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Abstract: The essential oils of Juniperus are highly beneficial medicinally. The present study aimed
to assess the chemodiversity and bioactivity of Juniperus formosana, Juniperus przewalskii, Juniperus
convallium, Juniperus tibetica, Juniperus komarovii, and Juniperus sabina essential oils from the Qinghai-
Tibet Plateau. The results revealed 92 components in six essential oils: α-pinene (2.71–17.31%),
sabinene (4.91–19.83%), and sylvestrene (1.84–8.58%) were the main components. Twelve components
were firstly reported in Juniperus oils, indicating that the geographical location and climatic conditions
of the Qinghai-Tibet Plateau produced the unique characteristics of Juniperus essential oils. The
chemodiversity of Juniperus essential oils varied greatly, with J. sabina having the most recognized
components (64) and the highest chemodiversity (Shannon–Wiener index of 3.07, Simpson’s diversity
index of 0.91, and Pielou evenness of 0.74). According to the chemodiversity of essential oils, the six
plants were decided into the α-pinene chemotype (J. formosana), hedycaryol chemotype (J. przewalskii,
J. komarovii, J. convallium, J. tibetica), and sabinene chemotype (J. sabina). PCA, HCA and OPLS-
DA showed that J. formosana and J. sabina were distantly related to other plants, which provides
a chemical basis for the classification of Juniperus plants. Furthermore, bioactivity tests exhibited
certain antioxidant and antibacterial effects in six Juniperus oils. And the bioactivities of J. convallium,
J. tibetica, and J. komarovvii were measured for the first time, broadening the range of applications of
Juniperus. Correlation analysis of components and bioactivities showed that δ-amorphene, β-udesmol,
α-muurolol, and 2-nonanone performed well in the determination of antioxidant activity, and α-
pinene, camphene, β-myrcene, as well as (E)-thujone, had strong inhibitory effects on pathogenic
bacteria, providing a theoretical basis for further research on these components.

Keywords: chemical composition; α-diversity; antioxidant activity; antibacterial activity; key
compounds

1. Introduction

Essential oils (EOs), also known as volatile oils, are mixtures of secondary metabolites
produced by aromatic plants [1]. In recent years, EOs have been found to exhibit antibac-
terial, anti-inflammatory, analgesic, and antioxidant effects [2,3], which has sparked an
increasing interest in plant EOs.

Essential oils are widely distributed in plants. As the second largest conifer genus,
most Juniperus plants are rich in EOs [4,5]. The principal ingredients of the aromatic oils
from Juniperus are α-pinene, β-pinene, limonene, sabinene, myrcene, dl-limonene, bornyl
acetate, and other compounds [6,7]. These secondary metabolites have a good biological
activity, enabling EOs from Juniperus to be utilized extensively in different regions [8–12].
Because of its remarkable adaptability, Juniperus has a wide geographic distribution from
the Arctic Circle to the highlands of the African tropics. Thus, there are certain differences
in EOs among various species and geographical regions [13,14].
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The highest plateau in the world is the Qinghai-Tibet Plateau, with an average eleva-
tion of 4500 m [15]. In total, 18 Juniperus species, including Juniperus formosana Hayata, J.
przewalskii Komarov, J. convallium Rehder & E. H. Wilson, J. tibetica Komarov, J. komarovii
Florin, J. sabina L., all have a sizable number in the plateau [16]. With a broad distribution
in the adret and semi-adret, Juniperus has become a dominant genus in the forest ecosystem
and diversity of the Qinghai-Tibet Plateau. Little variations in altitude and climate may
have an impact on the volatile compounds and activity [17,18], therefore we hypothesized
1© the highland environment created the specificity of EOs from Juniperus; 2© the chemodi-

versity of essential oils was consistent with plant taxonomy; 3© six juniper essential oils
had antioxidant and bacteriostatic activities.

In this study, steam distillation and GC-MS were used to separate and identify the EOs
from the six common species of J. formosana, J. przewalskii, J. convallium, J. tibetica, J. komarovii,
and J. sabina on the Qinghai-Tibet Plateau to analyze the specificity and diversity of the
Juniperus phytochemical composition in this region. Their antioxidant and antibacterial
activities were determined, providing resources for the utilization of Juniperus and high-
quality germplasm breeding.

2. Results
2.1. Chemodiversity of Juniperus Essential Oils
2.1.1. Essential Oils Yields and Composition

The yields and composition of EOs from different species are shown in Table 1. The
EOs yields of the six Juniperus plants ranged from 1.30 to 4.13% with an average yield of
2.63%. J. convallium (4.13%) and J. przewalskii (3.40%) produced the highest yield. GC-MS
analysis found 92 compounds, including monoterpene hydrocarbons (13), oxygenated
monoterpenes (34), sesquiterpene hydrocarbons (16), oxygenated sesquiterpenes (18), and
other substances (11) accounting for 58.35–85.04% of the total components. Monoter-
pene hydrocarbons were the main volatile components in the EOs, with an average level
of 35.22%.

In this study, J. sabina had the most main components (more than 1% of the total),
with a total of 17 species up to 72.61% (Figure 1A). Among them, sabinene had the highest
content of 19.83%. In addition to being one of the main constituents of J. sabina, sabinene
was also the most prevalent element in the EOs of J. przewalskii, J. convallium, J. tibetica, and
J. komarovii, and its percentages varied widely between these populations (12.14–19.83%).
In the oil of J. formosana, α-pinene dominated with the highest content (17.31%) among
the 14 main components. J. prizewalskii found the least main components (10), with a total
content of 55.91%.
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Figure 1. Main components (A) and trace components (B) of essential oils from six Juniperus species.
Different colors represent different compounds.

As illustrated in Figure 1B, 40 trace components, making up less than 0.1% of the
entire composition, were discovered and represented in an average of 0.52% of the total
oil content. Nineteen trace components from J. tibetica had a total quantity of 0.73, making
them the most prevalent. In terms of trace components, J. przewalskii was second only to J.
tibetica in quantity and content. Notably, the minimal seven trace components were found
from J. formosana EOs.
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Table 1. Relative contents of EOs compounds of six Juniperus species.

