
Citation: Datta, S.; Cao, W.; Skillman,

M.; Wu, M. Hypoplastic Left Heart

Syndrome: Signaling & Molecular

Perspectives, and the Road Ahead.

Int. J. Mol. Sci. 2023, 24, 15249.

https://doi.org/10.3390/

ijms242015249

Academic Editor: Athina-Myrto

Chioni

Received: 13 September 2023

Revised: 7 October 2023

Accepted: 12 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Hypoplastic Left Heart Syndrome: Signaling & Molecular
Perspectives, and the Road Ahead
Sayantap Datta, Wangjia Cao , Mikayla Skillman and Mingfu Wu *

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston,
Houston, TX 77204, USA; sdatta20@cogarnet.uh.edu (S.D.); wcao9@cougarnet.uh.edu (W.C.);
mskillma@cougarnet.uh.edu (M.S.)
* Correspondence: mwu25@central.uh.edu

Abstract: Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting
8–25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the
life expectancy of the affected subjects substantially over the years. However, the etiological basis
of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies,
HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and
signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal
and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The
review discusses the potential limitations and future perspectives of studies that can be undertaken
to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially
elucidate novel druggable targets and empower the development of therapeutic regimens against
HLHS in the future.
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1. Introduction

Constituting approximately 1–2% of all known cardiovascular complications, HLHS
roughly affects 8–25 per 100,000 neonates born globally without selection during preg-
nancy. In the United States of America alone, it affects approximately 1 out of every
3841 babies [1,2]. Phenotypically, HLHS is a condition characterized by atresia or stenosis
of the aortic and mitral valves, hypoplasia of the left ventricle, and a narrowed ascending
aorta (Figure 1) [3–8]. This accounts for the hypertrophy of the right atrium and leads to the
delivery of unaerated blood to the lungs [6]. From an anatomical perspective, three major
HLHS types are recognized: mitral and aortic stenosis, mitral stenosis and aortic atresia, and
mitral and aortic atresia [9,10]. Over the years, studies utilizing human-induced pluripo-
tent stem cells (hiPSCs) from HLHS patients, along with advancements in mouse genetic
models, have identified an intrinsic issue in cardiomyocytes as a potential cause of HLHS,
which is characterized by a decrease in cardiac differentiation efficiency, disorganized
sarcomeres, abnormal mitochondrial structure, and impaired NOTCH signaling [11–13].
Furthermore, studies suggest that autosomal recessive inheritance and abnormalities in
endocardium development could potentially contribute to ventricular and valvular hy-
poplasia in HLHS [8,14,15]. In fact, correlations between HLHS and left-sided lesions of
the bicuspid aortic valve (BAV) and aortic coarctation have been based on epidemiology
studies that identified BAV in first-degree relatives of HLHS probands [16].

The pathological changes of HLHS include the emergence of void spaces in the
myocardium, vascular channel formations, and mononuclear cellular infiltration along
the ventricular septum [17]. The void spaces that extend from the top of the ventricular
septum into the lumen of the right ventricle are lined by mesothelial cells [18]. These spaces
do not consist of blood cells and are potentially fistulas between the coronary artery and
the right ventricular lumen [18]. These pathological changes hinder the right ventricle’s
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ability to function [6,19]. The abnormal development of the foramen ovale is another
speculated pathological hallmark of HLHS. Its oblique orientation hinders the flow of
blood from the right atrium [6,20]. This abnormally developed foramen ovale potentially
accounts for irregular blood flow from the inferior vena cava to the left atrium at the fetal
stage [20]. Although comprehensive studies have characterized HLHS phenotypic features
throughout the years, understanding the molecular basis of HLHS incidence remains
largely obscure to date. Gaining deeper insights into the molecular basis of HLHS will
lead to a significant understanding of HLHS etiology. This review focuses on the potential
molecular mechanisms outlining HLHS that are instrumental in manifesting one or more
of the above-mentioned phenotypic features. A clear understanding of the molecular
mechanisms will potentially enable the identification of drug targets to develop novel
therapeutic strategies for minimizing risk factors and improving HLHS treatment over the
long term.
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Figure 1. Schematic representation (cross-sectional view) of the physiological defects in a HLHS heart
(B) as compared to that of a normal heart (A)—chiefly identified by patent ductus arteriosus, narrowed
ascending aorta, defects in mitral valve and atrial septation, and a prominently compromised left
ventricle and all the pictures were generated via BioRender [7].

