average of
273 variants introducing or eliminating start or stop codons and 351 variants resulting in a
frameshift.
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Table 2. Variation summary of 502 Latvian whole-genome sequences grouped by type.

Variant Type Total Count Novel gnomAD Mean
(SD [Min; Max])

Mean Novel
(SD [Min; Max])

Small variants *

SNV 15,158,133 466,749 3,822,725
(74,939 [3,643,058; 4,022,661])

9788
(4938 [4386; 23,979])

Deletion 1,608,579 49,249 326,497
(7337 [304,340; 349,310])

1444
(278 [895; 2478])

Inframe deletion 1398 76 203
(14 [160; 292])

4
(3 [1; 56])

Insertion 1,435,886 59,499 327,355
(7352 [305,045; 349,737])

2399
(327 [1686; 5622])

Inframe insertion 1083 61 176
(13 [138; 301])

3
(4 [1;67])

Structural variation **

DEL 28,191 10,337 3465
(244 [2568; 4179])

794
(88 [514; 1067])

DUP 6866 3139 456
(71 [256; 668])

192
(29 [104; 277])

INS 10,405 5791 798
(345 [327; 1993])

454
(198 [196; 1135])

INV 3881 1534 297
(36 [179; 396])

134
(17 [84; 184])

TRA 7431 3980 514
(99 [379; 796])

292
(56 [208; 438])

Mobile element insertions **

ALU 4074 760 183
(108 [30; 504])

19
(11 [1; 61])

LINE1 528 141 19
(15 [1; 74])

7
(4 [1; 24])

SVA 207 49 7
(6 [1; 27])

2
(2 [1; 9])

HERVK 22 9 1
(0 [1; 4])

1
(0 [1; 2])

* Allele count ≥ 3; ** Allele count ≥ 1.

Table 3. Summary of variant annotation of 502 Latvian whole-genome sequences.

Variant Type Total Count Novel
gnomAD

Mean
(SD [Min; Max])

Mean Novel
(SD [Min; Max])

Variants by location

Upstream gene variant 2,972,390 76,822 713,153
(25,203 [663,145; 775,844])

1924
(1428 [736; 6062])

5 prime UTR variant 58,753 4215 12,434
(432 [11,331; 14,018])

90
(117 [9; 531])

Noncoding transcript exon
variant 504,846 13,166 123,426

(5194 [113,905; 134,625])
316

(309 [82; 1210])

3 prime UTR variant 237,749 5596 57,344
(1625 [54,020; 61,640])

127
(120 [28; 472])

Downstream gene variant 3,112,542 71,227 757,570
(26,960 [704,675; 821,758])

1818
(1259 [722; 5243])
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Table 3. Cont.

Variant Type Total Count Novel
gnomAD

Mean
(SD [Min; Max])

Mean Novel
(SD [Min; Max])

Intergenic variant 7,374,606 362,260 1,651,845
(25,220 [1,564,267; 1,736,263])

9031
(1648 [5484; 14,930])

Intron variant 10,367,399 194,729 2,634,492
(48,769 [2,512,167; 2,764,304])

4368
(3055 [1751; 12,885])

Functional variants by type

Splice acceptor variant 1319 66 269
(13 [232; 307])

3
(1 [1; 13])

Splice donor variant 1855 70 393
(16 [351; 449])

6
(2 [2; 16])

Splice-donor-region variant 3471 123 839
(45 [754; 953])

3
(3 [1; 15])

Splice donor fifth-base variant 1499 73 341
(17 [299; 389])

5
(2 [1; 12])

Splice-region variant 19,629 254 4862
(179 [4603; 5262])

5
(5 [1; 36])

Transcript ablation 4 0 2
(1 [1; 3]) 0

Frameshift variant 2453 269 351
(66 [273; 980])

11
(21 [1; 335])

Missense variant 67,397 3617 12,257
(1176 [10,682; 14,876])

75
(112 [1; 421])

Start lost 234 10 44
(5 [29; 60])

1
(1 [1; 6])

Stop gained 1087 28 152
(18 [122; 203])