NO. Compounds RI a RI b

Area (%)

J.
formosana

J.
przewalskii

J.
convallium

J.
tibetica

J.
komarovii

J.
sabina

Monoterpene hydrocarbons
1 β-Thujene 920 902 0.16 1.28 1.04 1.09 1.93 1.76
2 α-Pinene 940 911 17.31 5.86 5.58 6.93 2.71 2.74
3 Camphene 954 927 0.32 0.04 0.05 0.07 0.03 0.04
4 Sabinene 975 956 4.91 12.14 15.33 16.13 17.5 19.83
5 β-Pinene 980 959 2.15 0.06 0.05 0.07 nd 2.63
6 β-Myrcene 991 973 3.13 0.53 1.38 1.85 1.17 nd
7 4-Carene 1001 981 0.38 nd 0.37 0.83 0.06 0.92
8 α-Phellandrene 1002 985 0.58 0.04 0.02 0.04 0.12 0.19
9 α-Terpinene 1007 996 0.29 1.78 1.54 2 3.19 3.15
10 Sylvestrene 1027 1009 3.49 8.58 2.35 3.78 3.07 1.84
11 (Z)-β-Ocimene 1031 1020 0.01 nd nd tr nd 0.15
12 γ-Terpinene 1054 1042 0.56 2.99 2.46 3.02 4.42 4.46
13 Terpinolene 1086 1072 0.62 0.9 0.89 1.18 1.48 1.8

Oxygenated monoterpenes
14 4-Thujanol 1077 1051 nd 0.18 0.25 0.21 0.2 0.14
15 Linalool 1095 1083 0.21 0.79 nd 0.13 0.17 0.68
16 Rose oxide 1108 1089 nd nd nd nd nd 0.12
17 (Z)-Thujone 1111 1091 nd 0.18 0.02 0.25 0.22 0.03

18 Butanoic acid, 3-methyl-,
3-methyl-3-butenyl ester 1112 1096 nd 0.01 nd nd 0.05 0.23

19 (E)-Thujone 1114 1097 0.02 nd 0.11 nd nd nd
20 3-Thujanone 1124 1099 nd 0.9 nd nd nd nd
21 p-Menth-2-en-1-ol 1125 1102 0.06 0.28 0.33 0.6 0.62 0.59
22 (R)-α-Campholene aldehyde 1126 1107 0.63 nd 0.02 0.03 nd nd
23 (E)-Pinocarveol 1135 1121 0.57 nd nd nd nd nd
24 (E)-p-Menth-2-en-1-ol 1140 1123 nd 0.2 0.23 0.44 nd nd
25 (E)-Verbenol 1144 1128 0.39 nd 0.03 0.05 nd nd
26 Citronellal 1152 1139 nd tr nd nd nd 0.32
27 p-Mentha-1,5-dien-8-ol 1170 1150 1.2 nd nd nd nd nd
28 4-Terpineol 1177 1161 1.16 6.58 5.55 nd 8.81 8.96
29 (R)-4-Carvomenthenol 1182 1163 nd nd nd 6.55 nd nd
30 α-Terpineol 1186 1175 0.42 0.2 0.16 0.19 0.5 0.58
31 (Z)-Piperitol 1195 1179 nd 0.07 0.07 0.14 0.22 0.24
32 2-Pinen-10-ol 1198 1179 0.41 nd nd nd nd nd
33 Berbenone 1204 1191 0.16 nd nd nd nd nd
34 (E)-Piperitol 1207 1192 nd 0.09 0.11 0.21 0.32 0.35
35 (E)-Carveol 1215 1200 0.2 0.02 tr 0.01 nd nd
36 Fenchyl acetate 1223 1202 0.22 nd nd nd nd nd
37 Citronellol 1228 1210 0.38 0.06 0.01 0.03 0.04 2.31
38 (E)-Chrysanthenyl acetate 1238 1217 0.22 nd nd nd nd nd
39 Piperitone 1249 1239 nd 0.01 0.49 0.89 0.01 0.37
40 Linalyl acetate 1254 1241 nd nd nd nd nd 0.29
41 Citronellic acid, methyl ester 1261 1244 nd nd 0.01 0.01 0.11 2.55

42 Hexanoic acid,
3-methyl-2-butenyl ester 1292 1277 0.74 nd nd nd nd nd

43 (E)-Geranic acid methyl
ester 1315 1306 nd nd nd nd nd 0.72

44 (E,E)-2,4-Decadienal 1315 1297 0.01 nd 0.01 0.01 nd 0.13
45 α-Terpinyl acetate 1349 1334 1.12 nd nd nd nd 0.1
46 Citronellol acetate 1350 1337 nd nd nd nd nd 0.28
47 Geranyl acetate 1379 1366 0.05 nd nd nd nd 0.18
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Table 1. Cont.

NO. Compounds RI a RI b

Area (%)

J.
formosana

J.
przewalskii

J.
convallium

J.
tibetica

J.
komarovii

J.
sabina

Sesquiterpene hydrocarbons
48 β-Bourbonene 1388 1372 0.14 nd nd nd nd nd
49 β-Elemene 1390 1378 0.25 nd 0.12 0.03 0.01 0.06
50 Cedrene 1413 1392 nd nd nd tr 0.11 nd
51 (E)-Caryophyllene 1417 1407 1.77 0.14 0.23 0.05 nd 0.1
52 β-Copaene 1430 1411 nd nd nd nd nd 0.02
53 γ-Elemene 1434 1419 nd nd 0.3 0.04 0.04 0.04
54 α-Humulene 1454 1442 2.01 nd 0.05 0.01 0.02 0.08