2. Prenatal and Postnatal Risks

A fetus with HLHS usually remains stable, with cases relating to in utero demise being
rare and mainly governed by chromosomal abnormalities [21]. The right ventricle remains
functional in HLHS-affected fetal hearts, with propensities to detect HLHS being likely at
around the 20-week gestational period [22,23]. Close examination of pulmonary venous
return and blood flow patterns across the atrial septum has elicited potentially significant
restrictions around the atrial septum [24]. Under these circumstances, blood egress from the
left auricle and pulmonary venous circulation exhibits a high propensity, thus encountering
hindrance [24], leading to pulmonary vasculopathy and severely damaged lungs. These
fetuses are at an enormously high risk due to the potential of the pulmonary vasculature
being underdeveloped, leading to poor oxygenation [25].

After birth, the pulmonary vascular resistivity is high, and the ductus arteriosus
persists. However, the pulmonary resistance decreases shortly, and a high amount of blood
becomes shunted across the pulmonary vascular bed. This significantly compromises
systemic circulation [26], resulting in tachypnoea, hypotension, and acidosis [27]. The
systemic perfusion becomes hampered even more when the ductus arteriosus starts closing.
These undiagnosed individuals usually exhibit feeding and respiratory difficulties a few
hours after birth or at 2–3 days, eventually culminating in shock and cardiac failure [26,27].
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3. Existing Surgical Perspectives
3.1. Stage I—Norwood Procedure

The first stage of surgery in HLHS treatment is the Norwood procedure, usually
carried out within the first week after birth [28]. It is aimed at increasing systemic oxygen
delivery and organ perfusion levels by reconstructing the aorta and developing a connection
between the aorta and the right ventricle (Figure 2) [29]. This assures sufficient intracardiac
mixing through the atrial communication pathway, coupled with a restrictive blood supply
to the lungs through the developed shunt [28,29].
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Figure 2. Schematic representation of existing surgical perspectives for HLHS treatment. The
Norwood procedure is aimed at increasing systemic oxygen delivery and oxygen perfusion levels;
the Glenn operation separates the systemic and pulmonary venous blood flow by directing blood
returning from the superior vena cava to directly enter the pulmonary circulation; and the Fontan
operation connects the inferior vena cava with the pulmonary arteries and completes the separation
of the systemic and pulmonary circulation via an extracardiac conduit [7].

3.2. Interstage Period

This is the phase between stage I and stage II, which is associated with a significant
amount of risk with regard to morbidity, growth failure, and mortality [30]. More than
10–15% of the mortalities associated with HLHS occur during this phase [30,31]. It is char-
acterized by what gets clinically identified as “red flag symptoms”—increased fussiness,
diarrhea, and vomiting; poor extent of feeding; change in skin pigmentation; reduced
oxygenation levels; increased sleepiness, etc. [31].

Given such conditions, the adoption of single-ventricle inter-stage monitoring pro-
grams (ISVMPs) and their standardization by the National Pediatric Cardiology Quality
Improvement Collaborative have reduced fatal consequences in the inter-stage period [31].
Such monitoring programs usually include biweekly hospital visits with echocardiograms,
alternating with biweekly follow-ups with the pediatrician for assessment of the homeosta-
sis of other parameters [32].

3.3. Stage II—Superior Cavopulmonary Connection Establishment

Widely known as the bidirectional Glenn operation, it occurs between 3 and 6 months
of age [33]. This is aimed at separating the systemic and pulmonary venous blood flow
by allowing blood returning from the superior vena cava (SVC) to enter directly into the
pulmonary circulation. It is achieved by transecting the SVC prior to its insertion into the
right atrium and establishing a connection between the SVC and the pulmonary artery [34].
In contrast to the Norwood procedure, this step is associated with a higher percentage of
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survival among HLHS populations (approximately 93%) [27]. The infants start exhibiting
improved cardiac activity levels after this stage, especially because of an improvement in
physiological reserve [35]. The oxygen saturation level shoots up to about 80–90% [27,35].
However, the development of the lower body with age and increased oxygen utilization
bring about cyanosis. This demands the intervention of the stage III step of treatment [35].

3.4. Stage III—Fontan Operation

Outlining the concluding step of HLHS surgical treatment, this step is carried out
between 18 months and 4 years of age [36]. Here, the inferior vena cava (IVC) gets con-
nected to the pulmonary arteries in completion of the separation between the systemic
and pulmonary circulations [36]. This is achieved via an extracardiac conduit, whereby
a conduit tube-graft (of 16–20 mm in diameter) is connected from the IVC to the right
pulmonary artery [36,37]. This step also offers a small residual right-to-left shunt and cul-
minates in oxygen saturation levels between 90 and 95% [37]. In fact, the efficient placement
of fenestration enables a decrease in venous congestion and optimized oxygen delivery.
This fenestration also improves stroke volume, besides optimizing oxygen delivery [38].
Long-term survival possibilities with an unaffected Fontan circulation are encouraging,
predicting survival rates to be around 94% after the first year, 90% after 10 years, 85% after
15 years, and 74% after 20 years of Fontan operation [39].