1
(2 [1; 28])

Stop lost 264 9 77
(7 [58; 98])

1
(0 [1; 3])

Synonymous variant 51,160 1180 12,225
(706 [11,127; 13,741])

27
(35 [1; 140])

Protein-altering variant 67 16 4
(5 [1; 90])

2
(5 [1; 44])

Medically relevant variants in the Latvian population

Pathogenic 344 - 40
(5 [26; 56]) -

Likely pathogenic 177 - 19
(3 [11; 30]) -

Benign 93,468 - 35,285
(575 [33,879; 36,871]) -

Likely benign 19,519 - 1412
(58 [1253; 1617]) -

Protective 43 - 18
(3 [9; 26]) -

Drug response 203 - 76
(9 [53; 106]) -

Association 183 - 81
(8 [58; 101]) -

2.4. Relation between Latvian and Global Populations

We performed a robust population structure analysis using the ADMIXTURE and
principal component analysis (PCA), including a limited set of global and European samples
from publicly available 1000 Genomes project (1000G) and Allen Ancient DNA Resource
(AADR) datasets. As expected, the PCA displayed notable clustering of the Latvian
population within the European cluster, though this was distinctly separate from other
1000G European sub-populations (Figure 1). ADMIXTURE analysis of K = 6 showed
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the lowest cross-validated error of 0.12813. Similar to PCA, ADMIXTURE shows clear
distinction between geographically distant populations with noticeable heterogeneity
within the population of Latvia (Figure 1). When put in the context of ancient genomes,
the Latvian population approaches clusters of ancient European populations of Western-
European hunter-gatherers and Yamnaya (Figure 1), with the age of the samples from
Latvia mirroring gradual admixture events from major European source populations.
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Figure 1. Principal component analysis (PCA) of merged LVBMC, 1000G, and AADR datasets.
(A) European cluster with Latvian, Finnish (FIN), Central European (CEU), British (GBR), Spanish
(IBS), and Italian (TSI) samples. (B) Zoomed-out global population clusters with European (EUR),
African (AFR), American (AMR), East Asian (EAS), South-East Asian (SAS) groups. (C) Map of
countries for modern genomes included in PCA with Latvia highlighted. (D) AADR ancient (grey
circles) and modern European clusters (coloured circles). Samples from Latvia are represented by
squares and coloured by age. Ancient clusters annotated according to Allentoft et al. 2022 [6]. Age
defined as zero for modern and years before 1950 for ancient samples [14]. (E) ADMIXTURE analysis
of 1000G and LVBMC WGS samples.

2.5. The Medical Relevance of Identified Variants

In our dataset, we detected 344 pathogenic variants according to the ClinVar database,
with an average of 40 pathogenic variants per individual, while some scored up to 56 or as
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low as 26 (Table 3). As expected, the pathogenic variants appeared to be relatively rare, hav-
ing a median frequency of 0.008 [IQR = 0.003–0.037]. The frequencies of pathogenic alleles
within the Latvian cohort were similar to the total allele frequencies (AF) calculated for other
populations represented in the gnomAD r2.1.1 exome dataset (p-value = 0.91, df = 567.67,
t = 0.10), with some exceptions such as rs147574249 (AF in Latvian population = 0.02, AF
in gnomADe = 0.10) or rs13222 (0.04, 0.0002). In addition, 43 protective variants were
detected with an average of 18 variants per individual.

2.6. Imputation Panel Comparison

We merged the genome sequences of all 502 individuals into the Latvian population-
specific reference panel (LVBMC) and compared its imputation performance with publicly
available and ethnically heterogenous imputation reference panels: (1) the reference panel
from a recent release of 1000G comprising WGS of 3202 individuals, (2) the same 1000G
panel with relatives excluded resulting in 2504 unrelated individuals, and (3) the TOPMed
R2 panel of 97,256 genomes (Figure 2).
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Figure 2. Number of SNVs imputed from different imputation reference panels (IRP): (A–C) Number of
common (>5%), low-frequency (0.5–5%), and rare (<0.5%) variants imputed for Latvian array genotypes.