55
(1S,4S,4aS)-1-Isopropyl-4,7-

dimethyl-1,2,3,4,4a,5-
hexahydronaphthalene

1458 1461 nd nd 0.16 0.07 0.13 nd

56 (Z)-Muurola-4(15),5-diene 1465 1464 nd nd 0.57 nd 0.19 0.12
57 γ-Muurolene 1478 1464 0.28 nd nd nd nd 0.23
58 (E)-Germacrene D 1485 1470 7.32 0.04 nd 0.06 nd 0.58
59 α-Muurolene 1500 1483 nd nd nd 0.14 0.37 0.83
60 δ-Amorphene 1522 1502 1.28 nd 2.09 1.03 1.72 3.76
61 Cadine-1,4-diene 1533 1509 nd nd nd 0.01 0.06 0.13
62 α-Cadinene 1538 1520 nd nd nd nd nd 0.22
63 Germacrene B 1559 1530 nd 0.4 0.68 nd nd 0.05

Oxygenated sesquiterpenes
64 Epi-cubebol 1493 1482 nd 0.03 nd nd 0.12 0.32
65 Cubebol 1514 1496 nd nd 0.74 0.28 nd nd
66 α-Copaen-11-ol 1539 1522 nd 0.19 nd nd 0.01 nd
67 Hedycaryol 1548 1523 0.8 6.8 9.83 9.44 7.15 1
68 Occidentalol 1550 1528 nd nd nd nd 0.13 nd
69 (E)-Nerolidol 1561 1534 0.48 nd nd nd 0.2 0.04
70 Germacrene D-4-ol 1575 1541 0.46 0.18 1.34 0.61 0.54 1.65
71 Caryophyllene oxide 1582 1547 0.79 0.01 nd nd nd nd
72 Salvial-4(14)-en-1-one 1594 1553 0.12 nd nd nd nd nd
73 7-epi-γ-Eudesmol 1622 1574 nd 2.14 2.07 1.62 1.62 nd
74 1-epi-Cubenol 1627 1577 nd nd nd nd nd 0.45
75 epi-α-Cadinol (T-cadinol) 1638 1579 0.39 0.48 nd 0.58 nd nd
76 T-Muurolol 1640 1579 nd nd 1 nd 1.65 4.11
77 α-Muurolol 1644 1581 nd 0.05 0.13 0.08 0.29 0.89
78 β-Eudesmol 1649 1587 nd 0.01 nd nd 1.29 0.09
79 α-Cadinol 1652 1590 nd nd nd nd 3.04 5.69

80 ent-Germacra-4(15),5,10(14)-
trien-1β-ol 1685 1603 0.73 nd nd nd 0.12 0.16

81 Shyobunol 1688 1605 0.05 nd 0.1 0.04 nd 0.07

Others
82 2-Nonanone 1087 1075 0.02 0.01 nd nd nd 0.21
83 Isoamyl isovalerate 1102 1085 nd nd nd nd nd 0.16

84 exo-2,7,7-trimethylbicyclo
[2.2.1] heptan-2-ol 1146 1132 0.28 nd nd 0.02 nd nd

85 Bornyl acetate 1288 1271 1.28 0.02 0.08 0.1 0.05 0.04
86 2-Undecanone 1293 1279 nd nd nd nd nd 4.37
87 2-Undecanol 1301 1285 nd nd nd nd nd 0.25
88 Dodecanoic acid 1565 1540 nd nd nd 0.11 nd 0.4
89 Allo-cedrol 1589 1550 nd nd nd nd 0.12 nd
90 Ethyl dodecanoate 1594 1550 nd nd nd nd nd 0.24
91 Epicedrol 1618 1559 1.18 7.76 0.32 0.81 10.48 nd
92 Aromadendrene oxide-(2) 1678 1600 0.18 nd 0.08 nd nd nd
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Table 1. Cont.

NO. Compounds RI a RI b

Area (%)

J.
formosana

J.
przewalskii

J.
convallium

J.
tibetica

J.
komarovii

J.
sabina

93 Total monoterpenes 42.56 43.85 38.6 46.94 47.18 59.09
94 Monoterpene hydrocarbons 34.39 34.28 31.2 37.19 35.91 39.92
95 Oxygenated monoterpenes 8.17 9.57 7.4 9.75 11.27 19.17
96 Total sesquiterpenes 16.87 10.47 19.41 14.09 18.81 20.69
97 Sesquiterpene hydrocarbons 13.05 0.58 4.2 1.44 2.65 6.22
98 Oxygenated sesquiterpenes 3.82 9.89 15.21 12.65 16.16 14.47
99 Others 2.94 7.79 0.6 1.13 10.65 5.67
100 Total area (%) 61.89 62.03 58.35 61.87 76.41 85.04
101 Number of compounds 52 40 45 48 47 63
102 Yield 4.13% 3.40% 2.77% 2.53% 1.63% 1.30%

NO.: number. RI a: retention index from the literature. RI b: retention index calculated against n-alkanes. nd: not
detected. tr: trace (<0.01%).

2.1.2. Shared and Unique Components

Upset analysis was performed to visualize the distributions of the six EOs’ common
and unique components (Figure 2A). The findings revealed that six EOs shared 15 compo-
nents, including β-thujene, α-pinene, camphene, sabinene, α-phellandrene, α-terpinene,
etc. (Figure 2B). The total content of shared components in the six species has fluctuated
from a minimum of 31.64% to a maximum of 45.21%. Among them, α-pinene, sabinene,
and sylvestrene showed the highest amounts in the six EOs. Figure 2B displays the heatmap
of 15 common components, showing the close interconnectedness among Juniperus species
and the main components. The higher levels of shared components, α-pinene, sabinene,
and sylvestrene, showed strong correlations.

J. sabina and J. formosana have more distinctive parts (Figure 2A). Twelve different com-
pounds, including 2-undecanone, α-cadinol, (E)-geranic acid methyl ester, 1-epi-cubenol,
etc., were combined in J. sabina EOs with a total of 7.44% (Table 1). A total of nine unique
ingredients were distributed in J. formosana essential oil, accounting for 3.78% of the total
content. J. przewalskii and J. tibetica had only one unique ingredient, while no unique
ingredients existed in J. convallium EOs.

