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Abstract: Aging is generally defined as a time-dependent functional decline that affects most living
organisms. The positive increase in life expectancy has brought along aging-related diseases. Oxida-
tive stress caused by the imbalance between pro-oxidants and antioxidants can be given as one of the
causes of aging. At the same time, the increase in oxidative stress and reactive oxygen species (ROS)
is main reason for the increase in aging-related diseases such as cardiovascular, neurodegenerative,
liver, skin, and eye diseases and diabetes. Carotenoids, a natural compound, can be used to change
the course of aging and aging-related diseases, thanks to their highly effective oxygen-quenching
and ROS-scavenging properties. Therefore, in this narrative review, conducted using the PubMed,
ScienceDirect, and Google Scholar databases and complying with the Scale for the Assessment of
Narrative Review Articles (SANRA) guidelines, the effects of carotenoids on aging and aging-related
diseases were analyzed. Carotenoids are fat-soluble, highly unsaturated pigments that occur nat-
urally in plants, fungi, algae, and photosynthetic bacteria. A large number of works have been
conducted on carotenoids in relation to aging and aging-related diseases. Animal and human studies
have found that carotenoids can significantly reduce obesity and fatty liver, lower blood sugar, and
improve liver fibrosis in cirrhosis, as well as reduce the risk of cardiovascular disease and erythema
formation, while also lowering glycated hemoglobin and fasting plasma glucose levels. Carotenoid
supplementation may be effective in preventing and delaying aging and aging-related diseases,
preventing and treating eye fatigue and dry eye disease, and improving macular function. These
pigments can be used to stop, delay, or treat aging-related diseases due to their powerful antioxidant,
restorative, anti-proliferative, anti-inflammatory, and anti-aging properties. As an increasingly aging
population emerges globally, this review could provide an important prospective contribution to
public health.
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1. Introduction

As life expectancy increases, age-related diseases will become more prevalent [1],
including biological and cognitive impairments such as mental and emotional deterioration
as well as physical weakness [2]. Aging is defined as the progressive impairment of
physiological integrity over time and, thus, is a leading risk factor for the development of
many diseases including cardiovascular disease, liver disease, neurodegenerative diseases,
and diabetes [3].

According to the “Theory of Free Radical Aging”, which was first developed in the
1950s, aging is due to the destruction of biomolecules such as lipids, proteins, and DNA by
free radicals resulting from physiological reactions with exogenous and endogenous factors
and reactive oxygen [4]. Today, it is fully recognized that reactive oxygen species (ROS) also
act as specific signaling molecules that are necessary for maintaining normal cell function.
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Aerobic metabolism produces continuously reactive forms of oxygen as byproducts, but an
increase in their formation under stress can result in severe cellular damage [2,5].

Pro-oxidants contribute to the production of ROS and subsequently the damage of
cellular macromolecules, indicating that they increase oxidative stress [5]. In contrast,
antioxidants reduce oxidative stress by reducing or eliminating the effects of ROS. Due
to an increasing deficiency of endogenous antioxidant mechanisms, elderly individuals
are highly vulnerable to oxidative stress [3]. At a certain point, aging processes become
inevitable because of the gradual accumulation of oxidative damage caused by the imbal-
ance between pro-oxidants and antioxidants. As these cellular damages gradually progress
and accumulate, age-related diseases manifest [4].

Natural compounds with high antioxidant activity have been shown to inhibit aging
processes related to oxidative stress [6]. In recent years, carotenoids have garnered consid-
erable attention due to their potent antioxidant, repair, anti-proliferative, anti-inflammatory,
and anti-aging properties. Thus, they are considered to be compounds that can help in the
prevention of diseases associated with oxidative stress and chronic inflammation [5]. In
the present work, research works on the effects of carotenoids on aging and aging-related
diseases were reviewed using scientific databases.

2. Carotenoids: Properties, Structures, and Functions

Carotenoids are oil-soluble, extremely unsaturated pigments found in plants, mush-
rooms, algae, and photosynthetic bacteria [7,8]. They are abundant in nature, with over
650 different carotenoids described so far [9]. Because the majority of animals lack the
biosynthetic mechanism required to produce carotenoids, they must obtain these natural
compounds from fruits and vegetables [10].

Carotene and xanthophyll are the two primary forms of carotenoids. Carotenes
comprising β-carotene, α-carotene, and lycopene are non-oxygenated terpenes, while
xanthophylls such as lutein, zeaxanthin, astaxanthin, and β-cryptoxanthin contain oxygen
in their chemical structures [11].