In total, the LVBMC panel imputed 12.1 million SNVs or 98.56% compared to the
1000G panel (Figure 2) and 3.96 million INDELs, which is 1.26 times more than the 1000G
panel. The LVBMC panel performed better, particularly for SNVs with a frequency of
0.05% or higher, while the number of high-confidence low-frequency variants imputed
with the LVBMC panel was the lowest among all of the panels tested. In total, 11.38 million
imputed variants overlapped between the LVBMC and 1000G panel, with 9.4 million
variants falling into the category of high-confidence genotypes (INFO score > 0.8). By using
the LVBMC imputation reference panel (IRP) we managed to impute 4.68 × 106 unique
variants (43% SNVs), while 1000G imputed 128,081 (64.4% SNVs) variants that were not
imputed by the LVBMC IRP. These uniquely imputed variants had an average frequency of
0.099 [IQR = 0.005–0.095] for the LVBMC and 0.036 [IQR = 0.002–0.008] for the 1000G panel-
specific variants, respectively. We then aimed to investigate the impact of the presence
of relatives in the IRP dataset on the imputation performance. Therefore, we developed
another 1000G-derived dataset by excluding relatives from it, which decreased the number
of imputed high-confidence SNVs by 2.1%. Finally, we tested the imputation performance
of the TOPMed dataset, a large reference panel comprising 97,256 genomes, which provided
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2.4% more SNVs in total, and 26.0% more high-confidence SNVs compared to the LVBMC
IRP (Figure 2).

In order to evaluate the imputation accuracy of our panel, we performed a separate
imputation analysis by simulating an array dataset consisting of 200 out of 502 overall
sequenced samples. To simulate the array data, we randomly selected 500,000 SNPs to be
imputed, allowing the rest of the SNPs to serve as a gold standard for concordance analysis.
The dataset of 200 simulated array samples was then imputed using a reduced LVBMC
IRP, consisting of 302 remaining genomes and 1000G IRP. In total, accuracy was assessed
for 9.4 × 106 variants imputed by the reduced LVBMC panel overlapping gold standard
variants and 8.4 × 106 variants imputed by the 1000G panel, respectively. Although the
haplotype prediction was close to equal between both panels tested (reduced LVBMC and
1000G), accuracy was slightly lower for the reduced LVBMC IRP with a total concordance
of 92.85% compared to 93.20% for the 1000G IRP (Table 4). Both panels had an equal NR
sensitivity of 0.89, while NR discordance was lower for 1000G with 0.117 compared to
0.134 for the reduced LVBMC IRP. In addition to the imputation of the random simulated
array, we also imputed only the WGS-derived variants that were overlapping Global
screening array genotypes (230,451 in total); however, no significant change in the accuracy
of imputed variants was observed.

Table 4. Comparison of whole-genome sequencing-derived genotypes determined by array or
imputed using 1000G and reduced Latvian population-specific reference panels.

WGS Genotype Overlap (% [Mean; SD (Min; Max)])

Compared Set REF ALT_1 ALT_2

Array (n = 316) REF
98.5

[318,418; 2491
(309,942; 324,671)]

0.2
[219; 25

(167; 424)]

0.2
[135; 162
(1; 642)]

Imputed with 1000G panel
(n = 200) REF

96.4
[4,976,995; 31,027

(4,839,014; 5,030,586)]

10.8
[211,324; 9452

(193,120; 277,490)]

1.0
[13,574; 1339

(10,398; 20,400)]

Imputed with reduced
LVBMC panel (n = 200) * REF

96.6
[5,724,931; 59,377

(5,532,919; 5,811,414)]

12.8
[275,223; 20,029

(238,691; 354,592)]

1.8
[25,167; 2280

(20,140; 34,645)]

Array (n = 316) ALT_1
0.9

[3067; 1901
(702; 6486)]

99.5
[105,725; 3716

(99,028; 113,350)]

0.5
[281; 180
(46; 955)]

Imputed with 1000G panel
(n = 200) ALT_1

3.2
[165,345; 11,462

(140,740; 219,026)]