2.1.3. α-Diversity of Juniperus Essential Oils

To quantify the diversity of essential oil components, the α diversity index was intro-
duced to calculate the richness and uniformity of components. There were differences in
the α-diversity of EOs among different Juniperus plants (Figure 3A). The EOs from J. sabina
had the highest α-diversity (Shannon–Wiener index: 3.06; Simpson’s variety index: 0.91;
Pielou evenness: 0.74), and this meant a good variety and uniformity. J. formosana had the
same Pielou evenness as J. sabina, with the Shannon–Wiener index (2.92) and Simpson’s
variety index (0.89) ranked second, only below J. sabina. J. przewalskii oil had the least
variety and homogeneity, with α-diversity indices of 2.50, 0.89, and 0.66, respectively.

The relationships between the chemical diversity of the EOs are shown in Figure 3B.
Chemical diversity indices had a high degree of relevance to each other, and all of them
were positively correlated. Results indicated that Shannon–Wiener index was highly
correlated with the Pielou evenness and the number of compounds with the same maxi-
mum correlation coefficient of 0.93. Meanwhile, the correlations reached significant levels
(Figure 3B).
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2.1.4. Chemometrics Analysis of Juniperus Essential Oils

The chemical profiles of the six oils showed positive connections, with the largest
correlations of 0.90 occurring between J. convallium and J. tibetica, and J. przewalskii and J.
komarovii (Figure 4A). The correlation between J. formosana and J. sabina was the weakest of
0.28. And the results of principal component analysis and cluster analysis were consistent
with those of the correlation analysis employing the EOs constituents of six different
species (Figure 4B), and they grouped J. formosana and J. sabina into clusters with more
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distant chemical relatives. The X-axis and Y-axis combined to account for 75.30% of the
overall variability, which indicated that 92 components could well distinguished the six
Juniperus plants.
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Correlation analyses of essential oil components between different Juniperus plants
were conducted, and the results showed that the isolation of J. formosana and J. sabina
may be due to the different levels of some compounds (Figure 4C). Bornyl acetate, (R)-α-
campholene aldehyde, exo-2,7,7-trimethylbicyclo [2.2.1] heptan-2-ol, β-bourbonene, (E)-
chrysanthenyl acetate, fenchyl acetate, (E)-pinocarveol, 2-pinen-10-ol, etc., caused J. for-
mosana to be distant from other plants, while EO ingredients, such as α-terpineol, α-cadinol,
α-muurolene, cadine-1,4-diene, epi-cubebol, and α-muurolol, supported the independence
of J. sabina. Some of these were unique components, hinting that the ingredients may play
an important role in the chemical diversity of essential oils. And the compounds that
stood out on the coefficient plot (Figure 4C) were α-pinene, sabinene, 4-terpineol, and
(E)-germacrene D with VIP (variable important in projection) values greater than 2. These
four components were the significant influence compounds in Juniperus, whose concentra-
tions varied substantially, and could be considered as candidate markers to determine the
chemotype of Juniperus EOs.
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Figure 4D shows three different comparison models with selected candidate marker
compounds. Group I contained J. formosana due to the high concentration of α-pinene
(17.31%) and (E)-germacrene D (7.32%). The Group II cluster accumulated the most sim-
ilar spectra. The main elements of the hedycaryol-rich type that formed Group II were
hedycaryol (6.80–9.83%) and sabinene (12.14–17.50%), confirming the chemical similarity
between J. przewalskii, J. komarovii, J. convallium, and J. tibetica. Finally, the richness of
sabinene (19.83%) was a specific trait for Group III, which varied from the other two groups
as a result of the abundant distinctive components.

2.2. Biological Activity of Juniperus Essential Oils
2.2.1. Antioxidant Activity

DPPH and ABTS radical scavenging methods were used to detect the antioxidant
activity of essential oils, and all essential oils exhibited antioxidant activity (Table 2).
The IC50 of all extracts, as assessed by DPPH radical scavenging ability, ranged from
11.94 mg/mL to 45.62 mg/mL. The highest antioxidant activity was demonstrated by J.
komarovii, whereas J. przewalskii displayed the lowest. Furthermore, the ABTS scavenging
activity declined in the following order: J. sabina > J. komarovii > J. formosana > J. convallium
> J. tibetica > J. przewalskii. Except for J. przewalskii, the other five plants had a stronger
scavenging ability without exhibiting significant differences (p < 0.05).

Table 2. Antioxidant activity of EOs from six Juniperus species.

NO. Samples DPPH (IC50)
(mg/mL)

ABTS
(µmol Trolox/g)

1 J. formosana 18.83 ± 0.90 cd 44.34 ± 7.55 a

2 J. przewalskii 45.62 ± 0.37 e 25.10 ± 7.98 b

3 J. convallium 16.89 ± 3.14 c 44.19 ± 0.46 a

4 J. tibetica 21.26 ± 2.19 d 43.73 ± 1.62 a

5 J. komarovii 11.94 ± 0.14 b 48.83 ± 0.88 a

6 J. sabina 17.82 ± 0.11 c 49.34 ± 0.95 a

7 Trolox 0.01 ± 0.21 a -
Data (means ± SD, n = 3) within a row with different superscripts are significantly different (p < 0.05).

2.2.2. Antibacterial Activity

As depicted in Figure 5A, the disc diffusion technique was used to assess the antibac-
terial activity of the EOs against nine pathogens. All of the examined microorganisms had
varying degrees of susceptibility to the six EOs, with halos ranging from 6.10 to 12.25 mm.
The preliminary screening of diameter inhibition data revealed that all EOs considerably
reduced the pathogen growth to different degrees.

