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Abstract: Depression is a serious neuropsychiatric disease affecting an increasing number of people
worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties)
are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be
one of the most important components of major depressive disorder (MDD; referred to as clinical
depression), although typical cognitive symptoms are less frequent in people with depression than
in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive
disorder). The importance of α-Klotho in the aging process has been well-documented. Growing
evidence points to the role of α-Klotho in regulating other biological functions, including responses to
oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may
contribute to the development of various nervous system pathologies, such as behavioral disorders or
neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive
impairment, it is assumed that this protein may be a molecular link between them. Here, we provide
a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we
propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may
be important in α-Klotho-mediated regulation of mental and cognitive function.

Keywords: Klotho; depression; cognition; oxidative stress; Nrf2; Glu; glutamate receptors; NMDAR;
animal models of depression

1. Introduction

Depression is recurrent, and the most common mental disease manifests as depressed
mood and the loss of pleasure or interest in activities for a long time. According to the
WHO, approximately 280 million people worldwide suffer from depression, i.e., 3.8% of the
general population, including 5% of the adult population. Depression is the leading cause
of suicide. Approximately 700,000 suicides are committed per year. Importantly, suicide is
the fourth leading cause of death among people aged 15–29 [1]. This makes depression a
huge burden for individuals, their families, society, and the economy. Numerous options
are available for the pharmacotherapy of depression; however, their efficacy is often limited,
and unwanted side effects may occur. Traditional antidepressants regulate the levels of
monoamines (including serotonin and norepinephrine) in the central nervous system and
require long-term continuous (usually several weeks) use to produce a clinically significant
therapeutic effect. Unfortunately, two-thirds of patients are prone to relapse or do not
respond to such treatment [2]. It is estimated that approximately 20% of patients with major
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depressive disorder (MDD) develop chronic forms of depression. Recently approved by the
FDA (2019), ketamine (N-methyl-D-aspartate (NMDA) receptor antagonist with additional
effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, L-
type voltage-dependent calcium channel (L-VDCC), hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels, opioid receptors, and monoaminergic receptors) is an
essential drug for the treatment of drug-resistant and suicidal depression, but its use
is associated with many side effects [2–5]. Nevertheless, the success of ketamine as a
fast-acting antidepressant has been an important impetus for extensive research into new
antidepressants, the mechanisms of action of antidepressants (especially regarding their
role in synaptic targets), and the pathomechanisms of depression [2,3,6].

Depression is most often accompanied by cognitive impairment. Sometimes, the loss
of higher mental functions may dominate the clinical picture and significantly impact
patient functioning [7]. For many years, cognitive impairment in depression has often
been downplayed. Still, recently, mainly due to its high frequency in the acute stages of
depression, there has been a significant increase in interest. It is suggested that the presence
of cognitive symptoms in patients with MDD may significantly determine the quality of
life and the risk of relapse. Therefore, the treatment of depression should also be aimed at
combating cognitive symptoms. In addition, scientific research is increasingly focusing on
developing new drugs that reduce depression and cognitive symptoms [2–5,7,8]. Similarly,
new potential molecular targets for this type of therapy are being identified [2–5,7–10].

Klotho is a relatively recently described transmembrane protein related to β-glucuroni-
dase, which regulates aging [11]. Klotho-deficient mice showed various changes resembling
those in patients with premature aging syndromes, such as atherosclerosis, osteoporosis,
age-related skin changes, ectopic calcifications, and infertility [11]. In addition, it has
been shown that low Klotho protein levels (with a concomitant increase in FGF23 levels)
can also be a biomarker of kidney damage. Moreover, its role as a potential indicator of
cardiovascular disease (CVD) risk [12], insulin resistance, and type I diabetes complications
has recently been widely discussed [13]. The Klotho protein exhibits cardioprotection at
the cellular and tissue levels by contributing to the antioxidant response of cells and the
protection of cardiac contractile proteins [14]. It has been shown that Klotho deficiency can
also promote several neuropathologies related to the central nervous system, including
loss of synapses and modulation of their plasticity, behavioral disorders, neuritis, and
neurodegeneration [15]. On the other hand, an increase in the level of Klotho protein
is positively correlated with lifespan (an increase of 30.8%) and resistance to oxidative
stress [16]. In addition, elevated levels of Klotho in a mouse model of Alzheimer’s disease
(AD) have been associated with reduced cognitive deficits and improved cognition in old
and young mice [11,17–20].

Because considerable evidence has confirmed the importance of Klotho in both de-
pression and cognitive impairments, which often coexist, it is suggested that Klotho may
be a molecular factor linking these disorders [21].

This review aimed to discuss the role of the Klotho protein in the pathogenesis of
depression and cognitive impairments. Eligible studies were identified by searching
web-based databases (PubMed/MEDLINE, Google Scholar, Cochrane Library) using the
following search terms: Klotho; depress*; bipolar*; cognitive funct*; cognitive impair*;
Nrf2 depress*; glutamate; NMDA receptor; MDD; BD. In addition, reference lists from the
retrieved articles were reviewed.

We hypothesize a strong connection between Klotho with glutamatergic neurotrans-
mission and oxidative stress. Moreover, Klotho is a promising molecular target for future
pharmacotherapy of depression, especially in patients with severe cognitive impairment.

2. Klotho—Molecular Organization of the Gene and Its Expression

Klotho is primarily produced in the kidney (renal tubules). In addition, it is present
in the brain parenchyma, reproductive organs, pancreas, blood vessels (also expressed
in peripheral blood circulating cells), parathyroid glands, bladder, intestines, muscles,
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and inner ear [22–25]. Klotho is secreted into the serum and cerebrospinal fluid (CSF)
and excreted into the urine [26,27]. In the brain, the highest Klotho expression is found
in the choroid plexus and Purkinje cells of the cerebellum. At the same time, in other
areas (including the cortex, hippocampus, olfactory bulb, substantia nigra, and medulla
oblongata) it is lower [11,22,28–30]. Depending on age, Klotho expression is reduced in the
brains of monkeys, rats, and mice and the cerebrospinal fluid of humans [31,32]. It was
found that Klotho protein function begins in fetal life, gradually increases until adulthood,
and then decreases with age, mainly affecting oligodendrocytes and myelin [22,31,33,34].
Klotho protein deficiency in mice resulted in a decrease in the number of oligodendrocytes
and a weakening of myelin formation [35,36]. In contrast, overexpression of the KL gene
resulted in increased myelin formation [37]. Klotho deficiency leads to increased oxidative
stress (OS) in the hippocampus and levels of markers of programmed cell death [20,33],
accompanied by impaired memory and learning processes in mice aged 6 to 7 weeks [38].
On the other hand, an increase in KL gene expression is associated with an improvement in
cognitive processes and a reduction in OS markers [18,36].