4. Signaling and Molecular Mechanisms Outlining HLHS Incidence
4.1. Endocardial-Related Signaling Pathways

Endocardial cells are specialized endothelial cells outlining the innermost layer of
the heart wall [40]. Besides serving as the source of mesenchymal cells in the endocardial
region that give rise to structural elements of the atrioventricular valves, endocardial cells
also account for the maturation and development of the atrial and membranous ventricular
septa [41].

Extracellular matrix (ECM) deposition is important for initiating trabeculation and its
subsequent maturation [42,43]. The endocardial ridges are intrinsically rich in hyaluronic
acid and fibronectin content, which promotes the rate and capacity of cardiomyocyte
proliferation with increased myocardium mass [8,44–46]. Previous studies have shown aug-
mented deposition of ECM-rich fibrous tissue via endothelial-to-mesenchymal transition
(Endo-MT) [47]. The excessive fibroblasts in the endocardial fibroelastosis (EFE)-associated
tissues are mainly epicardium-derived [42,48]. Investigating the molecular mechanisms
governing the endocardial defects in HLHS, single-cell RNA (scRNA) sequencing studies
with iPSC-derived endocardial cells (iECs) of HLHS hearts illustrate that anomalous ECM
deposition and Endo-MT in endocardial as well as endothelial cells lead to a decrease in
proliferation and maturation of cardiomyocytes, thus characterizing early stage HLHS
(Figure 3) [7,49]. Reduction in blood flow, tissue hypoxia, and other environmental factors
in the later stages ensure that EFE occurs because of the involvement of both epicardium
and endocardium-derived fibroblasts [48,50,51]. De novo mutations of genes (TFE3, ED-
NRA, ZNF292, FOXM1, ZMYND19, PCBP3, TCF12, ARID1B, NOVA1, PKD1, RBFOX2, ST5,
TSC1, USP8, HERC4, KMT2D, ETS1, CHD7, CTR9, GLA, FMNL1, PHRF1, SIPA1L1, and
HIRA) predominantly manifest in the endocardium, coronary, and lymphatic ECs, provid-
ing a consolidated basis for targeting the endocardium in HLHS pathogenesis [8]. These
studies demonstrate functional abnormalities through the impairment of ECM deposition,
Endo-MT, and vascular endothelial growth factor receptor (VEGF) signaling, which are all
functionally important pathways that play a pivotal role in valve formation and cardiac
remodeling [42,52].
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Figure 3. Schematic representation of endocardial dysfunctions characterizing HLHS, characterized
by a decrease in Endo-MT transition, compromised ECM deposition, and a decrease in maturation
and proliferative capacity of cardiomyocytes [7].

4.2. Notch Signaling

Notch signaling is evolutionarily a conserved cascade that is vital for cell–cell commu-
nication, tissue boundary maintenance, cellular fate determination, renewal, and differenti-
ation of stem cells (Figure 4) [7,13,53–59]. Biphasic Notch modulation plays a pivotal role
in differentiating murine embryonic stem cells (mESC) and iPSC, considering that Notch
signaling activation augments mesodermal induction in early-stage differentiation [60].
However, such an event hinders cardiac progenitor formation in the later stages of differen-
tiation. The activation of Notch1 and Notch4 signaling in mESC-derived haemangioblasts
is responsible for the specification of their cardiac fate. This demonstrates that Notch
signaling functionality is diverse based on the target cells and their temporal differentiation
index [13,61]. NOTCH1 is associated with HLHS incidence primarily because of its pivotal
role in Mendelian calcific aortic valve disease and compound heterozygous NOTCH1
mutations in HLHS subjects [62–64]. Analytical studies with HLHS-iPSC-derived car-
diomyocytes exhibit notable downregulation in the expression of NOTCH1, NOTCH2,
NOTCH3, and NOTCH4. A similar extent of downregulation is also exhibited by NOTCH
target genes such as DTX1, FOX, HEY2, and HEYL [13,59]. This shows that the NOTCH
signaling pathway is significantly hindered in HLHS conditions.