By assessing the MIC and MBC at various concentrations (0.39–400.00 mg/mL), the
microdilution assay was used to further assess the antibacterial activity. With MIC values
ranging from 0.78 to 50.00 mg/mL, all of the EOs showed broad-spectrum antibacterial
activity against nine pathogenic bacteria in Figure 5B. As expected, the MBCs, which ranged
from 3.13 to 100.00 mg/mL, were greater than the MICs. The EOs of J. komarovii produced
the lowest MIC values (ranging from 0.78 to 3.13 mg/mL) and MBC values (ranging from
3.13 to 6.25 mg/mL), confirming that it was the most effective against Gram-negative
bacteria. The MIC values (3.13–12.50 mg/mL) and MBC values (ranging from 6.25 to
50.00 mg/mL) of the EOs from J. convallium and J. przewalskii were both lower than the
other three species. Moreover, Salmonella Enteritidis had the lowest MBC value and was
susceptible to the six EOs.

2.3. Correlation Analysis of Compounds and Bioactivity
2.3.1. Key Compounds Responsible for Antioxidant Activity

The correlation analysis was obtained using the volatile components of the six Ju-
niperus oils as the X variables and the antioxidant data as the Y variables (DPPH values
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were the reciprocal values of IC50) to find the volatile substances associated with the an-
tioxidant activity of the EOs (Figure 6). As a result of this analysis, all 92 compounds
showed a correlation with the antioxidant activity of EOs. Despite the concentration
of these substances fluctuates greatly, terpinolene, α-terpineol, (Z)-piperitol, cedrene, α-
Muurolene, δ-amorphene, etc., were found to be favorably linked with antioxidant activity;
while sylvestrene, linalool, 3-thujanone, α-copaen-11-ol, and epi-α-cadinol (T-cadinol)
were inversely correlated with antioxidant activity. Due to the various scavenging mech-
anisms, essential oil components were more strongly correlated with ABTS than DPPH.
The results indicated that sylvestrene, 3-thujanone, and α-copaen-11-ol were significantly
correlated with ABTS, while the correlation coefficients of −0.96, −0.96, and −0.95 were
found, respectively.
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2.3.2. Key Compounds Responsible for Antibacterial Activity

The diverse biological actions of EOs had been blamed for the components’ mosaic
combination. The bacteriostatic effects of EOs differed with components or strains, as
seen in Figure 6. The compounds 4-terpineol, β-myrcene, β-thujene, γ-terpinene, and
epi-cubebol exhibited the widest spectrum of growth inhibition, and their contents were
strongly correlated with the growth inhibition of tested bacteria. Salmonella Enteritidis
and Salmonella Typhimurium have correlation coefficients of 0.97 and 0.98 with β-myrcene,
respectively, showing the importance of β-myrcene in antibacterial action.

In the tested bacteria, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphy-
lococcus aureus proved to be the most sensitive to EOs, compared with the weakest of
Salmonella Paratyphi, and Escherichia coli. β-thujene, γ-terpinene, terpinolene, 4-terpineol,
epi-cubebol, cadine-1,4-diene, α-cadinol, and other monoterpenes and its oxides were
strongly connected with the inhibition of bacterial growth, particularly Pseudomonas aerug-
inosa, Salmonella Typhimurium, and Staphylococcus aureus. Among them, the content of
monoterpenes and their oxides had a high degree of relevance to bacteriostatic activity,
such as α-pinene, camphene, β-myrcene, (E)-thujone, (E)-p-menth-2-en-1-ol, (E)-verbenol,
and (R)-4-Carvomenthenol, all of which were positively correlated with the inhibitory
activity against the tested strains.

3. Discussion

Essential oils have the characteristics of complex composition and volatility, and the
yield of various plant essential oils is affected by conditions including plant species, raw
material origin, extraction method, and others [13,19–23]. The yields of six essential oils were
significantly higher than the yields reported in some earlier literature (0.06–1.48%) [14,24–27].
In contrast, the highest extraction rate (6.55%) was found for the EOs extracted by super-
critical extraction from J. communis [28].

In fact, as EOs are secondary components and are strongly influenced by environ-
mental conditions, the distribution of essential oil components varies between examined
samples [29]. Of the six Juniperus species, the largest number of chemical constituents of 63
was identified in J. sabina with the highest chemical diversity, but also less than the 82 of
Adams [30]. In Adams [30,31], the oil from J. przewalskii (73), J. convallium (69), J. tibetica (82),
and J. komarovii (62) was identified to contain more components than our study. This may
be related to the unique natural environment of the Tibetan Plateau. In this environment,
pressures such as low temperatures, wind blowing, and high-altitude ultraviolet radiation
can accelerate the oxidation or hydrolysis of terpenes to other compounds, which had a
polyartious effect on the content of secondary metabolites [22,32,33].

Each essential oil is characterized by some major compounds which can reach high
levels, as compared to other compounds [34]. Monoterpenes, the major volatile components,
are the typical characteristic of most Juniperus species [4,10,28,30,35]. In the present study,
sabinene was also the most abundant ingredient in J. tibetica, J. komarovii, and J. sabina, and
α-pinene predominated in J. formosana, in agreement with the literature data [10,36–38].
However, limonene and a-pinene served as major components of J. convallium and J.
przewalskii, which differs from our findings [36–38].

Moreover, the amounts of main compounds widely varied between the examined
samples. Abdel-Kader et al. (2019) showed the dominance of sabinene in J. sabina, which
was relatively high (55.82%), significantly higher than the portion in our study (19.83%).
And some compounds with rich content in other plants, like piperitone, were in low
amounts or even not detected in our study [31,38]. Various studies [32,39] proved that
populations of the same species collected from different habitat had a diverse essential
oil composition. Natural factors may be at the root of the variability in the chemical
composition of these essential oils, leading to the establishment of different chemical races
or chemotypes within the same species and consequent changes in quality.

Through GC-MS analysis, 15 common compounds were identified in this study. Com-
bining this study with past findings [24,40], α-pinene is the merely sole common component
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found in all Juniperus essential oil studies, indicating a higher variability in EOs composition
in these taxa. The remaining 14 compounds are common and unique components of the
six plants in this study. Part of these common and unique elements could be attributed to
some species being endemic to China and partly to special ecological environments. And
this also hinted at the similarity and polymorphism of the EOs compositions from different
Juniperus species and different habitats.