85.1
[1,671,734; 28,554

(1,583,691; 1,739,678)]

6.0
[78,923; 3714

(72,727; 104,440)]

Imputed with reduced
LVBMC panel (n = 200) * ALT_1

3.2
[188,676; 16,716

(158,304; 280,839)]

83.0
[1,784,775; 37,177

(1,669,064; 1,868,066)]

6.0
[82,413; 5783

(73,026; 117,744)]

Array (n = 316) ALT_2
0.6

[1781; 654
(430; 3442)]

0.3
[347; 38

(273; 672)]

99.3
[59,945; 1873

(56,492; 65,564)]
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Table 4. Cont.

WGS Genotype Overlap (% [Mean; SD (Min; Max)])

Compared Set REF ALT_1 ALT_2

Imputed with 1000G panel
(n = 200) ALT_2

0.4
[21,463; 5702

(9101; 33,309)]

4.2
[81,625; 4195

(73,042; 111,549)]

92.9
[1,214,036; 19,902

(1,150,271; 1,261,170)]

Imputed with reduced
LVBMC panel (n = 200) * ALT_2

0.2
[13,949; 2369

(9743; 23,925)]

4.2
[90,491; 6953

(77,116; 133,932)]

92.2
[1,268,448; 21,304

(1,189,978; 1,317,623)]

REF—Homozygous reference 0/0 haplotype; ALT_1—Heterozygous variant 0/1 haplotype; ALT_2—
Homozygous variant 1/1 haplotype; * The reduced LVBMC imputation reference panel is a subset of the initial
LVBMC reference panel consisting of 302 instead of 502 genomes. The percentage indicates the average proportion
of haplotypes matching (e.g., REF/REF) or mismatching (e.g., REF/ALT_1) for one individual. Bold highlights
figures indicating concordance between genotypes in each set.

3. Discussion

The representation of Latvian genomes in a large genomic dataset such as gnomAD is
virtually absent. This fact significantly impacts genetic research globally and negatively
influences the diagnostics of monogenic diseases and cancer. This is the first report on
the genetic variance of the Latvian population, presenting results from the high-coverage
whole-genome sequencing (WGS) of 502 individuals from the population of Latvia. We
confidently called 18,266,684 small and 61,605 large variants with 601,374 polymorphisms
being novel compared to gnomAD. We also constructed a population-specific imputation
reference panel and showed that it can improve the accuracy and performance of imputation
for common and low-frequency variants.

The use of large national biobanks to establish a population reference genome helps
to avoid the bias that may arise from smaller, targeted (often disease-specific) cohorts
as a source of individual genomes. In this study, there was no phenotype-based cohort
selection performed before sequencing. Instead, we attempted to include all the available
genomes from the Genome Database of the Latvian Population, keeping the basic inclusion
criteria applied only to the quality of sequencing data. Nevertheless, the final study
group appeared to be diverse, representing the Latvian population in terms of age, sex,
ethnicity, and geographic distribution. The general assessment of WGS data showed
high quality, with most of the genomes having an average of 30× coverage and almost
20% of sequences reaching 50× coverage. The quality of variant calling was similar to
previously reported [15,16], showing a 98.2% concordance rate and 0.96 NR sensitivity
when compared to array-based genotyping. Since the aim of this study was not to perform
an in-depth characterization of population structure and ancestry markers, we did not
attempt to include a larger set of other populations with available genotypes and restricted
ourselves to the expanded 1000G dataset including 3202 samples and the Allen Ancient
DNA Resource (AADR) dataset of 5981 ancient and modern samples. Overall, the principal
component analysis (PCA) showed consistent results with previous regional studies [5,17],
where the clustering of populations within the PCA mirrors their geographic distances.
Nevertheless, an in-depth population analysis of a larger number of Latvian samples will
be reported elsewhere.