Additionally, downregulation is exhibited by NOTCH-binding proteins like JAG1
and JAG2, pointing out an autocrine feedback loop in NOTCH signaling [13]. Examining
HLHS-specific hiPSCs also exhibits the downregulation of NOTCH signaling, which is
mediated through the nitric oxide (NO) signaling process [65]. This stems from the idea that
Notch signaling mediates valve formation by inducing Activin A, which in turn stimulates
NO in endothelial cells that exhibit Endo-MT [55,66]. This additionally augments NO
cell surface receptors. NO plays a pivotal role in the differentiation and specification of
mESCs within ectodermal and mesodermal lineages, thus improving the cardiomyocyte
yield of differentiating mESCs [67]. A minute investigation of differentiating HLHS-hiPSCs
indicates differences in NO levels in the overall cell population, which highlights pattern-
ing and cell fate specification cascades of Notch signaling [11]. HLHS-hiPSCs with the
highest NO levels also exhibit elevated levels of Notch Intracellular Domain (NICD), thus
establishing the association between Notch signaling and NO generation [11]. Through
the use of markers for early mesoderm or endodermal cells (CXCR4) [68], it was revealed
that cells producing higher NO levels were indeed CXCR4+. These findings suggest that
HLHS-hiPSC reduces the NO signaling cascade and hinders the cardiomyocyte yield from
the early progenitor cell population. This hypothesis gains further basis with NO sup-
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plementation by eliciting increased cyclic guanosine monophosphate (cGMP) levels and
activating the NO-cGMP-protein kinase G(PKG) cascade [11].
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hiPSCs indicates differences in NO levels in the overall cell population, which highlights 
patterning and cell fate specification cascades of Notch signaling [11]. HLHS-hiPSCs with 
the highest NO levels also exhibit elevated levels of Notch Intracellular Domain (NICD), 
thus establishing the association between Notch signaling and NO generation [11]. 
Through the use of markers for early mesoderm or endodermal cells (CXCR4) [68], it was 
revealed that cells producing higher NO levels were indeed CXCR4+. These findings sug-
gest that HLHS-hiPSC reduces the NO signaling cascade and hinders the cardiomyocyte 
yield from the early progenitor cell population. This hypothesis gains further basis with 
NO supplementation by eliciting increased cyclic guanosine monophosphate (cGMP) lev-
els and activating the NO-cGMP-protein kinase G(PKG) cascade [11]. 

  

-secretase
cleaves the transmembrane fraction of NEXT from S3 to S4 and releases NICD and Nβ-peptide.
Further cleavage at the membranous domain enables the generation of stable NICD. This stabilized
NICD then undergoes nuclear translocation and then associates with the DNA-binding CSL protein.
CSL otherwise associates with a ubiquitous co-repressor (Co-R) and histone deacetylases. Post-
NICD association, allosteric changes in CSL displace the corepressor complex, enable transcriptional
coactivator masterminds to mark out the NICD-CSL interface, and eventually recruit co-activator A
(Co-A) for subsequent transcriptional cascades [7].

Studies advocating differentiation of HLHS iPSCs to cardiomyocytes using a Jagged
peptide (Notch ligand) show that mutations in the Notch4 peptide domain potentially
affect the cytoplasmic expression of Notch proteins and inhibit proteasomal activity [69]. In
turn, this impairs Notch protein-associated functional cascades. However, these mutations
do not impact Jagged binding to NOTCH4 and subsequent NOTCH signaling activation
in HLHS-patient cardiomyocytes [13]. In theory, this suggests the druggability of Notch
signaling, whereby activation of Notch signaling can potentially restore Ca2+ homeostasis
in HLHS iPSC-derived cardiomyocytes. However, such a hypothesis’s molecular and
functional basis needs validation for further consolidation.

4.3. TGF-β/BMP Signaling

The transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) signaling
plays a vital role in cardiac developmental processes and associated disease conditions [70].
The manipulation of this signaling pathway primarily results in altered cardiomyocyte
proliferation, differentiation, and associated growth cascades [71–74]. Along these lines, ex-
pression profiles of TGF-β-associated genes were compared between HLHS right ventricle
(HLHS-RV) samples and their control counterparts [70]. Such comparative analyses show
that HLHS-RV samples exhibit increased levels of activin receptor type IIA (ACVR2A)
and activin receptor-like kinase 1 (ACVRL1). Both activin receptor type IIA and activin
receptor-like kinase 1 are largely involved in tissue remodeling [75,76]. Other significantly
upregulated genes associated with the TGF-β signaling cascade include CDC25A, p21, p15,
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BMP5, BMP3, GDF3, NODAL, and BMP binding endothelial regulator (BMPER). All of
these genes play pivotal roles in cellular survival, growth, and differentiation [70]. Addi-
tionally, significant alterations are observed in levels of anti-mullerian hormone receptor 2
and the BMP antagonist Inhibin alpha. These findings suggest that HLHS-RV genes can
be potential players associated with myocardial remodeling, growth, and differentiation.
In fact, significantly increased levels of ACVR2A and ACVRL1 can potentially culminate
in compensatory changes in hemodynamic pressure, myocardial remodeling, and tissue
repair in HLHS-RV tissue.