The unique plateau environment may contribute to the discovery of some compo-
nents, including (E)-geranic acid methyl ester, ethyl dodecanoate, rose oxide, isoamyl
isovalerate, and β-copaene, which were first reported in Juniperus. The binding of 12
different compounds in J. sabina EOs also supported the specificity of EOs between species.
Except for hedycaryol, these compounds are mainly trace components and may con-
tribute significantly to the distinct differences in the scent and biological activity of the
plants [41]. Hedycaryol, the content of which was determined to be 0.8–9.83%, is an im-
portant biosynthetic intermediate toward eudesmols and guaiols, which showed potent
insecticidal action against agricultural pests and may be an advantageous and eco-friendly
biopesticide [42,43].

The composition and profile of EOs is highly varied between different individuals of
Juniperus and it is thus that these individuals can be definite as chemotypes. A number of
chemotypes have been recorded in earlier research, including the prevalence of α-pinene,
β-pinene, sabinene, β-phellandrene, limonene, δ-3-carene, β-thujone, and manoyl ox-
ide [44–46]. In our study, the hedycaryol chemotype was defined in Juniperus for the first
time, while J. sabina belongs to this group because of its different chemical characteristics.
However, whether the presence of hedycaryol chemotype in the EOs from Juniperus nee-
dles is a trait that can be used for taxonomic purposes requires more extensive chemical
investigation of the genus.

Juniperus were first established by Linnaeus in 1753. The 1978 Flora Reipublicae
Popularis Sinicae split Juniperus into Juniperus and Sabina (Editorial Committee of FRPS),
while the 1999 English Flora of China incorporated Sabina into Juniperus [47]. Thus, the
division and incorporation of the Juniperus has been debated for a long time. Using
RAPD data, Adams (1993) separated the genus into three genera of Juniperus, Sabina, and
Caryocedrus. In this study, the low similarity between J. sabina and the other five species
provides a chemical basis for the division between Juniperus and Sabina. Previous studies
have also shown consistency between chemical and genetic diversity [33,48,49].

The fact that J. formosana was distantly linked to the four species of Group II species was
incredible. Previous studies have shown that the role of phenotypic plasticity in chemical
composition cannot be ignored [50,51]. Morphologically, J. formosana leaves are spiny, while
the other five species are scaly leaves or a mixture of scaly and spiny leaves. Another
possible reason for this was the low altitude of the species sampling site. The variety of
plant essential oils can vary depending on small habitat differences between altitudes [52].
Thus, it is crucial to research the chemical composition and biological properties of various
Juniperus species’ EOs for its systematic taxonomic study, which also needs further research.

Plant essential oils have direct or indirect antioxidant activity. The six EOs appeared
to provide positive health benefits for consumers, according to the DPPH and ABTS values.
And first discovered as an antioxidant, J. przewalskii, J. convallium, J. tibetica, and J. komarovii
EOs open up new possibilities for the use of Juniperus needles and the creation of natural
plant remedies. This activity was attributed to camphor, camphene, and other components
like δ-amorphene, β-eudesmol, and α-muurolol.

Among the six species, the antioxidant activity of J. komarovii and J. sabina was promi-
nent. Their antioxidant differences with J. przewalskii were not surprising. Previous studies
have shown that hydroxylated compounds and terpenes can partially account for the
inhibitory effect of EOs [53]. Hydroxylated compounds exhibited a variety of chemical
properties and reactivity by trapping radical-to-organic radical reagents (DPPH and ABTS
tests) [54], and the process was influenced by the degree of hydroxylation, extent of conju-
gation, and fundamental interaction [54]. Terpenes break conjugated double bonds and
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release small and high-affinity hydrogen radicals to neutralize oxygen radicals and reduce
oxidative damage. Therefore, their different antioxidant efficiency results from the pres-
ence of phenolic compounds and terpenes with conjugated double bonds, which act as
donors of hydrogen and electrons, and from their different concentration levels in these
natural mixtures.

The correlation analysis supported the evidence that compounds in the greatest pro-
portions may not necessarily be responsible for the largest share of the antioxidant activity,
while less abundant constituents with strong therapeutic effects may be helpful in boosting
the antioxidant activity of EOs. Phenolic compounds, for example, whose hydroxyl groups
donate hydrogen atoms, play a significant role in free radical elimination and bioactive
potential [55]. The loss of the allylic hydrogen atom is linked to the neutralization of
the DPPH and ABTS radicals by terpenes with conjugated double bonds, like β-pinene,
β-eudesmol, (E)-germacrene D, citronellal, and so on [56]. However, it must be highlighted
that the mechanisms behind the antioxidant action of plant secondary metabolites are
complex and incompletely known; further study is required to fully grasp the underlying
chemical route.

Juniperus EOs had bacteriostatic effects on all of the studied strains, and except for
J. formosana, the antibacterial activity of the other five species was the first measured.
Overall, it appeared to be more effective against Gram-negative bacteria than Gram-positive
bacteria. On the contrary, due to different cell wall compositions, Gram-positive bacteria
were more sensitive to plant EOs in earlier investigations [57,58]. This may be due to the
high concentration of oxygenated monoterpene and the special compositions that are more
sensitive to the cell wall of Gram-negative bacteria and enable them to partition in the lipids
of the cell wall, disturb the cell structures, and increase the permeability [59,60]. Death
may result from significant leakage from bacterial cells or the escape of essential chemicals
and ions.

As EOs are mixtures of numerous components, their antibacterial activity generally
derives from specific components configuration and interactions between components [61].
Phenols and aldehydes showed higher antibacterial capacities among the ingredients of
EOs, followed by alcohols, ketones, esters, and hydrocarbons [62]. By establishing hydrogen
bonds with the active sites of the target enzymes and inactivating them, the hydroxyl groups
found in phenolic compounds were extremely effective against a variety of bacteria [63].
Certain phenols possess antibacterial effects even at extremely low concentrations [64].
From the perspective of three chemotypes, hedycaryol-rich EOs appeared to have stronger
antibacterial capacity.