The chemical forms of carotenoids and some sources of carotenoids are given in Table 1.
Orange–yellow vegetables and fruits are high in β-carotene, which is a precursor of vitamin
A in the human body, and α-carotene. Oranges are rich in α-cryptoxanthin, tomatoes in
lycopene, and dark green vegetables in lutein. Egg yolk is a rich source of zeaxanthin and
lutein [2,7,12–20].

Table 1. Chemical structures and sources of carotenoids.

Carotenoids Sources References

astaxanthin
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Numerous factors influence the bioavailability of carotenoids, which are advantageous
for oxidation due to their unsaturated structure and can be influenced by factors such as
light, temperature, and pH [11]. Some prevalent cooking techniques, such as steam cooking
and microwave cooking, have little effect on the carotenoid content of nutrients, whereas
excessive heat can cause oxidative damage to carotene [2].

3. Aging

Aging is characterized by the progressive loss of physiological integrity, leading to
increased vulnerability to dysfunction and death [1]. However, it is assumed that the signs
of aging result from several fundamental molecular changes [3]. The four most fundamental
features of these are genomic instability, telomere attrition, epigenetic changes, and loss of
proteostasis. In addition, three opposing characteristics are dysregulated nutrient sensing,
mitochondrial dysfunction, and cellular aging, while their two integrative features are stem
cell depletion and alteration of intercellular communication.

Oxidative damage provokes fundamental components of pathological pathways
thought to lead to signs of aging and many age-related diseases [21]. However, the results
of studies testing the oxidative stress hypothesis on this subject are controversial. That
is, while observational studies have found detrimental effects of high levels of oxidative
stress on disease states, randomized clinical trials examining the effect of antioxidant
supplementation on disease states have generally shown null effects.

The decline of senescent cells is partly a result of impaired proteolytic activity. A
well-established observation about aging is the tendency for cells to accumulate abnormally
or the presence of modified proteins [6]. Additionally, normal cell division is arrested in
senescent cells in response to various cellular stresses or DNA damage, accompanied by a
pro-inflammatory response, mitochondrial dysfunction, and telomere shortening.

During aging, individual circumstances may occur such as increased drug use, reduced
food consumption due to decreased appetite, or difficulty in absorption [1]. In this case,
the functionality and bioavailability of the nutrients received are even more important.
Antioxidants are highly important in the prevention of various diseases that may be related
to aging as well as in alleviating symptoms and treating the disease [8]. Adhering to a diet
with high antioxidant potential has been shown to reduce the risk of mortality from all
causes [22]. Researchers have reported that the daily consumption of five servings of fruits
and vegetables reduces the risk of death [23].

4. The Effect of Carotenoids on Aging

Various mitochondrial defects are thought to contribute to the development of ox-
idative stress [5]. This situation has been demonstrated by scientific studies to be the
main mediator of the aging process and subsequent age-related diseases [5,6]. Therefore,
antioxidants targeting the mitochondria are necessary to prevent or slow down these pro-
cesses and contribute to the health of the cell. It is necessary to examine the interaction of
carotenoids, as antioxidant substances, with aging in this context [5,7].

Carotenoids have various functions on human health by showing antioxidant effects.
However, carotenoids exert their effects through different mechanisms [7]. Carotenoids
are absorbed into the body with many foods consumed as part of a healthy diet [7,9,11].
These accumulate in the skin and protect the skin very effectively against damage caused
by UV light, sunburn, and skin aging. Thanks to their chemical structure, containing a
large amount of conjugated bonds, carotenoids have a high potential in scavenging ROS
such as peroxide radicals or single oxygen molecules [9,10]. The anti-aging potential of
carotenoids is mainly based on their promotion of nuclear factor erythroid 2-related factor
2 (Nrf2) migration into the nucleus [10]. After Nrf2 migrates to the nucleus, transcription of
antioxidant and detoxifying enzymes begins. Additionally, as a cell divides, its telomeres
shorten until it dies, and ROS and inflammation can accelerate telomere shortening [6]. It
has been reported that a high dietary β-carotene intake is associated with a longer telomere
length [10].
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5. The Effect of Carotenoids on Aging-Related Diseases

Aging-related diseases such as cardiovascular, neurodegenerative, liver, skin, and
eye diseases and diabetes occur due to increasing oxidative stress and ROS [2]. Dietary
guidelines recommend consuming fruits and vegetables in appropriate proportions per day
to combat the incidence of diseases such as cancer, cardiovascular disease, osteoporosis,
and diabetes [24]. Studies that investigated the effect of carotenoids on different organisms
with aging-related diseases are presented in Table 2. Dietary carotenoid intake is crucial
for protection against diseases as well as for improvement in conditions developed in
diseases [7]. In this context, antioxidants such carotenoids are known as very potent ROS
scavengers [2] that control autoxidation and prevent an increase in ROS [25].