Klotho belongs to the type I transmembrane proteins encoded by the KL gene located
on the long arm of chromosome 13 (13q12) in humans [11,39–41]. Despite the different
localizations of the KL gene in humans, mice (on chromosome 5), and rats (on chromosome
12), it shows high cross-species similarity (see [40] for review). PDS5B and STARD13
sequences flank it, and the coding region contains five exons and four introns (Figure 1).
Interestingly, genes homologous to both KL and PDS5B and STARD13 have also been
identified in lower species such as Danio rerio and Caenorhabditis elegans, suggesting its
primary biological function. KL expression is regulated by several transcription factors,
such as Sp1, Oct-1, Ap-2, Mzf-1, and PAX-4, binding at different sites in the 500 bp promoter
region. The human promoter of the KL gene is particularly rich in Sp1, which collaborates
with Oct-1 (results in the downregulation of KL expression) but lacks the TATA box, which is
typical for eukaryotic genes [40]. However, this region is rich in CpG islands and sensitive to
DNA methylation, which may be crucial in regulating KL expression [42,43]. An important
factor regulating the expression of the KL gene is also tumor necrosis factor-alpha (TNF-α),
which inhibits its transcription by producing the nuclear factor κ-light chain enhancer of
activated B-cell (NF-kB). TNF-α induces the translocation of IKB-α (nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor alpha; NFkB inhibitor) from NFkB-β,
which allows NFkB-β to enter the nucleus [44,45]; this mechanism will be described in
more detail below. In addition, the role of other factors (e.g., vitamin D, epidermal growth
factors, peroxisome proliferator-activated receptor gamma—PPARγ, erythropoietin, family
A homologs of ras genes, rapamycin, statins, fosinopril, and losartan) in KL gene regulation
has been widely discussed [46–55]. Importantly, over ten single nucleotide polymorphisms
(SNPs, including G-395 A/rs1207568, F352 V/rs9536314, and C1818 T/rs564481) have been
identified in the human KL gene, and their significant association with the etiology or
treatment of many diseases (e.g., neurological and cancer) has been confirmed [56,57].

Human Klotho is a single-pass transmembrane protein (1012 aa) consisting of a large
extracellular domain (residues 34–981), a helical transmembrane region (residues 982–1002),
and a short intracellular domain (residues 1003–1012). In the extracellular domain, the pro-
tein contains two regions of glycosyl hydrolase 1: KL1 (residues 57–506) and KL2 (residues
515–953), which may have weak glycosidase activity [41,58–60]. The extracellular part of
Klotho can be cleaved by membrane proteases (mainly ADAM10 and 17—α secretases) to
form a soluble form of Klotho (130 kDa), which is released into body fluids and acts as an
endocrine hormone [26,27,61]. Additional cleavage (β-cut) results in two smaller fragments,
KL1 and KL2 (65 kDa each), which are unlikely to be shed into the blood. In addition to
that, another form of soluble Klotho (called secreted Klotho) has been described, which
consists only of the KL1 fragment generated by alternative splicing (Figure 1). However,
the vast majority (if not all) of soluble Klotho is believed to come from the cleavage of
membrane-bound protein (called shed Klotho). This was confirmed by a significant de-
crease in serum Klotho concentration after the administration of secretase inhibitors [27,62].
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So far, the regulation of Klotho shedding is poorly understood. In particular, it concerns the
functioning of ADAM10/17 secretases, whose expression is modified by various endoge-
nous factors. For example, growth factors, cytokines, and insulin increase their expression
levels. Conversely, tissue inhibitors of metalloproteinases block the action of these enzymes.
Some drugs may also have similar effects (see [27] for review).
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tegrin and metalloproteinase (ADAM) 10 and 17 at two different sites. α-cut (also caused by β-secre-
tases; BACE-1) and β-cut lead to the formation of the shed soluble form of Klotho (KL1-KL2, 130 
kDa and KL1/1, 65 kDa, respectively). Alternative mRNA splicing leads to the formation of secreted 
soluble α-Klotho protein (only KL1, 65 kDa). The FGFR receptor is the primary molecular target for 
α-Klotho, through which it exerts its biological effect. 
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Figure 1. Schematic presentation of the mechanism of α-Klotho protein formation, including the
location of the KL gene on chromosome 13 and flanking sequences PD55B and STARD13. The KL gene
(50 Kb) is structured in five exons. The transcripts are translated into a full-length transmembrane
α-Klotho consisting of three domains: cytoplasmic, transmembrane, and extracellular (two internal
repeats—KL1 and KL2). The extracellular domain of α-Klotho is cleaved mainly by disintegrin
and metalloproteinase (ADAM) 10 and 17 at two different sites. α-cut (also caused by β-secretases;
BACE-1) and β-cut lead to the formation of the shed soluble form of Klotho (KL1-KL2, 130 kDa and
KL1/1, 65 kDa, respectively). Alternative mRNA splicing leads to the formation of secreted soluble
α-Klotho protein (only KL1, 65 kDa). The FGFR receptor is the primary molecular target for α-Klotho,
through which it exerts its biological effect.

The best-known physiological function of alpha Klotho is the interaction with fibrob-
last growth factor receptors (FGFR1c, -3c, -4), significantly increasing their affinity to FGF23
(fibroblast growth factor 23). This indicates that both membrane-bound and soluble Klotho
forms may act as co-receptors for FGF23 [26]. Generally, FGFR activation results in the
induction of PI3K/Akt, phospholipase Cγ (PLCγ), and Ras/MAPK/ERK pathways [63–67],
but the final effect of its stimulation is isoform-dependent. For example, activated FGFR1c
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affects renal phosphate and calcium exchange by inhibiting sodium phosphate transporters
NPT-2a and NPT-2c in the proximal renal tubules, thereby reducing inorganic phosphate
reabsorption [68]. Other known biological functions of Klotho (unrelated to FGFR) include
inhibition of transforming growth factor β (TGF-β) and NF-κB, activation of the nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant pathway, or inhibition of insulin-like
growth factor 1 (IGF-1) pathway [27].

3. Klotho in Depression

Research on the significance of Klotho in depression is relatively rare (especially in
animal studies), which is surprising given that depression is associated with accelerated
cellular aging and aging-related phenotypes and comorbidities seen in Klotho deficiency.
In addition, Klotho is present in brain structures closely related to the pathophysiology
of depression (including the hippocampus and cerebral cortex) and is essential in the
regulation of oxidative and inflammatory processes (well-known pathological factors in
depression) [15,22,27–29]. Moreover, higher Klotho levels are associated with enhanced
prefrontal and temporal cortex network connectivity, larger brain volume, and better
function [69,70].