Due to the difference in concentration, monoterpenes and their oxides, such as 4-
terpineol, β-myrcene, β-thujene, and γ-terpinene, appeared to have a larger bacteriostatic
effect than sesquiterpenes and their oxides. And this seems to provide viable objectives
for additional investigation to pinpoint the active EOs’ antibacterial action. Of course, it
is possible that different ingredients in the EOs present a synergistic interaction against
bacteria. According to Leandro et al. [65], the functionality of the chemicals found in EOs
should not be attributed in isolation, but rather additively, synergistically, or antagonisti-
cally. Even yet, the connection and correlation coefficient between the components of EOs
and their antibacterial activity offered guidance and foundation for additional study to
substantiate their antibacterial mechanism. In conclusion, EOs are potential agents against
Gram-positive and Gram-negative bacteria [66]. Similar research can explore the possible
function of EOs as antibacterial agents, but more research is necessary.

4. Materials and Methods
4.1. Plant Material and the Extraction of EOs

The needles were gathered from the Tibetan Plateau, and Table 3 summarizes the
background details of the samples. From each patch, five individual plants were randomly
selected: healthy and complete needles were obtained from four different directions on
each tree and then evenly mixed. The species were identified using morphological char-
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acteristics and information found in the library of the School of Forestry at Northwest
A & F University, Yangling, China. Voucher specimens were placed at the Shaanxi Key
Laboratory of Economic Plant Resources Development and Utilization. The needles were
air dried before being processed into powders. According to Zhang et al. [67] with some
modifications, the hydro-distillation of sample powders was carried out for 5 h using a
modified Clevenger type equipment to obtain EOs. Following separation, the oils were
dried in anhydrous sodium sulfate. We produced three replications for EOs extractions
from each specie and mixed them for homogenization. Pure EOs weights and volumes
were measured, and they were then sealed in brown glass vials and kept in a−20 ◦C freezer
until further analysis. A dry weight basis was used to calculate the oil yields (w/w).

Table 3. Detailed information of six Juniperus species.

No. Herbarium
No Species Collection Place Coordinates Height Sample Plots

1 JF. 20. 24 J. formosana
Guanting Town, Minhe

County, Qinghai
Province, China

N 35.757222◦

E 102.434444◦ 2350 m 3

2 JP. 20. 37 J. przewalskii

Maixiu Forest Farm,
Zeku County, Huangnan

Tibetan Autonomous
Prefecture, Qinghai

Province, China

N 35.228333◦

E 101.851667◦ 3519 m 24

3 JC. 20. 39 J. convallium

Jiangxi Forest Farm,
Yushu County, Yushu
Prefecture, Qinghai

Province, China

N 32.055833◦

E 97.0038889◦ 3520 m 3

4 JT. 20. 77 J. tibetica

Jiangxi Forest Farm,
Yushu County, Yushu
Prefecture, Qinghai

Province, China

N 32.072777◦

E 97.0241667◦ 3600 m 21

5 JK. 20. 31 J. komarovii

Doke River Forest Farm,
Banma County, Guoluo
Tibetan Autonomous
Prefecture, Qinghai

Province, China

N 32.745833◦

E 100.751111◦ 3550 m 3

6 JS. 20. 24 J. sabina

Ketusha District, Haiyan
County, Haibei

Prefecture, Qinghai
Province, China

N 36.759662◦

E 100.794524◦ 3317 m 3

4.2. GC-MS Analysis

TG-5MS capillary column-equipped TRACE1310-ISQLT equipment (Thermo Fisher
Scientific, Wyman Street, Waltham, MA, USA) was used for the analysis. Helium (purity
99.999%) was the carrier gas at a flow rate of 1 mL/min with an ionization voltage of
70 eV, covering a mass range 40–460 m/z. The temperature of the GC oven was kept at
35 ◦C for 3 min, increased to 150 ◦C at 3 ◦C/min, then ramped up to 260 ◦C at 10 ◦C/min,
before being held at 290 ◦C at 5 ◦C/min for 8 min. The constituents were identified by
comparing constituents’ mass spectra with the NIST 08, C8-C40 n-alkane standard solution
and published mass spectra [35]. The peak area normalization was used to determine the
relative concentrations of the components.

4.3. Chemodiversity

Ecologically, species diversity is divided into α, β, and γ diversity according to various
research scales [68]. The Shannon–Wiener index, Simpson diversity index, and Pielou
evenness are all used to calculate α-diversity, which primarily focuses on the number of
species in limited homogeneous ecosystems [69]. It is also referred to as the diversity
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inside the biological region or species diversity within a single sample, separated from
other samples. Hence, α-diversity could be utilized to calculate the chemical diversity of
EOs [52]. Similarly, the Shannon–Wiener index and Pielou evenness could be used to gauge
the evenness of EOs composition, and the Shannon diversity index can gauge the richness
of its composition.

H′ = −∑ Pi ln Pi

DS = 1−∑ P2
i

E =
H′

ln S
where H′ is the Shannon–Wiener index; DS is the Simpson’s diversity index; E is the Pielou
evenness; Pi is the proportion of compounds in the sample; S is the number of compounds.

4.4. Antioxidant Activity
4.4.1. DPPH

There are several methods for assessing antioxidant activity that rely on specific sub-
strates and mechanisms [70]. In a modified assay, 2 mL of 0.1 mM DPPH radical solution
in 80% ethanol was mixed with 2 mL of various concentrations of the EOs. The absorbance
was measured at 517 nm using an ultraviolet visible spectrophotometer (UV-1780, Shi-
madzu Corporation, Kyoto, Japan) against the control. The percentage scavenging was
then plotted against the concentration and a regression equation was obtained to calculate
the IC50 (mg/mL) (concentration of the EOs that caused 50% of DPPH radical scavenging).