Table 2. Studies that investigated the effect of carotenoids on different organisms with aging-related
diseases.

Year Species Findings on Carotenoid Intake References

2022 Mice Astaxanthin significantly reduced HFD-induced fat deposition, obesity, and
fatty liver. [13]

2021 Human Oral administration of astaxanthin improved symptoms and signs in
middle-aged and elderly patients with mild to moderate DED. [26]

2021 Mice Astaxanthin improved periodontal destruction and oxidative systemic
complications triggered by hyperglycemia in type I diabetes. [27]

2021 Human
Lycopene intake and peripheral antioxidant level in T2DM patients had a
positive correlation while HbA1c and FPG levels were reduced by higher

lycopene intake.
[28]

2020 Human Dietary astaxanthin intake delayed LDL oxidation. [29]

2020 Human The combination of lutein ester, zeaxanthin blackcurrant, chrysanthemum,
and goji berry extracts improved eye fatigue, dry eye, and macular function. [30]

2018 Human Orally taken astaxanthin reduced skin moisture loss and skin roughness. [31]

2018 Rat Astaxanthin administered intraperitoneally significantly lowered blood
sugar in rats. [32]

2017 Human Dietary lycopene intake reduced the risk of CVD by 17%. [33]

2017 Human The product rich in lycopene reduced the intensity of erythema formation. [34]

2016 Rat
Lycopene improved liver fibrosis and reduced abnormal intra- and

extrahepatic angiogenesis in rats with cirrhosis. Rats fed lycopene-rich
tomato juice for 5 weeks did not develop NAFLD.

[35]

2016 Human Oral supplementation (isomers of 10 mg of lutein and 2 mg of zeaxanthin)
improved skin conditions and brightened the skin. [36]

2015 Mice Dietary lutein intake prevented HFD-induced atherosclerosis in
ApoE-deficient mice. [37]

2015 Rat
Astaxanthin originating from shrimp reduced oxidative damage and

prevented pathological changes in diabetic rats.
Daily administration of astaxanthin in diabetic rats decreased blood sugar.

[38]

2013 Mice Astaxanthin application (100 mg/kg) inhibited retinal dysfunction in a
mouse model of light-induced retinal damage. [39]

2011 Guinea
pig

Lutein prevented cholesterol deposition in the aortic tissue of atherosclerotic
guinea pigs. [40]

2011 Human Astaxanthin supplementation for 3 weeks suppressed lipid peroxidation in
obese adults in Korea. [41]

ApoE: apolipoprotein E; CVD: cardiovascular disease; DED: dry eye disease; FPG: fasting plasma glucose; HbA1c:
glycated hemoglobin; HFD: high fat diet; LDL: low-density lipoprotein; NAFLD: non-alcoholic fatty liver disease;
T2DM: type 2 diabetes mellitus.
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In addition, the effects of carotenoid types such as lycopene, lutein, β-carotene, as-
taxanthin, and zeaxanthin on some aging-related diseases are presented in Table 3 and
discussed below.

Table 3. Effect of carotenoid types on some aging-related diseases.

Diseases Lycopene Lutein β-Carotene Astaxanthin Zeaxanthin

Cardiovascular
diseases Reducing LDL [1] Prevention of lipid

peroxidation [2] No data Increase NO
bioavailability [3,4] No data

Neurodegenerative
diseases

Healing of
motor function [5]

Regulation of the length
of the telomer [6]

Improving cognitive
function [7]

Healing of
motor function

[5]
Regulation of the

length of the
telomere [6]

Protection against neural
apoptosis and preventing

neuroinflammation [8]
No data

Diabetes
mellitus Decreasing HbA1c [9] No data

Decreasing adipose
tissue
[10]

Decreasing
triglyceride and

insulin resistance
[11]

Protecting β cells [12]
Anti-lipid peroxidation

activity
[13]

Decreasing blood sugar
[14]