The overall variant diversity distribution in our study was consistent with those re-
ported in other sequenced populations [15,17–20], with the main differences stemming from
the total number of WGS samples included in the analysis. Sequencing of 1076 genomes in
Poland with an average coverage of 35.3× resulted in 39.3 million small variants, while
this number increased to 76 million in 1171 genome sequences from Brazil with an average
coverage of 38.6× [19,20], compared to 30.9 million unfiltered variants discovered in our
cohort. Compared to the mean of 3.8 million SNVs discovered in our samples, sequencing
of genomes from Poland resulted in similar results of 3.71 million single-nucleotide variants
per genome [18], two sequenced individuals from United Arab Emirates (UAE) yielded 3.9
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and 4.0 million variants per genome [21], while 97 sequenced genomes in Ukraine resulted
in the average of lower number of 3.48 million SNVs [17]. The number of discovered small
insertions and deletions was also similar between studies. Compared to 0.65 million indels
found in a Latvian cohort, a study in Poland found a mean of 0.7 million indels per genome,
while 6.4 and 6.6 million indels were called in the two genomes from the UAE [18,20].
Unlike for SNVs where numbers were lower, the cohort from Ukraine showed an increased
number of 1.48 million indels per individual [17].

The proportion of novel variants was 3.3%, though markedly higher for structural
variants (41.78% novel) and polymorphisms affecting the reading frame of the gene
(10.97% novel) or altering a protein structure (23.88% novel). It should be noted that
the actual number of variants identified in our study was larger, and here we report only
those variants that were identified on at least three occasions in the case of small variants
(SNVs and INDELs). The particular criterion of the minimum number of variant occur-
rences in the analysed cohort was set to increase the reliability and ensure the quality of
called variants for subsequent analysis, retaining 18.3 million SNVs and indels from a
total set of >30 million variants identified. It is clear that such an approach significantly
decreases the total number of rare and unique variants detected. Despite this, we managed
to report 344 pathogenic or likely pathogenic variants in our dataset. The frequency of
these clinically relevant variants was similar to gnomADe populations, with some excep-
tions, such as missense variant rs13222 in the ARK1C2 gene from the aldo/keto reductase
superfamily—involved in the conversion of aldehydes and ketones to their corresponding
alcohol—which is highly expressed in fat and liver tissue, and rs147574249, also a missense
variant within the FCGR3B gene—involved in immune regulation—with highest expres-
sion in the spleen and appendix [22]. More careful investigation is needed to assess the
population-specific variants of medical relevance, considering all identified potentially
pathogenic variants and including a manual inspection step to assess their quality.

Consistent with previous studies, our results show that the use of population-specific
imputation reference panels significantly improves the genotype imputation [13]. De-
spite the relatively small sample size of the established LVBMC reference panel, the
panel enhanced the imputation by an increased number of common (>5%) and low-
frequency (0.5–5%) SNVs. Confidentially imputed variants that were unique to the LVBMC
IRP showed high frequency at 19% compared to only 2% for variants imputed by the
1000 Genomes Project (1000G) panel. However, unlike shown in previous studies [13],
we did not observe improvements in the imputation of rare variants (<0.5%). The poorer
imputation performance of rare variants most likely arose from the relatively small refer-
ence panel sample size and also the resulting underrepresentation of rare alleles in our
dataset compared to conventional imputation panels. In addition, it can be attributed to
the exclusion of relatives and the applied phasing method, which did not consider linkage
information from raw reads [13]. Meanwhile, the notably better performance of the 1000G
imputation in the case of rare variants may be explained by the inclusion of 600 additional
trios and higher coverage [15]. Importantly, we expect results to change considerably with
the increase in the LVBMC IRP sample size.

The concordance between WGS data and array-derived genotypes was relatively high
(98.5% for reference haplotypes) and consistent with previous studies [17]. Nevertheless,
when focusing on the imputation accuracy, we did not observe improvement comparing
variants imputed by the LVBMC and 1000G panels. Interestingly, although concordance
with array genotypes was better than with imputed genotypes, both panels produced
proportionally fewer false positive non-references, indicating possible limitations of WGS
accuracy. Finally, even imputation based on a small panel consisting of 302 LVBMC
genomes displayed 92.85% total concordance with actual genotypes in the independent set
of 200 samples.