4.4.2. ABTS

The antioxidant activity was measured using ABTS’s modified technique [71]. The
absorbance of 3.90 mL of diluted ABTS solution and 0.10 mL of EOs was measured at
734 nm after being incubated at 37 ◦C for 10 min. To generate a standard curve, a trolox
standard solution (0 to 800 µmol/L) was used. The trolox equivalent in micromoles per
gram was used to express the inhibitory capacity of ABTS.

4.5. Antibacterial Activity
4.5.1. Antimicrobial Strains

The bacteria were supplied by the Microbial Culture Collection Center of the Guang-
dong Institute of Microbiology in China. The six Gram-negative bacteria were Salmonella
Paratyphi (CMCC50093), Escherichia coli (ATCC25922), Salmonella Typhimurium (CMCC50115),
Salmonella Enteritidis (ATCC14028), Pseudomonas aeruginosa (ATCC27853), and Klebsiella
pneumoniae (ATCC46117). The three Gram-positive bacteria were Staphylococcus aureus
(ATCC25923), Listeria monocytogenes (ATCC19115), and Bacillus subtilis (ATCC6633). The
bacteria were revived using two subcultures in Mueller–Hinton broth, and a suspension
of the bacteria in sterile peptone water was prepared and adjusted to the mid-exponential
growth phase with an optical density of 0.5 at 600 nm.

4.5.2. Disc Diffusion Method

The antibacterial activity was evaluated by the disc diffusion method using Müeller–
Hinton agar described by Meng et al. [72] with some modification. An aliquot of soft
agar was prepared and 0.1 mL bacterial suspension were added over each plate (diameter
90 mm) containing 25 mL nutrient medium. The EOs were prepared as a 100 mg/mL
solution with 1% dimethyl sulfoxide (DMSO). Sterile paper discs (6 mm) were impregnated
with 100 mg/mL EOs for 2 h and placed on the inoculated agar. After 24 h of incubation
at 37 ◦C, the antibacterial activity was estimated by measuring the diameter of bacterial
growth inhibition zones (mm) around discs. Positive and negative controls were 1% DMSO
solution and tetracycline (10 µg/mL), respectively.
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4.5.3. Determination of the Minimum Inhibitory Concentration and Minimal
Bactericidal Concentration

The minimum inhibitory concentration (MIC) and minimal bactericidal concentration
(MBC) of EOs was determined by the reduced half dilution method in 96-well plates.
Mueller–Hinton broth medium was mixed with EOs solutions at different concentrations
so as to obtain samples with the final concentrations of 0.195–100 µg/mL [67,73]. All
samples were incubated with bacteria for 24 h at 37 ◦C, and the inoculum and culture
medium served as the positive and negative control [74,75]. MIC was defined as the lowest
concentration of essential oils inhibiting visible bacterial growth. Microorganism culture
medium showing no turbidity was transferred to agar plates and cultured at 37 ◦C for 24 h.
The corresponding concentration without visual bacteria growth was taken as the minimal
bactericide concentration (MBC).

4.6. Statistical Analysis

Each experiment was performed 3–5 times. Using the Statistical Package for the Social
Science, a one-way analysis of variance was used to determine the statistical significance
between the test groups (SPSS 18.0, SPSS Inc., Chicago, IL, USA). Multivariate analyses,
including upset analysis, hierarchical cluster analysis, and correlation analysis were carried
out using R, SIMCA 13.0, and Origin 2022. Findings were regarded as statistically significant
if p < 0.05.

5. Conclusions

The geographical location and climatic conditions of Qinghai-Tibet Plateau have
produced the unique characteristics of EOs from Juniperus. The six Juniperus essential oils
have a rich chemodiversity and there are great differences among species with the most
outstanding being J. sabina. The chemodiversity of the essential oils of Juniperus species
provides a chemical basis for the taxonomy of Juniperus. J. convallium, J. komarovii, and J.
sabina showed a strong antioxidant activity, while J. formosana, J. tibetica, and J. convallium
supplied the tested bacteria with distinctive antibacterial activities, indicating that they
could be used to create natural antioxidants and antibiotics.

Author Contributions: H.H. and D.L. contributed the central idea, performed the research, analyzed
the data, and wrote the initial draft. R.B., H.L. and W.Z. gathered the samples and analyzed the
data. E.Y. interpreted the results. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Northwest Surveying and Planning Institute of Na-
tional Forestry and Grassland Administration [201803010236] in the thematic research program on
Cupressaceae resources in Qinghai Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We gratefully acknowledge the Qinghai Forestry and Grassland Bureau for the
collection permit and the park rangers from the forest farm that ensured the needles collection of
six plants.

Conflicts of Interest: All the authors declare no present or potential conflict of interest. All authors
are responsible for the content and writing of the paper and have approved of its publication.

References
1. Radünz, M.; da Trindade, M.L.M.; Camargo, T.M.; Radünz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and

antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 2019, 276,
180–186. [CrossRef] [PubMed]

2. Juárez, Z.N.; Hernández, L.R.; Bach, H.; Sánchez-Arreola, E.; Bach, H. Antifungal activity of essential oils extracted from Agastache
mexicana ssp. xolocotziana and Porophyllum linaria against post-harvest pathogens. Ind. Crops Prod. 2015, 74, 178–182. [CrossRef]

https://doi.org/10.1016/j.foodchem.2018.09.173
https://www.ncbi.nlm.nih.gov/pubmed/30409582
https://doi.org/10.1016/j.indcrop.2015.04.058


Int. J. Mol. Sci. 2023, 24, 15203 16 of 18

3. Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.;
Nostro, A.L. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria
monocytogenes in beef meatballs. Food Control 2015, 54, 188–199. [CrossRef]

4. Adams, R.P. The leaf essential oils and chemotaxonomy of Juniperus sect. Juniperus. Biochem. Syst. Ecol. 1998, 26, 637–645.
[CrossRef]

5. Adams, R.P.; Demeke, T. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon
1993, 42, 553–571. [CrossRef]
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