No data

Skin diseases Photoprotection activity
[15]

Improving hydration
and elasticity [16,17]

Protection against
photodamage and
skin cancer [16,18]

Suppressing oxidative
damage [19]

DNA repair [20]

Anti-wrinkle
[15]

Liver diseases ROS extinguishion and
antioxidant effect [22] No data

Hepatoprotective
effect
[23]

Lipid peroxidation
inhibition [24] No data

Eye diseases No data Increasing visual
acuity [25] No data

Decreasing ROS level in
retina [26]

Improving the symptoms
of DED [27]

No data

DED: dry eye disease; LDL: low-density lipoprotein; NO: nitric oxide; ROS: reactive oxygen species.

5.1. Cardiovascular Diseases and Carotenoids

Cardiovascular diseases are the main cause of high mortality and morbidity in Western
countries and are associated with oxidative stress and inflammation in the pathogenesis,
along with complementary factors such as high blood pressure, endothelial dysfunction,
and dyslipidemia [42]. Atherosclerotic cardiovascular disease can cause heart attack, angina
pectoris, stroke, and transient ischemic attacks as well as aortic aneurysm.

The development and progression of atherosclerosis is a significant factor contributing
to the pathogenesis of cardiovascular diseases. ROS are one of the primary promotors of
the progression of atherosclerotic plaque, and this process can be categorized as vascular
aging [43]. Moreover, mitochondrial dysfunction, activation of enzymes producing nitrogen
types, and a decline in the activity of antioxidant systems are among the causes of increased
oxidative stress associated with vascular aging [29,44].

The pathogenesis of atherosclerosis is characterized by lipid metabolic disorders in
addition to oxidative stress [37]. There are several hypotheses that explain the onset of
atherosclerosis, including reaction to injury, oxidative modification, and an inflammatory
pattern [45]. One of the first steps encountered in atherosclerosis is the oxidation of low-
density lipoprotein (LDL) [43]. The CD36 and SRA-1 receptors expressed by macrophages
are able to recognize the modified/oxidized lipoprotein that is present in the subintimal
opening of an artery. Macrophages rapidly remove oxidized LDLs. Upon the phagocytic
uptake of oxidized LDL particles, the formation of macrophage-derived foam cells occurs.
These cells are one of the most readily recognizable cells found in fatty streaks, which are the
primary lesions for atherosclerosis. Fatty streak formation, in which inflammatory signaling
pathways are additionally involved, is characterized by a substantial accumulation of lipids
both within the cells and extracellularly [46].
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Carotenoids can prevent the development of atherosclerosis by directly inhibiting the
oxidation of LDL as well as prevent oxidative injury to vascular cells and preserve vascular
function [47,48].

Lycopene and lutein-like carotenoids possess critical benefits in this regard. High
amounts of circulating carotenoids have been shown to have a significant influence on
lowering systolic blood pressure as well as LDL cholesterol. Lycopene, an oil-soluble
carotenoid found in vegetables and fruits, particularly tomatoes, shrimp, red carrots, and
olives [45], expresses a high antioxidant potential that leads to a decrease in LDL and
increases endothelial function. A recent meta-analysis found that individuals consuming
lycopene in their diet demonstrated a 17% reduction in the risk of cardiovascular dis-
ease [33]. Vascular nitric oxide (NO) impairment can also be the cause of ROS-related
aging and increased atherosclerosis. Unlike the damaged structure, the normal vascular
structure is characterized by significant levels of NO [43]. Lycopene can reduce vascular
degeneration due to its antioxidant capabilities that increase the vascular bioavailability of
lutein and astaxanthin.

Lutein is 15 times more potent than lycopene and 10 times stronger than β-carotene [46].
It is the most common carotenoid that creates the bright color pigment in spinach-like and
dark-green leafy vegetables; egg yolk is also a highly bioavailable source of lutein. Since it
scavenges ROS, it is effective in preventing lipid peroxidation [37].

The intake of astaxanthin through the diet has also been shown to delay LDL oxida-
tion [29]. One of the antioxidant effects of astaxanthin is a reduced production of superoxide
anion radicals leading to lower oxidative stress and higher bioavailability of NO [29,43].

Cardiovascular health is significantly influenced by the individual’s diet. In this
context, carotenoids might co-contribute to the observation that Mediterranean countries
have reduced rates of cardiovascular disease mortality [42,47] since the Mediterranean diet
is high in dietary carotenoids from fresh vegetables and fruits.