3.1. The Role of Klotho in Animal Models

Depression is multifacial and conditioned by many factors, among which stress is
considered one of the most important predisposing factors [71]. The first study to show
that Klotho levels could be sensitive to stress factors was by Sathyanesan et al. (2012), who
demonstrated its reduced expression in the brains of rats subjected to chronic unpredictable
stress [72]. Similar changes were also observed in the nucleus accumbens (NAc) and
the hippocampus of mice susceptible to chronic social defeat stress (CSDS—an animal
model of depression assessed using a social interaction test) compared with controls or
unsusceptible groups [73] (see Table 1). Genetic knockdown of the KL gene in the NAc
resulted in depression-like changes in naïve mice. In contrast, its overexpression induced
an antidepressant-like effect in normal mice and improved behavioral responses in CSDS-
susceptible mice, which was associated with the modulation of the GluN2B-containing
NMDA receptor. KL gene knockout resulted in a selective reduction in GluN2B expression
comparable to that observed in CSDS-susceptible mice. In addition, overexpression of
Klotho in the NAc reversed the reduction in GluN2B expression, accompanied by a change
in synaptic and structural plasticity in the NAc of CSDS-susceptible mice. The use of a
specific GluN2B antagonist (Ro 25-6981—a highly potent and selective blocker of NMDARs
containing the NR2B subunit; bilateral infusion into the NAc at 0.1 µM, 0.5 µL) abrogated
the beneficial effects of increasing Klotho level in CSDS-susceptible mice [73]. Moreover,
Tan et al. (2023) noticed that KL gene expression in hippocampal neurons is regulated by
estrogen, which translates into the resistance of female rats to 3-week chronic unpredictable
mild stress. CUMS induced depression-like behavioral changes (anhedonia- and anxiolytic-
like behaviors, deficits in spatial learning and memory, as assessed using the sucrose
preference test, open-field test, and Morris water maze test) only in male rats (but not in
females), and these changes were correlated with decreased Klotho protein levels in the
hippocampus. AAV-mediated downregulation of Klotho expression in the hippocampus
of rats (both sexes) decreased stress resilience, which was observed in both females and
males, being particularly pronounced in females. These results confirm that Klotho is
an important factor in sex differences in stress resistance. The same study also showed
that Klotho is a significant factor in the estrogen-dependent increase in the number of
presynaptic vesicular glutamate transporter 1 (Vglut1)-positive clusters on the dendrites of
hippocampal neurons [74,75] (see Table 2). This finding confirms the relationship between
Klotho and glutamate in the pathomechanism of stress-dependent diseases, including
depression.
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Table 1. Summary of studies on the relationship between Klotho changes and depressive-like
behavior using animal models of depression.

Species/Strain Model of Depression Samples Methods Results References

Male
Sprague–Dawley

rats
(250–300 g)

Chronic unpredictable
stress

(CUS; 35 days)
Choroid plexus RT-qPCR ↓ KL gene in CUS

rats [72]

Male C57BL/6 J mice
(8–10 weeks old)

Chronic social defeat
stress (CSDS; 10 days)

Whole brain (WB),
nucleus accumbens

(NAc), hippocampus
(Hp), prefrontal

cortex (PFC)

Western Blot

↓ Klotho in WB,
NAc, and Hp in mice
susceptible to CSDS
↔ Klotho in PFC

[73]

Male and female
Sprague–Dawley

rats (10 weeks old)

Chronic unpredictable
mild stress (CUMS;

3 weeks)
Hippocampus (Hp) Western Blot

fluorescence

↓ Klotho in whole
Hp and CA1

pyramidal neurons
in males (not in

females) in the CUS
group

[74]

Female
Sprague–Dawley

rats (10 weeks old)

Ovariectomy (OVX) +
estrogen (E2)

treatment (48 h or
7 days)

Hippocampus (Hp) Western Blot
immunostaining

↑ Klotho in whole
Hp and CA1

pyramidal neurons
after 48 h and 7 days

E2 treatment

[74]

Table 2. The impact of genetic manipulations (KL gene knockdown/overexpression) on the develop-
ment of depressive-like behavior and accompanying tissue changes. Summary of animal studies.

Species/Strain Genetic Model Results—Behavioral
Tests Samples Results—Western

Blot References

Male CD1 mice
(6 months old)

Adeno-associated
virus

(AAV)-mediated
knockdown of KL in
nucleus accumbens

(NAc)

↓ sucrose consumption
in sucrose preference
test and time spent in
the center in the open

field test
↑ immobility time in the
forced swim test and tail

suspension test

Nucleus
accumbens

(NAc)

↓ GluN2B (total and
surface, not

intracellular) and
PSD-95 (total)
↔ GluN1 and
GluN2A (total,

surface, and
intracellular)

[73]

Male CD1 mice
(6 months old)

Adeno-associated
virus

(AAV)-mediated
overexpression of KL

in NAc + chronic
social defeat stress

(CSDS; 10 days)

↓ interaction ratios in
the social interaction test
↑ sucrose consumption

in the sucrose preference
test and time spent in
the center in the open

field test
↓ immobility time in the
forced swim test and tail

suspension test

Nucleus
accumbens

(NAc)

↑ GluN2B (total and
surface, not

intracellular) and
PSD-95 (total)
↔ GluN1 and
GluN2A (total,

surface, and
intracellular)

[73]

Male and female
Sprague–Dawley

rats (10 weeks old)

Adeno-associated
virus

(AAV)-mediated
knockdown of KL in

Hp
+ chronic

unpredictable mild
stress (CUMS;

2 weeks)

↓ platform area crossing
and time spent in the
target quadrant in the

Morris water maze test
(both sexes)

↓ time in center in
female and total

distance in male in the
open field test

[74]
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3.2. Klotho, Oxidative Stress, and Inflammation in Depression