4.4. Wnt/SHH/p53 Signaling

The Wnt signaling is known to exert a bidirectional impact across different stages
of cardiomyogenesis (Figure 5) [77]. It is activated during the development of the early
embryo in the lateral plate mesoderm and is inhibited to ensure that the heart eventually
develops to its proper size [78]. Through amalgamating whole genome sequencing, iPSC
technology, and model validation with a familial approach, studies over the years have
endeavored to elucidate novel HLHS-associated genes and explain the underlying mech-
anisms involved [79]. These studies have led to the identification of lipoprotein-related
protein 2 (LRP2, also known as megalin) as being involved in HLHS pathogenesis. LRP2 is
a multi-ligand endocytic receptor expressed in a multitude of tissue sites, but primarily
in absorptive epithelial tissues. It is a glycoprotein with an extracellular binding domain,
a single transmembrane domain, and a short carboxy-terminal cytoplasmic tail [80]. The
extracellular domains are responsible for binding albumin, apolipoprotein B, apolipopro-
tein E, and lipoprotein lipase [81]. Functionally, LRP2 plays a vital role in the reuptake of
lipoproteins, sterols, and hormones and in cell signaling [82,83].
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the absence of the Wnt ligand, phosphorylation of β-catenin occurs and leads to complexation with
axin, adenomatous polyposis coli (APC), and glycogen synthase kinase (GSK)-3-β. This complex is
subsequently subjected to proteasomal degradation. In the presence of the Wnt ligand, β-catenin
remains unphosphorylated and enters the nucleus to drive transcription [7].
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Furthermore, LRP2 is a chief modulator of cardiomyocyte proliferation, maturation,
and development, which has been substantiated in Drosophila and zebrafish models [79].
Studies reveal that missense mutations in LRP2 are more frequent in HLHS patients than in
their control counterparts. The deleterious mutations could potentially manifest the HLHS
phenotype through the Wnt, SHH, and p53 signaling pathways [79]. iPSC studies have
shown that p53 depends on Lrp2 expression, and Lrp2 mutations account for anomalies
in the p53 pathway that lead to the ventricular hypoplasia characteristic of HLHS [84].
Alongside LRP2, hypomorphic variants of Trol/HSPG2 and Apolpp/APOB potentially
alter Wnt and sonic hedgehog (SHH) signaling [85] and initiate HLHS. However, genetic
interaction-associated studies need to be carried out to elucidate the mechanistic role even
further [86].

4.5. Can Single Gene Mutation Attribute to HLHS?
4.5.1. RBFOX2

RNA-binding Fox-1 Homolog 2 (RBFOX2) belongs to a family of RNA-binding proteins
with a strong affinity for (U)GCAUG-rich sequences highly conserved in vertebrates [87,88].
It is known to regulate alternative splicing cascades in embryonic stem cells, pluripotent
cellular differentiation, and epithelial–mesenchymal transition [89–91]. The existing body
of literature suggests that conditional ablation of Rbfox2 is associated with developmental
abnormalities [92]. In fact, knockdown of Rbfox2 and its paralog Rbfox1 reduces heart rate
and attributes to myofibrillar disarray [93]. Murine model studies over the years have
shown that Rbfox2 downregulation correlates with pressure overload and, subsequently,
heart failure [94–96].