5.2. Skin Health and Carotenoids

Skin is not only the largest but also the most exposed organ of the human body. Skin
aging is influenced by both internal and external factors and, hence, genetic as well as
environmental factors play a decisive role. Alterations can affect the entire skin or just
certain parts and depend on time, hormone status, exposure to UV radiation, cigarette
smoke, air pollution, nutritional factors, temperature, stress, and lack of sleep [48]. In this
regard, it is important to maintain the skin’s complex defense mechanisms against harmful
threats (e.g., microbial infestation, UV radiation), its regeneration efficacy (e.g., wound
healing), and function as a sensory organ including temperature regulation [49,50]. Because
of internal aging, a decrease in the ability of keratinocytes to reproduce and repair occurs as
well as a decrease in the number of epidermal stem cells; both adversely affect skin barrier
function [51].

Photoaging of skin is environmentally induced, leading to loss of elasticity, pigmen-
tation disorders, dryness, and itchiness [52]. UV rays, the primary cause of photoaging,
promote the formation of ROS and adversely impact the skin’s defense and repair mecha-
nisms, causing dermal and epidermal damage and skin aging [53]. Research indicates that
carotenoid supplementation may provide protection against UV-induced ROS formation [54].

Lycopene, a carotenoid antioxidant, is recognized as a highly effective singlet oxygen
scavenging and peroxyl radical trapping agent [52,55]. Hence, its photoprotective prop-
erties were suggested. Several studies indicate that lycopene improves skin photoaging
and reduces the intensity of erythema formation [55]. The results of a meta-analysis of
nine studies examining the effects of lycopene and tomato on photoaging are contradictory.
It was revealed that a diet rich in lycopene reduced skin pigmentation and significantly
increased skin thickness and density [56]. However, the discrepancy in the results of the
studies may be since tomatoes contain other carotenoids besides lycopene.

Astaxanthin has been shown to improve skin health by inhibiting oxidative damage,
and it functions as an anti-photoaging agent [57]. Due to its potency as a coloring agent,
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it has been discovered that, when taken orally, it can inhibit the synthesis of melanin
and decrease hyperpigmentation. According to one of the earliest studies on astaxanthin,
it increases skin moisture and can be used to treat dehydrated skin [58]. Other studies
supported these findings and confirmed that astaxanthin increases skin hydration and
elasticity and significantly reduces dryness [59]. It has been shown that topical and oral
administration of astaxanthin led to a reduction in age spots and wrinkles, as well as an
enhancement in skin moisture and tissue repair. In studies evaluating the effect of orally
administered astaxanthin on UV-induced skin injury, astaxanthin reduced skin moisture
loss and rashes [31]. Moreover, astaxanthin downregulates the expression of xanthine
oxidase (XO) as well as the reduced form of nicotinamide adenine dinucleotide phosphate
oxidase (NOX), which contribute to ROS generation in sunburn insults [60]. Its positive
interference can occur through the DNA repair functions. However, a failure to repair
DNA causes UV-induced skin damage, and the DNA repair mechanism is also vital in
stimulating enzymes that respond to oxidative stress [61]. Hence, it also prevents lipid
peroxidation and benefits skin health by preventing sebum lipid peroxidation [62].

The oral administration of lutein has also been shown to increase the antioxidant
level, reduce UV-borne erythema, increase skin hydration, and benefit the enhancement of
skin elasticity [49,53]. The carotenoid mixture of lutein and zeaxanthin has been observed
to lighten the skin and enhance the skin’s appearance [62]. The effect of zeaxanthin on
the severity of wrinkles, skin lines, skin color, and brightness has been studied, and a
zeaxanthin-based diet and topical treatment has been found to be effective in improving
hydration and can be an alternative treatment for wrinkles [50].

Some studies have shown that β-carotene may have protective properties against
photodamage [49,52]. The potential of β-carotene to prevent erythema induced by UV rays
has also been studied, indicating protection against UV-induced erythema [63]. Conversely
to these data, some studies have found that β-carotene has low UV protection and UV-
induced erythema reducing activity, irrespective of topical or oral application [64]. There is
a concern about the topical application of β-carotene relating to its ability to overcome the
stratum cornea barrier to act in deeper skin layers. The availability of β-carotene can be
increased by applying drug-loaded nanostructured lipid carriers [65]. In this respect, β-
carotene activity following dermal application should still be considered when evaluating
its putative protective skin effects. The oral or topical application of Vitamin A itself can
contribute to the fight against photoaging and improve sunburn insults [63].