Confirmation of the hypothesis that Klotho may be related to the pathophysiology
of depression comes from an increasing number of human studies that indicate changes
in Klotho protein in the cerebrospinal fluid and blood. Prather et al. (2015) showed for
the first time a relationship between severe chronic stress and reduced serum Klotho
levels in women [76]. Similarly, decreased levels of Klotho protein are strongly associated
with the severity of oxidative stress and inflammation in the prefrontal cortex of MDD
patients [77]. The regulation of oxidative stress (increased resistance to oxidative stress
at the cellular level) by Klotho appears to be a critical mechanism underlying anti-aging
and neuroprotective processes [78–80]. Over the years, multiple mechanisms underlying
the neuroprotective effects of Klotho, such as the regulation of TGF-β1 or the cyclic AMP
signaling pathway, have been proposed [79]. Interestingly, a growing body of evidence
suggests a role for cross-talk between Klotho and Nrf2 as a novel mechanism independent
of the FGF23 axis [81]. The Nrf2-related pathway is the most important intracellular
mediator of oxidative stress and aging [82]. Moreover, Nrf2, a redox-sensitive transcription
factor, regulates cognitive function deficits common in depression [83]. Nrf2 activation
seems to be significant for the neuroprotective properties of this factor, as well as for
cognitive improvement [83,84]. At the same time, enhanced generation of reactive oxygen
species (ROS) and dysfunction of the main antioxidant defenses, including the KEAP1-Nrf2
system, have been observed in patients with MDD and suicide victims [85–89]. However,
the question is: How does Klotho regulate Nrf2 activity? Numerous studies suggested that
Klotho acts as an endogenous Nrf2 activator, preventing oxidative stress and inflammatory
damage in different cell types [90,91] (see also Table 3). Maltese et al. (2017) showed that
soluble Klotho induces the activity of main antioxidant defense enzymes such as heme
oxygenase-1 (HO-1) and peroxiredoxin 1 (Prx-1) and increases Nrf2 expression and the
levels of reduced glutathione (GSH) in human aortic smooth muscle cells (HASMCs) [92].
On the other hand, Wen et al. (2022) found that recombinant human Klotho pretreatment
(100 ng/mL) enhanced the antioxidant response by activating the PI3K/Akt-Nrf2/HO-1
signaling pathway in human retinal pigment epithelial cells (ARPE-19) [81]. In diabetic
nephropathy, Klotho overexpression reduces oxidative stress via Nrf2 activation [91]. In
the context of the molecular background of depression, the results published by Zeldich
et al. (2014) and Tanito et al. (2007) seem to be relevant. These studies show that the 4 h
pretreatment of neurons with α-Klotho (0.4 µg/mL) induces cytoprotective pathways and
increases the expression of the main antioxidant Nrf2 target genes, such as thioredoxin
1 (Trxdr-1) and peroxiredoxin 2 (Prx-2) [78,93]. Moreover, Klotho protects hippocampal
neurons from glutamate-induced oxidative disturbances via the Nrf2-antioxidant-related
pathway [78]. This also provides new opportunities to combine these intracellular pathways
with glutamatergic transmission. The potential role of Klotho in NF-κB regulation is
equally significant [94]. Immune mechanisms are associated with oxidative stress and
Nrf2 dysfunction in depression [95]. Therefore, it is important to identify targets linked to
this signaling cascade. It has been found that Klotho suppresses pro-inflammatory NF-κB
activation and inhibits NF-κB-dependent cytokine production [96]. Moreno et al. (2011)
demonstrated the potential mechanisms of this effect, associated with TNF-α function,
which promotes NFκB-dependent downregulation of Klotho expression [44]. Regarding the
mechanism, significantly induced IκBα degradation was reversed by Klotho treatment in
H9c2 cells (a ventricular cardiomyocyte cell line). Furthermore, nuclear translocation of NF-
κB (p65) was inhibited, whereas Nrf2 nuclear accumulation was enhanced by Klotho [90].
Additionally, studies on the safety and effectiveness of biofield therapy or TRI 360TM
capsules (proprietary nutraceutical combination) in patients with one or more psychiatric
symptoms (depression, anxiety, asthenia, sleep disorders, etc.) have shown an increase
in the level of Klotho in blood serum, accompanied by a decrease in the level of pro-
inflammatory cytokines and markers of oxidative stress [97,98]. These findings strongly
suggested that Nrf2 activation and NF-κB modulation by Klotho may be relevant molecular
targets for the development and pharmacological treatment of depression. Klotho regulates
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the signaling pathways involved in the pathogenesis of depression (especially in relation to
oxidative stress imbalance, inflammation, and glutamate neurotransmission). Importantly,
our previous studies showed that significantly lower levels of α-Klotho protein in the
prefrontal cortex of patients with MDD were associated with decreased catalase (CAT)
and sodium dismutase activity (SOD) [77]. An increase in IL-6 and TNF-α levels was
also observed. These changes were accompanied by a trend toward decreased Nrf2 and
increased NF-κB (p65) protein levels [85]. A better understanding of the mechanism
underlying how Klotho-Nrf2- NF-κB induces antioxidant and anti-inflammatory effects
may lead to the development of new pharmacological strategies for depression.

Gao et al., 2021 suggest that peripheral changes in Klotho protein concentration are
more important for elderly MDD patients. While young MDD patients (also older patients
with recurrent depressive episodes) showed no changes in plasma α-Klotho levels, a sig-
nificant decrease was observed in elderly MDD patients, associated with increased disease
severity and the number of T rs9315202 alleles. Moreover, young MDD patients manifested
a significantly earlier age of onset, higher α-Klotho levels, and lower HAMD (the Hamilton
Depression Scale) scores compared with elderly MDD patients [99]. Similar to the animal
studies mentioned above, the importance of gender in the context of the role of Klotho
protein in depression has also been established in human studies. For example, a large
cross-sectional NHANES study (patients over 40 years of age) showed a negative correlation
between serum α-Klotho concentration and the incidence of depression in middle-aged and
elderly women (but not in men) [100]. Similarly, several other studies examining Klotho
reported sex-related differences [101,102]. Interestingly, no relationship was found between
a mother’s mental health (symptoms of depression, clinical depression, antidepressant use)
before (or during) pregnancy and her children’s cord blood Klotho levels [103].

In patients with bipolar disorder (BD), higher serum Klotho levels have been reported
than those in the MDD group [104]. Similarly, an increase in Klotho was observed in BD
patients (both in remission and mania) compared with a control group. At the same time,
there were no significant differences between the levels of this protein in patients in mania
and remission [105] (see Table 4).

Table 3. Association between Klotho with oxidative stress and inflammation. Summary of animal
studies.

Species/Strain Animal Model Samples Methods Results—Western Blot References

Male and female
Klotho (−/−) mice

Klotho deficiency
(backcrossed to 129 Sv inbred mice

for more than nine
generations to establish a 129 Sv

congenic Klotho-deficient mouse line)

Liver extracts
(cytosolic,

nuclear fraction)
Western Blot ↓ cytoplasmic Nrf2

↓ nuclear Nrf2
[106]

Male and female
EFmKL46 mice

Klotho overexpression, EFmKL46
(transgenic allele)

Liver extracts
(cytosolic,

nuclear fraction)
Western Blot ↑ nuclear Nrf2

Male and female
Klotho (−/−)

mice
(8 months old)

Klotho deficiency (hypomorphic
mutant; backcrossed to 129/SvJ mice

for more than nine generations to
achieve congenic background)

Heart
(cardiomyocytes)

DHE staining
Western Blot

↑ ROS
↓ nuclear Nrf2 [107]

Male C56BL/6
mice

(6–8 weeks old)

Diabetic mice treated with Klotho
protein (0.01 mg/kg i.p. every 48 h) Heart Western Blot

RT-qPCR

↑ Nrf2; ↓ nuclear NF-κB p65
↑mRNA HO-1, NQO-1,

GCLC
↓mRNA TNF-α, Cox-2, IL-6

[90]

Male and female
E18 Sprague-Dawley

rats

Four-hour pretreatment with Klotho
(0.4 µg/mL)

Primary
hippocampal

neurons
Western Blot ↑ Prx-2

↑ Trxrd-1 [78]

Male and female
Klotho (−/−) mice

Klotho deficiency (hypomorphic
mutant, 129 Sv genetic background) Lung

ELISA
copper-reducing

equivalents

↑ 8-OHdG
↑ total antioxidant capacity [108]

Abbreviations: DHE staining—dihydroethidium (5-ethyl-5,6-dihydro-6-phenyl-3,8-diaminophenanthridine, hy-
droethidine).