Recent studies have pointed out the potential role of Rbfox2 in HLHS pathogenesis.
HLHS-specific mutations in RBFOX2 result in abnormalities associated with RBFOX2 ex-
pression [89]. HLHS-specific splice-site mutations include 1.6 kb intron 10 and degradation
of RBFOX2 mRNA by nonsense-mediated decay (NMD) [89]. HLHS-specific frameshift
mutation incorporates a stop codon and culminates in NMD. Similarly, the HLHS-based
nonsense Rbfox2 mutation deletes a part of the C-terminal domain (CTD) of the Rbfox2
protein [89,97]. This CTD is otherwise important for mediating Rbfox2 interaction with
other RNA-binding proteins, spliceosome component U1C, and nuclear localization [97–99].
HLHS-specific RBFOX2 mutations manipulate the cellular and subcellular localization of
Rbfox2 in HLHS patients [100]. Although RBFOX2 exhibits nuclear and cytoplasmic local-
ization in the right ventricle of control subjects, RBFOX2 levels become severely downregu-
lated in the right ventricular cardiomyocytes of HLHS patients [89]. This affects RBFOX2
functionality regarding RNA metabolism and attributes to transcriptomic alterations in
HLHS patients. From a pathological perspective, RBFOX2 has also been identified as being
responsible for gene expression alterations in the right ventricle of HLHS patients [101].
Cross-linking immunoprecipitation followed by RNA-sequencing (CLIP-seq) studies inte-
grated with transcriptomic data from HLHS patients show that RBFOX2 mutations lead
to cardiac transcriptome alterations in HLHS patients by mRNA dysregulation of genes
involved in cell cycle and metabolism [89]. Such genes chiefly include Pnn, which encodes
the Pinin protein and regulates epithelial cellular differentiation [102], Phkb, which encodes
for glycogen phosphorylase kinase and enables cellular growth [103], Ddx39, which is an
RNA helicase and modulates the interplay between proliferation and differentiation of
cells, and Mcm7, which is essential for DNA replication and cellular growth [104].

4.5.2. SAP130

Sin3-associated protein 130 (Sap130) is a subunit of the histone deacetylase-dependent
SIN3A corepressor complex msin3A. Sap130 can enable the assemblage and enzymatic
activity of msin3A to ensure interactions between the sin3A corepressor complex and other
regulatory complexes [105].

Sap130 manipulations and their correlation with HLHS incidence have been estab-
lished utilizing CRISPR-Cas9 gene editing [12]. CRISPR mouse lines also exhibit germline
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transmission of Sap130 alleles and express the spliced Sap130 transcript with an in-frame
deletion of 36 amino acids [12]. This truncation is also exhibited by Ohia mutant mice
lineages [106]. Peri-implantation lethality phenotypes in Sap130 knockout (homozygous
and heterozygous) mice substantiate the hypomorphic nature of Sap130. In fact, Sap130a
antisense-morpholino-mediated knockdown in the zebrafish model shows reduced ven-
tricular cardiomyocyte count and a shortened ventricle 72 h after fertilization [12]. This
is when the heart consists only of the first heart field derivatives, similar to murine left
ventricle progenitors [107].

4.5.3. PCDHA9

ProtocadherinA9 (PCDHA9) is a member of the protocadherin-α gene cluster [108].
This protocadherin-α gene cluster consists of cadherin superfamily genes with highly simi-
lar and related coding sequences [109]. The array of N-terminal variable exons is followed
downstream by constant C-terminal exons [110]. The large N-terminal exons encode six
cadherin ectodomains, and the C-terminal exons encode the cytoplasmic domain [111]. The
encoded cadherin-like cell adhesion proteins are important plasma membrane proteins that
are significant in maintaining cellular connectivity [112].

Pcdha9 mutations are attributed to aortic hypoplasia, stenosis, cardiac hypertrophy,
bicuspid aortic valves, hypoplastic left ventricle, and mitral valve—a spectrum comprising
primary as well as secondary phenotypic features associated with HLHS [12]. In fact,
CRISPR mice lineages exhibit germline transmission of doubly targeted Pcdha9 alleles [12].
This chiefly refers to an in-frame amino acid insertion that deletes two adjacent amino
acids near the Ohia Pcdha9 missense mutation site. Functional studies have also pointed
out that this mutation is characteristically loss-of-function in correlation with HLHS onset.
However, most Pcdha9 mutation-associated HLHS phenotypes are more pronounced with
a simultaneous Sap130 mutation, pointing towards some type of synergism between Sap130
and Pcdha9 mutations in triggering HLHS incidence [12].

4.5.4. CONNEXIN43

The gap junction channels are formed by CONNEXIN43 proteins, which play a sig-
nificant role in developmental processes through the direct cellular exchange of signaling
molecules [113]. Studies over the years have pointed out that CONNEXIN43 channels are
gated by phosphorylation, and intervention with this regulation results in cardiac laterality
defects and malformations in humans, chickens, and frogs, culminating in HLHS [114,115].
However, deeper insights into the mutational studies have shown that CONNEXIN43
mutations constitute a minor population of CONNEXIN43 alleles [113]. Such mutational
patterns are typically of the same kind: two silent polymorphisms and two missense muta-
tions whereby arginine at positions 362 and 376 is replaced by glutamines [113]. In vitro
and in vivo protein kinase A and protein kinase C-mediated phosphorylation studies point
out that the substitution of arginine residues at 362 and 376 positions diminishes phos-
phorylation in the regulatory domain of Connexin43, underlying a potential mechanism
governing HLHS pathogenesis [116,117]. Such findings potentially point towards the idea
that HLHS incidence in fetal developmental stages may potentially occur owing to inter-
ventions in one or more of the signaling pathways that utilize Connexin43 governing left
heart formation [118–120].