5.3. Liver Diseases and Carotenoids

Dietary carotenoid intake is one recommended basic approach to prevent non-alcoholic
liver disease (NAFLD) [66]. A study on dietary carotenoid intake revealed that individuals
who consumed a high quantity of carotenoids had a low risk of developing NAFLD [67].
There is no surgical or pharmacotherapeutic treatment option available once the disease
has developed [66]. Oxidative stress and other pathways that cause NAFLD lead to fat
accumulation in hepatocytes. Antioxidants such as carotenoids can help mitigate the
severity of NAFLD and can prevent the progression of simple hepatic steatosis to non-
alcoholic steatohepatitis (NASH), a state of chronic inflammation of the liver that can lead
to progressive damage [68]. Moreover, carotenoids have been shown to possess protective
effects against other liver diseases and obesity and on lipid metabolism [66–71]. Carotenoids
express these effects through several different pathways including a reduction in oxidative
stress as well as signaling pathways in the liver with a reduction in pro-inflammatory
cytokines secreted by hepatic macrophages [72,73].

It has been demonstrated that dietary lycopene has hepatoprotective properties against
numerous liver diseases, including alcoholic and non-alcoholic fatty liver disease [70,71].
The protective effect of lycopene is due to its antioxidant properties, resulting in protection
against ROS-induced damage.

Some experimental studies have revealed thatβ-carotene, the most prevalent carotenoid
in the liver, has hepatoprotective effects [72–74]. It has been shown that the consumption of
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β-carotene in the diet can reduce the risk of hepatic steatosis and damage caused by free
radicals [74]. Campari strain tomatoes, which contain comparatively more β-carotene than
other strains, have been shown in a separate study using an obesity model to ameliorate
diet-induced hepatosteatosis [72].

Astaxanthin has also been shown to be quite effective at preventing lipid peroxidation
and possesses hepatoprotective properties due to its high antioxidant capacity [73]. A
recent study found that astaxanthin therapy regulated lipid metabolism disorders and
oxidative stress in mice fed a high-fat diet [13].

5.4. Diabetes Mellitus and Carotenoids

Diabetes mellitus (DM) is a chronic, progressive, and potentially fatal disease charac-
terized by elevated blood sugar [75]. In 2021, 537 million adults (20–79 years old) live with
diabetes, according to the International Diabetes Federation (IDF). This number is expected
to increase to 643 million by 2030 and 738 million by 2045, with 6.7 million diabetes-related
deaths in 2021 [76].

Type-2-DM (T2DM) is the most common type (85–90%) and is commonly diagnosed
in people aged 45 years and older [77]. T2DM is caused by age, genetic factors, obesity,
and physical inactivity, with increased body fat being the most significant factor [75]. It
is characterized by insulin resistance and high glucose levels due to β cell dysfunction in
the pancreas where insulin is produced but insulin receptors do not respond or insulin-
responsive cells poorly respond to insulin. However, due to numerous severe complications
such as neuropathy, retinopathies, and cardiovascular diseases, it diminishes the quality of
life and increases the cost of medical care [78].

A large number of studies indicate an inverse relationship between carotenoid intake,
serum concentrations and T2DM. It has been demonstrated that carotenoid consumption
is inversely proportional to insulin resistance [79]. Carotenoids have additionally been
demonstrated to be effective in the treatment of diabetic retinopathy and diabetes-related
cardiovascular diseases [80].

The gut microbiota were identified as a potential additional factor between the risk of
developing DM and the beneficial effects of dietary carotenoids. Studies on supplementa-
tion with carotenoids have revealed that these antioxidant compounds contribute to gut
immune homeostasis by preventing dysbiosis of the gut microbiota [80,81]. The association
between dysbiosis of the intestinal flora and DM has been well established [81].

Numerous studies indicate that a high carotenoid intake and serum concentration
are inversely related to T2DM [79,82]. There are also studies indicating that individuals
with T2DM have lower β-carotene levels [83]. β-carotene regulates lipid metabolism by
influencing mature adipocytes, assuring a reduction in fat tissue, and aiding in the regula-
tion of oxidative stress. It has been demonstrated that those deficient in β-carotene have
elevated cholesterol levels [84]. Carotenoid concentrations in the epidermis are associated
with a low body mass index, insulin resistance index, and triglyceride concentration. The
carotenoid with the highest concentration found in the epidermis was β-carotene [85]. It has
been discovered that β-carotene supplementation reduces triglyceride levels and insulin
resistance [75]. Similarly, another study revealed that those who consumed more vegetable-
derived carotenoids had higher serum β-carotene levels and lower insulin resistance [86].
Moreover, protection studies have demonstrated that ß-carotene supplementation defends
against T2DM [87].