Int. J. Mol. Sci. 2023, 24, 15268 9 of 22

Table 4. Association between Klotho and depression. Summary of human studies.

Group Samples Methods Results References

Chronically high-stress maternal
caregivers for a child with autism

spectrum disorder (n = 90)
Low-stress control mothers of a

typically developing child (n = 88)

Blood serum ELISA
↓ α-Klotho (age- and severity of

depressive symptoms-dependent) in
highly stressed women

[76]

MDD, male (n = 9)
Psychiatrically normal control, male

(n = 9)

Postmortem brain
tissues (prefrontal

cortex; BA10)
ELISA

↓ α-Klotho
accompanied by
↓ CAT, SOD, and

↑ IL-6, TNF-α levels in MDD

[77]

Male and female 20–45-year-olds
with psychological symptoms (e.g.,

sleep disturbances,
anxiety/depression/posttraumatic

stress disorder, stress and confusion,
etc.)

(total n = 84, including n = 42
placebo and n = 42 TRI 360TM

(proprietary nutraceutical
combination) treatment)

Blood serum ELISA

↑ Klotho accompanied by
↑ vitamin C and D3 metabolites,
neurotransmitters (dopamine,

norepinephrine, acetylocholine), and
oxytocin as well as
↓ IL-1β, IL-8, TNF-α,

malondialdehyde, and oxidized-LDL
levels after TRI 360TM

administration (improvement in
psychological state)

[97]

MDD patients (n = 114)
Age-matched healthy controls

(n = 112)
Blood plasma ELISA

PCR

↓ α-Klotho levels in MDD
↔ α-Klotho levels in elderly

recurrent and young MDD patients
(vs. control)

Earlier onset age, higher plasma
α-Klotho levels, and lower HAMD

scores in young MDD
↑ α-Klotho levels in rs9315202 T

alleles carrier regardless age or sex
Negative correlation between the

rs9315202 T allele and disease
severity in the elderly MDD patients

[99]

Depressed patients (n = 5272) ≥ 40
years of age Blood serum

Cross-sectional study
(data collected from
the National Health

and Nutrition
Examination

Survey—NHANES
from 2007 to 2016)

Negative correlation between serum
α-Klotho concentration and the

incidence of depression in
middle-aged and elderly women

[100]

Newborns (n = 72) Cord blood ELISA

No correlation between Klotho levels
and mother’s depression

No relationship between Klotho
levels and infant sex, delivery

specifics including gestational age, or
anthropometrics at birth

[103]

MDD patients (n = 245)
BD patients (n = 59) Blood plasma ELISA

↑ IL-1β, TNF-α, soluble TNF
receptor (sTNFR)1, IL-12, and IL-10

in MDD vs. BD
↑ IL-6, sTNFR2, IL-18, IL-33, ST2

(IL1R Like 1), and Klotho in BD vs.
MDD

IL-1β levels in MDD patients with
melancholic features (vs. without

melancholia)
sTNFR1/sTNFR2 ratio predicted

MDD and state and trait anxiety and
negative affect

[104]

BD patients (type 1; n = 40)
Control (n = 30) Blood plasma ELISA

↑ Klotho levels in BD patients both
in remission and mania

(vs. control)
No difference in Klotho levels

between BD patients in mania and
patients in remission

[105]

Abbreviations: HAMD—Hamilton Depression Scale.
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3.3. The Role of Klotho in Antidepressant Therapy

Growing evidence indicates that Klotho may be related to the effectiveness of antide-
pressant therapy, both pharmacologically and non-pharmacologically. Although Sartorius
et al. (2019) showed no effect of 4-week administrations of escitalopram, venlafaxine, and
buprorion on Klotho levels, another research team found a strong association between
two single-nucleotide polymorphisms (SNPs) of the KL gene in response to selective sero-
tonin reuptake inhibitor (SSRI) treatment in patients (>65 years) diagnosed with late-life
MDD [109,110]. Significant improvement in post-treatment depressive symptoms (eval-
uated using 21 items of the Hamilton Rating Scale for Depression; HRSD-21 at baseline
and after 6 months) was confirmed in patients with at least one minor allele of rs1207568
and a weaker response in patients homozygous for the minor allele of rs9536314 [110].
Based on this, it can be assumed that the T allele of SNP rs1207568 is a protective factor
that determines a stronger response to SSRI treatment, while the G allele of SNP rs9536314
is a risk factor that weakens such therapy. Therefore, it can be hypothesized that carriers
of the double-mutant allele in rs1207568 (T/T) without the double mutation in rs9536314
(non-G/G) should respond better to SSRI treatment, whereas patients without the double
mutation in rs1207568 (non-T/T) and carriers of the double-mutation allele in rs9536314
(G/G) can be considered as a group of patients who will respond worse to SSRI treat-
ment [110,111]. The importance of the Klotho protein in antidepressant therapy in geriatric
patients with severe depression was also confirmed by Hoyer et al., who observed higher
levels of Klotho, but only in the cerebrospinal fluid (not in serum), which was positively
correlated with the number of single electroconvulsive therapy (ECT) sessions [112]. These
observations seem somewhat debatable because another study showed no significant effect
of ECT therapy on CSF Klotho levels. However, numerous limitations of this study (includ-
ing small sample size, antidepressants/antipsychotics/lithium used, and comorbidities—
Alzheimer’s disease) should be considered [113]. CSF Klotho level was also not related
to the Seizure Quality Index (SQI) or the ability to predict the risk of non-response (and
non-remission) in ECT [114]. Furthermore, Sartorius et al. (2019) showed no differences
in serum Klotho levels after ECT therapy [109]. Similarly, the use of transcranial direct
current stimulation (tDCS, a safe, non-invasive neuromodulatory therapy) did not change
the Klotho level in BD patients [115]. However, it should be remembered that peripheral
serum concentrations do not always adequately reflect processes in the central nervous
system. Moreover, it can be hypothesized that the effect of ECT on Klotho may be strongly
determined by the sex and age of the patients [109,112,113] (see Table 5). Recently, it was
postulated that Klotho may play a role in the antidepressant effects of ketamine in patients
with treatment-resistant depression and suicidal thoughts. Significantly higher levels of
Klotho were reported in patients on day 3 after ketamine infusion. At the same time, no
relationship was found between changes in Klotho concentration and changes in depressive
and suicidal symptoms. On the other hand, higher baseline levels of Klotho were related to
a weaker antidepressant effect of low-dose ketamine during the post-infusion follow-up [6].
These studies also support the association between Klotho and glutamatergic transmission,
which has been previously suggested in animal studies [73,74].

Table 5. Association between Klotho and antidepressant treatment. Summary of human studies.