Results of our assessment as well as similar studies show that increased population-
specific variation frequency and longer-shared high linkage disequilibrium (LD) regions of
populations with local IRP enhance imputation and can result in detection of additional
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medically relevant polymorphisms [13,23]. Further research should evaluate if higher
admixture of European founding populations in the LVBMC IRP might be beneficial
for haplotype prediction in a broader cohort of European descent individuals as well as
ancient genomes, due to the higher frequency of variants associated with ancient European
populations. Additionally, pangenome reference could be constructed from existing WGS
samples, further improving alignment and variant calling of genomes from the population
of Latvia [24,25].

It is crucial to address the ethical aspects of this research, particularly when consid-
ering the extended use of population-based genome variation references. The current
LGDB framework offers a robust solution for safeguarding personal data. This includes a
government-regulated pseudonymization process and comprehensive informed consent,
which permits the broader application of the data collected. Furthermore, we are proac-
tively participating in the European ‘1+ Million Genomes’ Initiative to ensure enhanced
cross-border access to population-specific genomic datasets. One of the study’s limitations
is the relatively small sample size, as evidenced by the imputation performance on rare
variants. Continued sequencing efforts are essential to address and enhance this situation.

In conclusion, we have presented as far as we know the first analysis of a significant
number of genome sequences from the Latvian population. This high-quality dataset
provides a detailed summary of various types of genetic variation and shows its potential
to improve imputation. A Latvian population reference is an important asset for future
population genetics research, as it fills an important gap in European genetic landscape.

4. Materials and Methods
4.1. Cohort

The study group was selected from The Genome Database of Latvian Population
(LGDB) resources. LGDB ensures patient recruitment, blood sample collection, primary
processing, and relevant anthropometric data according to previously developed stan-
dard procedures [26]. We selected 502 whole-genome sequences that passed the quality
criteria (see Section 4.4) from the total of 887 participants of the LGDB for whom whole-
genome sequencing (WGS) data were available in July 2022. A set of 316 (63%) samples
from this cohort had additional quality-controlled genotype information, which was used
for concordance analysis. For principal component analysis (PCA) and imputation, we
included an expanded 1000G dataset [15], composed of 3202 phased GRCh38 samples
and 117,175,809 small variants. Additionally, a TOPMed imputation panel was included
consisting of 97,256 samples [27–29]. Finally, 5981 ancient and modern samples from the
AADR V54.1.p1 (1240K + HO) [14] were included for population structure analysis, with
source and additional information for each sample provided in Supplementary File S1.

4.2. WGS Sequencing and Genotyping

For the DNA isolation, the phenol-chloroform extraction method on peripheral blood
leukocytes was applied according to the LGDB standard procedures [26]. Both the genome-
wide DNA library preparation and sequencing were performed in Latvia MGI Tech labora-
tory using the MGI automated sample processing and high-throughput genome sequencing
platforms. The PCR-free DNA libraries were prepared with the MGIEasy PCR-Free DNA
Library Prep Set (MGI Tech Co., Ltd., Wuhan, China) on MGISP-960 High-throughput Au-
tomated Sample Preparation System (MGI Tech Co., Ltd., Wuhan, China). The quantity and
quality of the DNA libraries were evaluated using the Qubit fluorometer (ThermoFisher
Scientific, Waltham, MA, USA) and a 2100 Bioanalyzer instrument (Agilent Technologies,
Santa Clara, Ca, USA), respectively. The WGS was performed on the DNBSEQ-T10×4RS
sequencing platform (MGI Tech Co., Ltd., Wuhan, China) using DNBSEQ-T10×4RS High-
throughput Sequencing Set (FCL PE150) (MGI Tech Co., Ltd., Wuhan, China). DNBSEQ
sequencing platforms have been previously benchmarked against other technologies, in-
cluding Illumina-based instruments, showing comparable levels of sequencing quality,
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uniformity of coverage, percent GC coverage, variant accuracy, and providing the cost-
efficient solution for WGS [30,31].