Due to its powerful antioxidant properties, astaxanthin may be beneficial in the treat-
ment of diabetes as well, according to a number of works [88]. Studies have shown that
astaxanthin preserves β cells and protects against oxidative damage caused by diabetes [83].
A three-week astaxanthin supplementation suppressed lipid peroxidation in obese adults
and also showed anti-lipid peroxidation activity in rats [84]. It was indicated that astaxan-
thin improves hyperglycemia [27]. Intraperitoneally administered astaxanthin has been
shown to significantly reduce blood sugar [32] and so did daily oral administration of
astaxanthin to diabetic rats [38]. Contradictory to these findings, a recent study indicates
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that oral astaxanthin supplementation has no effect on blood glucose levels in diabetic
rats [89].

Low serum lutein levels have been shown to increase the risk of type 2 diabetes in the
elderly [90]. Low lutein is linked to elevated glycated hemoglobin (HbA1c) blood levels,
which reflect the average blood sugar levels over a period of 3 months. The results of a
recent study indicate that the level of lutein in the diet and blood is inversely proportional
to the risk of T2DM [82].

Due to its antioxidant properties, lycopene is believed to reduce oxidative stress in
patients with T2DM [91]. Researchers have demonstrated that lycopene has anti-diabetic
properties [90]. According to studies, individuals who do not have diabetes consume more
lycopene [92]. In addition, research indicates that lycopene may improve insulin resistance
and glucose metabolism [93]. Recent research indicates that lycopene consumption reduces
HbA1c levels [28,91]. The ability to enhance glucose and lipid metabolism in obese animals
may reduce the risk of developing diabetes [94]. The lycopene intake of T2DM patients
was found to be lower than that of healthy individuals. The same result was observed in
diabetic retinopathy patients [91].

5.5. Age-Related Macular Degeneration and Carotenoids

Age-related macular degeneration (AMD) is a disease commonly seen in developed
countries that occurs due to photoreceptor damage in mature individuals [95]. AMD is
the main cause of blindness in individuals over the age of 65 [16]. The prevalence of the
disease is increasing, and it is predicted that the number of patients with AMD worldwide
will exceed 288 million by 2040 [96]. Macular degeneration progressively leads to a loss
of vision and lowers life quality [95]. The first symptoms of AMD are impaired vision,
loss of contrast, and sensitivity and it is characterized by a gradual decrease in functional
visual acuity in progressive processes [96]. AMD occurs due to many factors, such as age,
smoking, and exposure to sunlight [14].

The complex pathophysiology of AMD is not described here in detail. However, there
is evidence that AMD-related loss of vision is associated with a progressive degeneration of
the retinal pigment epithelium (RPE) cells [97]. They are predisposed to chronic oxidative
stress due to their high level of oxygen consumption and exposure to continuous light
stimuli. As one aspect, it is suggested that ROS-induced DNA damage in RPE cells can
contribute to the development of AMD, but studies also revealed increased ROS production
in RPE cells from AMD patients due to the lost ability to increase superoxide dismutase
(SOD) expression during oxidative stress [98]. High ROS levels and weakened cellular
defense systems result in injury to the photoreceptors and subsequent apoptosis [97].

Carotenoids have been demonstrated to play a crucial role in maintaining macular
health and function [7]. Of all carotenoids, only lutein and zeaxanthin possess well-defined
mechanisms to cross the blood–retina barrier and accumulate in the retina to form macular
pigments [99]. About two decades ago, a membrane-associated xanthophyll-binding
protein in the human macula was first described. This specific zeaxanthin-binding protein
mediates the uptake, metabolism, and stabilization of zeaxanthin by the retina [100,101].