Group Samples Methods Results References

MDD patients (at least 18 points
on the Hamilton

Depression Rating Scale (HDRS,
21 items) undergoing

electroconvulsive therapy
(n = 16) or a monotherapy with

an antidepressant (n = 37)
Healthy controls (n = 39)

Blood serum

ELISA
Hamilton

Depression Rating
Scale (HDRS,

21 items)

No differences between the
baseline Klotho levels of patients

and controls, or between pre-
and post-treatment in depressed

patients, when treated either
with electroconvulsive therapy

or antidepressants

[109]
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Table 5. Cont.

Group Samples Methods Results References

Late-life MDD patients (n = 329;
≥65 years) treated with SSRIs

(esctitalopram, sertraline,
paroxetine, or citalopram) for

22 weeks

Blood DNA sequencing

↓ depressive symptoms after
treatment in patients carrying at

least one minor allele at
rs1207568 and a worse response
in patients homozygous for the

minor allele at rs9536314

[111]

Patients with major depressive
episode (MDD or BD, n = 8;

mean age ~70 years) undergoing
electroconvulsive therapy

Blood serum,
cerebrospinal fluid

(CSF)
ELISA

Difference between pre- and
post-ECT CSF (not serum)

Klotho levels
CSF Klotho levels positively

correlated with the number of
single ECT sessions performed

in each patient

[112]

Patients with major depressive
episode (MDD or BD, n = 9/3;

mean age 59 years) undergoing
electroconvulsive therapy

Cerebrospinal
fluid (CSF) ELISA

↔ Klotho levels after ECT
Klotho level not related to the
Seizure Quality Index (SQI) or
the ability to predict the risk of

non-response (and
non-remission) in ECT

[113,114]

BDI or BDII patients with
moderate to severe depressive
episode (n = 52) randomized to

12 bifrontal active (n = 26) or
sham (n = 26) transcranial direct

current stimulation (tDCS)
sessions over a 6-week treatment

course

Blood plasma ELISA ↔ Klotho levels after tDCS [115]

Patients with treatment-resistant
depression (TRD) and strong

suicidal ideation (n = 48)
subdivided into ketamine
(0.5 mg/kg; n = 24) and

midazolam (0.045 mg/kg)
groups

Blood serum ELISA

↑ Klotho levels in patients on
day 3 after ketamine infusion

No relationship between
changes in Klotho levels and

changes in depressive and
suicidal symptoms

Higher baseline levels of Klotho
were associated with a weaker

antidepressant effect of low-dose
ketamine during the

post-infusion follow-up

[6]

4. The Relationship between α-Klotho and Cognition

It should be noted that the positive effects of Klotho on cognition and synaptic plas-
ticity have been documented in young and old animals and a model of AD [116]. It is
associated with NMDA-dependent neurotransmission [116], which is also involved in de-
pression [3,117], but the mechanism may be different [73,118]; therefore, in this subsection,
we focus on Klotho’s involvement in cognitive changes in an attempt to understand the
mechanism underlying its efficacy. Experiments by Leon et al. (2017) in mice showed
that peripheral delivery of a fragment of the mouse α-Klotho protein (αKL-F, a truncated
peptide) (10 µg/kg, i.p.) for five days before experiments in the Morris water maze and
Y-maze improved learning and memory in young mice in the context of spatial learning
and working memory. Similar results were obtained in aging mice (18-month-old) and
α-synuclein transgenic mice [116]. In addition, heterozygous Klotho (C3H) mutant mice
show impaired recognition and associative memory in a novel object test [38]. Poor memory
retention occurred 24 h after training rather than 1 h after exercise, which was interpreted
as impaired long-term retention of new object recognition [38]. Dubal et al. (2014), using
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transgenic mice overexpressing Klotho (NTG C57Bl/6 mice crossed with hemizygous KL
transgenic mice (line 46) expressing mouse Klotho under the EF-1α promoter), showed an
association between the KL-VS Klotho genetic variant and cognitive changes (Morris water
maze and Y-maze). However, there was no correlation with the age of the mice, suggesting
that Klotho may improve cognition regardless of age [17].

As for human studies, the same authors conducting a meta-analysis found a correlation
between the KL-VS Klotho genetic variant and increased cognition in 718 mostly Caucasian
individuals [17]. The observed association was independent of age, sex, and APOEε4
allele status [17]. In contrast, Zhu et al. (2019) found no correlation between cognitive
impairment and Klotho gene polymorphisms (G-395A/rs1207568 and F352V/rs9536314)
in an Asian population. However, an association was found between Klotho gene polymor-
phisms and urolithiasis, cardiovascular disease (G-395A/rs1207568), cancer, and longevity
(F352V/rs9536314) [56]. Further studies by other authors have documented low serum
Klotho levels as an early predictor of atherosclerosis (50 healthy volunteers), and higher
plasma Klotho levels are associated with better cognition [119,120].

If the mechanisms of enhanced cognitive performance are deliberate, several scenarios
should be considered. It should be noted that Klotho does not cross the blood–brain
barrier (BBB) when delivered peripherally. At the same time, preclinical studies have
observed improvements in cognitive performance [116]. Moreover, changes in the behavior
of NMDARs (GluN2B cleavage) and the enhancement of NMDA-dependent synaptic
plasticity have been observed with peripheral αKL-F treatment [116]. As suggested by
the authors, this phenomenon may be related to the activation of glutamatergic (Glu)
signaling and the enhancement of synaptic plasticity [116]. Indeed, these suggestions
have been verified using proteomic, electrophysiological, and Western Blot analyses [116].
However, the detailed mechanism of the occurring changes that result from one to the
other is unknown. Research in this area is currently ongoing. Dubal et al. (2014) suggested
that elevated Klotho levels may directly or indirectly increase GluN2B activity, facilitating
LTP induction. These suggestions were confirmed using ifenprodil (a GluN2B antagonist
at 5 mg/kg) [17]. This dose was sufficient to block learning and contextual memory
enhancement in heterozygous Klotho transgenic mice.

Several other scenarios related to cognitive improvement and Klotho can be consid-
ered: mitochondrial mechanisms with oxidative stress, myelin metabolism, and changes
in Ca2+ homeostasis [121]. In a mouse model of amyotrophic lateral sclerosis (superox-
ide dismutase SODG93A), Klotho overexpression suppressed proinflammatory cytokines
and neuroinflammatory markers and reduced neuronal loss. Additionally, Klotho pro-
motes myelin production [121]. Subsequent studies have documented that oxidative stress
mechanisms play a role in Klotho-mediated cognitive processes [38]. Klotho mutant mice
with impaired recognition and associative memory accumulate products of lipid peroxida-
tion and oxidative DNA damage in the hippocampus, such as malondialdehyde (MDA),
8-hydroxy-2-deoxyguanosine, increased SOD1 and glutathione peroxidase activity [38].
In addition, Klotho mutant mice express lower mRNA and protein levels of Bcl-2 and
Bcl-XL in the hippocampus [38]. α-Tocopherol, a potent antioxidant (150 mg/kg), admin-
istered for five weeks increased the preference for a novel object in Klotho mutant mice
and restored deficits in associative fear memory, contextual memory, and tone-dependent
freezing [38]. This study found a parallel reduction in MDA-positive cells in the hippocam-
pal CA1 region [38]. When human umbilical vein endothelial cells were preincubated
with Klotho protein and then exposed to TNF-α, suppression of intracellular adhesion
molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression, NFκB
activation, and IκB phosphorylation were observed [122], indicating an essential role of
Klotho in modulating endothelial inflammation [122]. These mechanisms may be necessary
in atherosclerosis [122].