4.3. Variant Calling

Sequences were processed according to GATK best practices. Sequenced reads were
trimmed with trim-galore [32] v0.6.7 and aligned to GRCh38 human reference genome
using BWA-mem2 [33] v2.2.1, with mapped read quality assessed using bamQC [34].
Aligned reads were sorted with samtools [35] v1.9. We used GATK 4.2.6.1 [36] for further
processing. Duplicates were marked with GATK MarkDuplicatesSpark, and base quality
score recalibrated with dbSNP146 using GATK applyBQSR. Three main variant types were
analysed separately. Firstly, small variants were called using GATK HaplotypeCaller with
-ERC GVCF option enabled for further combined variant calling using GATK Genotype-
GVCFs with the default options on 50 MB chunks. Secondly, structural variants were
called with Manta [37] v1.6.0 and merged using SURVIVOR [38] v1.0.7. And lastly, mobile
elements were called using MELT [39] v2.2.2. Parallel [40] v20220522 was used to distribute
computation on Riga Technical University HPC cluster computers and Singularity [41] to
install the necessary software. Nextflow v21.10.6.5660 was used to automate all performed
analyses [42].

4.4. Quality Control and Annotation

Only samples with completed analysis of small variants, structural variants (SV), and mobile
elements (MEI) were included. Additionally, closely related samples (PLINK2 pi_hat > 0.1875)
and those with >3 SD deviation from the mean heterozygosity were excluded [13]. GATK
VariantRecalibrator was used to keep variants with a truth sensitivity of 99.8% and bcftools [35]
v1.9 was used to retain variants with a minimum allele count of three. No frequency filter was
applied to structural variants and mobile elements; however, structural variants were filtered
for false positives by removing variants with |SVLEN| outside the range of 50 to 1 × 107.
PLINK2 [43,44] v2.00a2.3 was used to exclude variants in linkage disequilibrium and to perform
ADMIXTURE [45] and PCA [43] of all 502 individuals. Stratification between WGS batches was
corrected by filtering out variants with >50% allele frequency mismatch between the cohorts, as
described in Bergström et al. [46]. For the annotation of small variants, we divided multi-allelic
entries into separate variants and annotated them using Ensembl VEP [47,48] 107.0, which includes
ClinVar 202201 [48] and gnomAD r2.1.1 [49] datasets. Structural variants and mobile elements
were annotated using AnnotSV [50] v3.1.2. To compare the distribution of allele frequencies, we
used a two-sided two-sample chi-square test for equality of proportions with continuity correction
using prop.test function from the statistics package in R [51] v4.2.0.

4.5. Phasing, Imputation, and Concordance Analysis

Imputation analysis followed Genotype imputation workflow v3.0 V.1 [52] with work-
flow flowchart shown in Figure S1. Eagle [16] v2.4.1 was used for phasing, while Beagle [53]
v4.1 performed imputation with the “window = 500,000” option added. Latvian population-
specific imputation panel (LVBMC) was created by merging all 502 samples, filtering for a
minimum allele count of three, and converting to Bref format. Imputation was performed
on a separate cohort of 200 quality-controlled array samples (Supplementary File S1) geno-
typed using an Infinium Global Screening Array (Illumina, San Diego, CA, USA) on the
iScan System microarray scanner (Illumina, San Diego, CA, USA).

To evaluate the accuracy of imputation, 302 individuals were randomly selected from
the initial set of 502 samples, filtered for a minimum allele count of three, and converted
to the Bref format to develop a reduced LVBMC panel (Supplementary File S1). For the
remaining 200 individuals, 500,000 variants were randomly selected to simulate array data
to be imputed, while the rest of the variants were used as the gold standard for concordance
analysis to evaluate the accuracy of imputed polymorphisms. Our method of assessing
imputation accuracy differs from similar assessment by Mitt et al., 2017 [13], where sepa-
rate whole-exome sequencing data was used as a gold standard, and Byrska-Bishop et al.,
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2022 [15], who used separate sequencing samples from extensive multi-generation sequenc-
ing efforts [54]. Concordance was tested using SnpSift [21] v4.3t software. Additionally, we
calculated NR sensitivity and NR discordancy [13] for WGS samples with genotyped calls
as the gold standard.
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