4.5.5. HAND1

Heart and neural crest derivatives-expressed protein 1 (HAND1) is a member of class B
basic helix-loop-helix (bHLH) transcription factors [121]. This bHLH domain carries DNA
binding and dimerization motifs that consist of basic amino acid chains, an amphipathic
α-helix, a loop, and an additional α-helix [122,123]. HAND1 heterodimerizes with class
A E-factors like TCF3 (E2A, E12/E47) and with closely related Hand2 [122]. Studies
also show that HAND1 can potentially activate or suppress transcription [62,124]. This
depends on the target sequence (consensus E-box or degenerate Thing1/D-box) and the
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dimerization partner [125]. Physiologically, Hand1 is chiefly involved in placentation,
dorsoventral patterning, interventricular septum formation, and cardiac morphogenesis in
the embryonic heart [126–128].

In determining whether HAND1 exhibits any role in HLHS incidence, a typical
frameshift mutation has been identified whereby a G nucleotide at the 376 position gets
deleted [121]. This affects the amino acid sequence in the bHLH domain of Alanine 126
(A126). In fact, this mutation was found to be highly frequent among HLHS patients [126].
This A126 frameshift (A126fs) mutation, amidst all the other infrequent nonsynonymous
alterations induced, is a dominant predictor mutation characterizing the HLHS condition.
It results in prematurely truncated protein expression at amino acid 137 [121]. This consists
of a 12-amino acid segment, which is a typical characteristic of the mutant protein and
potentially contains limited α-helical content. The studies elucidating the mobility and
expression of Hand1 showed remarkably reduced expression of mutant protein amounts,
potentially because of reduced mRNA stability [121].

4.5.6. Myrf

Multiple studies reported that point mutations of myelin regulatory factor (MYRF) are
associated with the occurrence of HLHS [129–131], suggesting the possibility that mono-
genic mutations can cause HLHS. Myrf is a vital membrane-bound transcription factor in-
volved in the development of the urogenital, neural, visual, and cardiac systems [132–136].
Myrf consists of two essential fragments: the N-terminal and C-terminal portions. The
N-terminal fragment comprises a transactivation domain and a DNA-binding domain [137].
The C-terminal domain contains an intramolecular chaperone auto-processing (ICA) do-
main and an endoplasmic reticulum luminal domain [138]. The ICA domain plays a pivotal
role in triggering the homo-trimerization of Myrf [135]. Following the trimerization, Myrf
undergoes an automatic cleavage process, and the N-terminal portion translocates into
the nucleus [135,139,140]. This translocation is a fundamental step for Myrf to function
effectively as a transcription factor.

Numerous studies have reported that patients carrying de novo variants in MYRF
exhibit a variety of CHDs. Notably, among these CHD cases, the most prevalent form
was HLHS, accounting for 44% of the cases, while scimitar syndrome followed as the
second common CHD, constituting 31% [131]. According to the published data, the
individuals diagnosed with HLHS exhibit de novo mutations in both the N-terminal and
C-terminal segments of the MYRF protein, indicating a complex underlying mechanism.
The association between Myrf and HLHS has been further investigated using CRISPR-
Cas9 technology in the vertebrate medaka model, and the Myrf mutant line exhibited a
significantly prominent hypoplastic ventricle, which closely recapitulates the phenotypes
observed in pediatric patients [129]. Overall, the signaling mechanism by which Myrf
contributes to the pathogenesis of HLHS remains unclear, and there is limited knowledge
in this area. This underscores the pressing need for further extensive research in this area.

5. Limitations in Current Understanding of HLHS Etiology

Over the years, the clinical studies associated with HLHS have primarily been centered
around surgical procedures and heart transplantation in mitigating HLHS [139]. Although
the surgical mode of treatment provides hope for the survival of infants born with HLHS,
the consequences in the long run are yet to be well defined [141]. Several issues surrounding
surgical treatment remain poorly defined to date, and the long-term outcomes and quality
of life post-surgery remain poorly understood.