According to Shafie et al. (2020), mechanisms associated with calorie restriction
(low-calorie and low-calorie–high-protein diets) establish a vital role of Klotho in neurode-
generation. Klotho levels and its co-receptor—FGF23—were elevated in the hippocampus
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and prefrontal cortex of rats fed high-protein, low-calorie, and low-calorie–high-protein
diets [123]. In the novel object recognition test, rats fed these diets showed increased recog-
nition speed (a working memory parameter) and reduced anxiety in elevated plus-maze
and open field tests compared with rats fed a fat diet [123]. Increased Klotho expression
was associated with BDNF and c-fos levels, as indicated using a Klotho inhibitor [123].

Gao et al. (2021) proposed an interesting concept: Klotho may represent a neurobi-
ological link between depression and dementia. According to this, depression may be a
risk factor for AD. The reduction in Klotho during depression through oxidative stress and
inflammatory mechanisms paves the way for the development of cognitive impairment
observed in AD [21]. α-Klotho can suppress oxidative stress by reducing insulin/IGF-1
signaling, FOXO phosphorylation, and nuclear translocation [21]. In turn, FOXO pro-
motes reactive oxygen species scavenging by binding to the SOD2 promoter [21]. Similarly,
depressed patients have been found to have reduced gene expression levels of antioxi-
dant enzymes such as SOD and CAT [21]. However, the most-studied phenomenon in
depression is changes in Glu neurotransmission; therefore, the next section will discuss this
context with Klotho.

5. Klotho and Glutamate—The Possible Role of Klotho in Neurotransmission

Glutamate (Glu) is a primary excitatory neurotransmitter in the nervous system. In
synaptic transmission, Glu is released by the presynaptic terminal and binds to specific
ionotropic (AMPA, NMDA, kainate) and metabotropic (mGlu) receptors located in the post-
synaptic membrane, producing various effects in neuronal networks [124]. A growing body
of evidence suggests that changes in glutamate homeostasis and receptor trafficking may
be crucial for the development of depression [125,126]. Moriguchi et al. (2019) conducted a
meta-analysis (based on proton magnetic resonance spectroscopy studies) that showed a
decrease in glutamate levels in the medial frontal cortex of depressed patients [127]. At the
same time, significantly higher peripheral blood glutamate levels were noted in subjects
with major depression compared with controls [128]. The glutamate hypothesis of depres-
sion is strongly supported by the antidepressant effects of specific NMDA antagonists (such
as ketamine or esketamine) [129,130]. In addition, in 2019, esketamine (SPRAVATO) nasal
spray was approved by the Food and Drug Administration (FDA) for adults with treatment-
resistant depression (TRD) who had undergone multiple antidepressant therapies without
regression of clinical symptoms. Therefore, the role of excitatory synaptic transmission
of glutamate appears to be related to both the pathophysiology and pharmacology of
depression [3]. However, the neurobiological and molecular mechanisms that modulate
glutamate neurotransmission in depression have not yet been fully elucidated. Recent
studies have suggested that the Klotho protein regulates the glutamate system. In this
section, we discuss potential interactions between the biological functions of Klotho and
glutamate neurotransmission. It should be noted that these aspects represent an entirely
new direction in molecular research on depression.

The first target, linked to Klotho function and glutamatergic activity, is related to excita-
tory amino acid transporters (EAATs). EAATs comprise a class of five transporter isoforms
(EAAT1–5) that are mainly expressed in neurons (EAAT3–4) and glial cells (EAAT1–2) of
the central nervous system. The primary function of EAATs is glutamate transport (and
uptake) across the plasma membrane [131]. Abnormal expression of EAATs may cause
dysfunction in the glutamate system, leading to depressive symptoms [132]. For example,
human studies have observed reduced EAAT4 transcript expression in the striatum of peo-
ple with MDD [133]. Simultaneously, the expression of glutamate transporters is reduced
in animal models of depression [134,135]. Zink et al. (2010) showed significantly reduced
expression of EAAT2 (rodent nomenclature GLT1) in the hippocampus and cerebral cortex
of learned helpless rats. Similarly, EAAT4 expression was suppressed in the helpless animal
group [136]. The main question in this context remains, “How can klotho modulate Glu
transmission?” The Klotho protein can affect the amount (expression) of EAAT, especially
EAAT3/EAAT4 members. Almilaji et al. (2013) published the first results supporting this
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thesis. In their study, voltage-clamp experiments showed that Klotho cRNA significantly
increased the I-glutamate (Iglu)-induced current (as a function of glutamate concentration)
of EAAT3 and EAAT4 in Xenopus oocytes. Additional confocal microscopy and chemi-
luminescence showed that injection of cRNA constructs encoding Klotho increased the
amount of EAAT3 and EAAT4 proteins in the membranes of oocytes. Finally, researchers
showed that pretreatment of Xenopus oocytes expressing EAAT3 with recombinant human
β-Klotho protein at a concentration of 30 ng/mL increased Iglu-induced current [137]. Sim-
ilarly, Warsi et al. (2015) noted that treatment with soluble human recombinant β-Klotho
protein (30 ng/mL) increased EAAT1 and EAAT2 expression in Xenopus oocytes, Iglu.
The observed effect was reversed with DSAL (D-saccharic acid 1,4-lactone monohydrate;
β-glucuronidase inhibitor) [138]. These results suggest that Klotho upregulates excitatory
amino acid transporters and may play a critical role in regulating neuronal excitation.
A growing body of evidence suggests that the antidepressant activity of some drugs or
novel compounds is related to the regulation of EAAT expression [139,140]. In addition,
the glutamate transporter EAAT3 is regulated by the mammalian target of rapamycin
mTOR [141]. Activation of the mTOR pathway is known to be involved in the rapid effects
of antidepressants [142]. The antidepressant effects of ketamine can also modulate the
mTOR signaling cascade [142,143]. Given this mechanism, the role of Klotho in regulat-
ing the efficacy of antidepressants via the glutamate system cannot be ruled out. This is
the only hypothesis that must be tested in vivo. However, this idea is supported by the
fact that the interaction between mGluR5/EAATs/COX-2 has been documented in the
mouse brain [144]. At the same time, upregulation of Klotho expression in the mouse
testis was observed [145]. Thus, it can be hypothesized that these pathways regulate
each other indirectly through COX-2 (a cellular component of the immune system) and
Nrf2-related antioxidant pathways. Recombinant Klotho pretreatment (0.4 µg/mL per 4
h) of rat primary hippocampal neurons and HT22 cells (a mouse hippocampal neuronal
cell line) protected these cells from glutamate-induced oxidative stress. In turn, primary
hippocampal neurons isolated from Klotho-overexpressing mouse embryos showed higher
resistance to L-glutamate (2 mM) neurotoxicity [78]. However, further studies are required
to confirm these findings.

The ability to regulate the function of AMPA and NMDA receptors is another molec-
ular pathway through which Klotho may be involved. Key evidence (discussed in detail
in Section 4) suggests that Klotho improves memory and synaptic transmission through
NMDA receptors (particularly the GluN2B subunit) [17]. In the context of depression, Wu
et al. (2022) showed extensive evidence (discussed in detail in Section 3) on the relation-
ship between Klotho and NMDAR and the development of depressive-like behavior, in
particular pointing out the potential role of GluN2B inhibition in modulating the positive
effects of Klotho elevation in CSDS mice. These results revealed that the upregulation
of GluN2B may mediate the beneficial effects of Klotho elevation in sensitive mice [73].
It follows that the regulation of the Klotho protein by NMDA receptors may be a new
strategy or molecular target for the pharmacological treatment of depression. Chen et al.
(2023) showed that the effect of low-dose ketamine may be associated with the regulation
of serum Klotho levels in patients with TRD [6]. In contrast, in vitro studies conducted
in cultures of mouse hippocampal neurons treated for 24 h with a mixture of AMPA and
NMDA antagonists (NBQX, APV—20 µM, respectively) showed that the Klotho content
in neurons was significantly lower than that in vehicle-treated cells [146]. These results
also confirmed that Klotho expression in neurons is modulated by glutamatergic signaling.
Mazucanti et al. (2019) proposed that glutamatergic activity may regulate the release of
Klotho and astrocytic aerobic glycolysis. In addition, functional (activated) AMPA and
NMDA receptors are crucial for long-term potentiation (LTP), which is a synaptic transmis-
sion [146]. The molecular mechanisms underlying LTP have been widely studied regarding
the physiological aspects of cognitive function, learning, and memory [147]. Evaluation of
the function (manipulation) of Klotho in NMDA-dependent LTP regulation may be an ad-
ditional target for elucidating the possible role of this protein in glutamatergic and synaptic
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transmission. Electrophysiological studies in the CA1 area of the hippocampus showed
significant impairment of NMDA-dependent LTP in Klotho mutant (KO, Klotho-deficient)
mice. Simultaneously, McN-A-343 (muscarinic agonist, 1.0 µg/µL in saline, i.c.v.) reversed
this effect [148]. Similarly, reduced hippocampal CA1 LTP measured at 6 months of age
was observed in KO (129S1/SvImJ) and overexpressing (OE, C57BL/6J) transgenic mouse
models [149]. In contrast, LTP in the dentate gyrus was increased in adult (4–6 months)
OE mice [17]. These data indicate that Klotho can regulate synaptic plasticity (by both
pre-and postsynaptic mechanisms), but this effect is likely specific to a particular brain
region [17,149].

The role of Klotho in the pathophysiology of depression, mainly in Glu neurotrans-
mission, is not well understood. The promising findings presented in this section should
be considered in further studies on the molecular mechanisms underlying the etiology and
pharmacology of depression.

6. Concluding Remarks

In conclusion, the antioxidant and anti-inflammatory effects of Klotho mediated by
Nrf2- NF-κB, as well as the modulation of glutamate neurotransmission function, seem
to be novel signaling pathways involved in the pathogenesis of depression and cognitive
impairments (see Figure 2). Importantly, the biological role of Klotho in the regulation
of AMPA/NMDA receptors, EAATs expression, and their connection with oxidative–
inflammatory status emphasizes the therapeutic potential of Klotho in de-repression. The
hypothesis proposed in this review requires further studies (preclinical and clinical) to
provide new information regarding the molecular biology of depression.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 16 of 23 
 

 

plasticity (by both pre-and postsynaptic mechanisms), but this effect is likely specific to a 
particular brain region [17,149].  

The role of Klotho in the pathophysiology of depression, mainly in Glu neurotrans-
mission, is not well understood. The promising findings presented in this section should 
be considered in further studies on the molecular mechanisms underlying the etiology 
and pharmacology of depression. 

6. Concluding Remarks 
In conclusion, the antioxidant and anti-inflammatory effects of Klotho mediated by 

Nrf2- NF-κB, as well as the modulation of glutamate neurotransmission function, seem to 
be novel signaling pathways involved in the pathogenesis of depression and cognitive 
impairments (see Figure 2). Importantly, the biological role of Klotho in the regulation of 
AMPA/NMDA receptors, EAATs expression, and their connection with oxidative–inflam-
matory status emphasizes the therapeutic potential of Klotho in de-repression. The hy-
pothesis proposed in this review requires further studies (preclinical and clinical) to pro-
vide new information regarding the molecular biology of depression. 

 
Figure 2. Graphical summary of potential mechanisms and links through which α-Klotho may be 
involved in the pathophysiology of depressive and cognitive disorders. The thickness of the lines is 
proportional to the strength of the evidence supporting each relationship. Only a few of the most 
important factors/proteins through which Klotho can exert its biological effects are presented. To 
improve clarity, the diagram does not show the direct relationship between depressive and cogni-
tive disorders and glutamatergic transmission, which is well-documented. 

This review also highlights some limitations of the research on Klotho in nervous 
system diseases. Limited animal studies (particularly, animal models of depression) have 
demonstrated the lack of described molecular mechanisms that regulate Klotho in the cen-
tral nervous system. Most human studies have focused on peripheral (serum) changes in 

Figure 2. Graphical summary of potential mechanisms and links through which α-Klotho may be
involved in the pathophysiology of depressive and cognitive disorders. The thickness of the lines is
proportional to the strength of the evidence supporting each relationship. Only a few of the most
important factors/proteins through which Klotho can exert its biological effects are presented. To
improve clarity, the diagram does not show the direct relationship between depressive and cognitive
disorders and glutamatergic transmission, which is well-documented.
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This review also highlights some limitations of the research on Klotho in nervous
system diseases. Limited animal studies (particularly, animal models of depression) have
demonstrated the lack of described molecular mechanisms that regulate Klotho in the
central nervous system. Most human studies have focused on peripheral (serum) changes
in Klotho levels in depression. The size of the group, study design, medical history,
and parameters of post-mortem tissue (such as pH) can limit the relevance of funding.
Importantly, defining the baseline level of Klotho in depression (independent of age)
is needed.
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85. Pańczyszyn-Trzewik, P.; Sujkowska, E.; Samojedny, S.; Sowa-Kućma, M. Alterations in Nrf2 Protein Level in the Frontal Cortex of
Suicide Victims and Depressed Subjects are Associated with Nf κB(P65) Changes—Evidence from Post Mortem Brain Study. Acta
Neurobiol. Exp. 2022, 82 (Suppl. 1), S48.
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