The heritability of HLHS is a widely accepted hypothesis because of the multitude of
genes and their corresponding mutations bearing a direct correlation with HLHS occurrence
and consequent phenotypic characterization. However, the majority of the heritability
studies regarding HLHS lack HLHS-phenotypic specificity. This is because most of these
studies focus on phenotypic outcomes like left ventricular hypoplasia, which is not a
feature of HLHS alone but rather a diverse variety of cardiovascular malformations that
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include a disturbed atrioventricular septal defect. From a mechanistic point of view,
different courses of mutations have been elucidated in a multitude of genes. Although
such mutations are correlated with the HLHS phenotype, the detailed idea regarding the
mechanistic flow empowering HLHS onset largely remains obscure to date. This stems
from the lack of a suitable animal model beyond the digenic Sap130 and Pcdha9 mutant
models [12], primarily restricting the understanding of genetic mutations and HLHS onset
and keeping the findings chiefly restricted to transcriptomic and in vitro studies. These
studies additionally demand the exploration of a greater expansion of genes promising
novel mechanistic possibilities and their role in HLHS incidence, further substantiating the
heritability studies.

In view of the signaling pathways that play important roles in HLHS onset, existing
paradigms of studies have established the correlation between such cascades and the HLHS
phenotype. However, a detailed understanding of the molecular basis of such cascades
needs to be investigated to establish the correlation further. Most of these studies are
currently restricted to the iPSC model of analysis. This assumes great challenges since
iPSC differentiation might not completely mimic the endocardium or cardiomyocytes and
their unique properties. The signaling pathways usually exhibit complicated courses of
crosstalk with other signaling pathways in mediating their actions [142]. The absence
of such understanding currently with respect to HLHS onset limits the idea of having
consolidated inferences until further downstream signaling events are explored [42]. In
fact, the potential of the iPSC-derived endothelial and endocardial cells to mature into
valve interstitial cells (VIC) and valve endothelial cells (VEC) remains exploratory to date,
thus restricting the understanding of valvular defects and VIC-VEC crosstalk in HLHS
pathogenesis [143–146]. Beyond the known genetic and signaling processes responsible
for HLHS onset, other factors via maternal pregestational or gestational diabetes also have
an association with HLHS onset. The genetic and non-genetic environmental basis that
characterizes HLHS etiology needs to be understood and explored further.

6. Future Perspectives

Ongoing studies in the characterization of iPSC-differentiated valvular cells by endo-
cardial and endothelial markers, viz., NPR3, CDH11, NFATC1, and TGF-β2, shall empower
further investigation of VEC and VIC function with respect to HLHS onset [52,147–149].
The development of reliable HLHS-specific mice models, outlining one of the major focuses
of our lab, can potentially enable a better pathological understanding of HLHS. Ongoing
studies have also shown that fibroblast growth factor 8 (FGF8) is important for mesodermal
cell fate determination and Wnt activation for Endo-MT in cardiac progenitor cells [42].
The iPSC-derived epicardial cells can potentially differentiate into endocardial cells. These
cell lineage tracing studies may provide more of an idea of the developmental origin of
endocardial cells and elucidate novel mechanisms regarding HLHS incidence [148].

Cardiac organoids constitute another emerging platform to comprehend cellular
communications during heart development. In fact, the current paradigm of studies has
shown that myocardial defects such as cardiac hypertrophy and myocardial infarction can
be mimicked by the cardiac organoid model, which exhibits anatomical patterns resembling
in vivo models undertaken to date [150]. Further investigations along these lines can
enable a better understanding of endocardium–myocardium crosstalk and the underlying
molecular basis that can better highlight the endocardial and myocardium-associated
dysfunctions in HLHS [151]. Advocating human germline genome editing can be another
potential direction towards developing HLHS therapy [152]. However, different cells of
the embryo are modified differently owing to the persistence of CRISPR/Cas9 activity
even after the zygote begins to divide [153]. Hence, optimization of these factors and the
potential pediatric stage for application need to be contemplated to better understand the
implications of this otherwise novel line of therapy.
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7. Conclusions

In summary, existing courses of study point towards a multifactorial etiological basis
for HLHS. Surgical and transplantation modes of treatment constitute currently existing
tools for ameliorating HLHS, but the extent of success achieved remains highly debatable.
By gaining a deeper insight into the cellular and molecular mechanisms governing HLHS
pathogenesis, these strategies will be significantly instrumental in the identification of
potential druggable targets and the development of novel therapeutic strategies for treating
this CHD in the following years.
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