The optical density of the macular pigment may indicate the condition of the retina [16].
When exposed to light, the macular pigments are responsible for protecting the retina from
oxidative stress. By filtering blue light, zeaxanthin and lutein can prevent the formation
of singlet oxygen [14]. It has been demonstrated that lutein supplementation over an
extended period improves visual acuity [16]. Lutein and zeaxanthin are recommended
for the prevention of retinal diseases, improvement in vision, and reduction in the risk of
age-related eye diseases such as age-related macular degeneration [14,99]. Just recently,
astaxanthin a further member of the xanthophyll family, especially common in marine
environments, has been suggested to protect from light-related retinal damage and retinal
dysfunction [95]. Since astaxanthin stretches through the cellular bilayer membrane, it
can scavenge ROS in both the inner and outer layer, thereby providing protection against
oxidative stress. Two years of supplementation with the combination of astaxanthin, lutein,
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and zeaxanthin improved the visual functions, contrast sensitivity, and visual acuity of
patients with AMD.

5.6. Diabetic Retinopathy and Carotenoids

Diabetic retinopathy is a significant diabetic complication and one of the leading
causes of vision loss in the elderly [97,102]. Under normal conditions, glycemic control,
hypertensive dyslipidemia, long-term diabetes, and genetic factors are risk factors for
diabetic retinopathy [103]. Due to hyperglycemia, the retina produces ROS, and its structure
is negatively impacted. It is believed that astaxanthin can decrease retinal ROS levels [95].

Astaxanthin is advised for both the prevention and early treatment of diabetic retinopa-
thy. Short-term treatment with astaxanthin has shown a protective effect on the retina of
diabetic rats [104]. Various studies show that macular pigment and serum carotenoid levels
are lower in patients with diabetic retinopathy [105,106].

5.7. Dry Eye Diseases and Carotenoids

The prevalence of dry eyes (DED) increases with age [107]. According to a study, the
prevalence of DED was found to be 22.8% at ≥50 years among individuals and 11.1% at
ages ≥ 75 years in women [108]. Oral treatment with astaxanthin in elderly and middle-
aged patients acted to alleviate modest to moderate symptoms [26]. Astaxanthin is believed
to be a potential treatment for DED [12]. According to the results of a recent study, a
combination of lutein ester, zeaxanthin, and extracts of Frank grape, chrysanthemum,
and wolf grape reduce the symptoms of eye disorders such as dry eyes, impaired vision,
and eye pain [30]. In addition to this study, it has been observed that the combination of
astaxanthin with various antioxidants promotes healthy ocular aging and decreases tear
ROS levels [95].

5.8. Neurodegenerative Diseases and Carotenoids

Some neurodegenerative diseases are neural disorders characterized by the progres-
sive loss of neurons and protein aggregates. Although these diseases are caused by different
factors, oxidative stress is an interesting common factor [109]. Neurons and myelin sheaths
are harmed by the accumulation of ROS, oxidized proteins, lipids, and nucleic acids be-
cause of chronic oxidative stress, which causes neuro-inflammation, the principal cause of
cognitive aging and dysfunction [110,111].

5.8.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease associated
with aging, characterized by a progressive decline in cognitive function [112]. The majority
of neurodegenerative diseases, including AD, are associated with telomere shortening,
which is caused by a number of factors, most notably oxidative stress [113]. The concentra-
tions of the six major carotenoids (α-carotene, β-carotene, α-cryptoxanthin, lutein, lycopene,
and zeaxanthin) in the blood plasma of AD patients are significantly lower than those of
control subjects [109,114]. In one of the studies, it has been reported that serum antioxidant
defense is impaired and vitamin E isoforms appear to have different biological roles in
the pathogenesis of this disease [114]. Another study suggested that maintaining high
plasma lutein levels may reduce the risk of AD [115]. In addition to carotenoid levels in the
blood, carotenoid consumption has been linked to reduced AD risk and cognitive decline
rates [109]. The application of diets rich in carotenoids, i.e., higher antioxidant intake,
may protect telomere health by reducing oxidative stress, regulating telomere length, and
thereby preventing AD [116].

5.8.2. Parkinson’s Disease

Parkinson’s disease (PD) is a common disorder characterized by low dopamine levels
due to the loss of dopaminergic neurons, accompanied by motor symptoms including
tremor, bradykinesia, rigidity, and speech difficulties, as well as non-motor symptoms
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including depression and insomnia [117]. Dopamine metabolism irregularities promote the
formation of ROS and cause irreversible damage to dopaminergic neurons [118]. Serum
concentrations of α-carotene, β-carotene, and lycopene are significantly decreased in PD
patients, and this decrease is associated with impaired motor function [119,120].

In mice challenged with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), lutein
treatment prevented increases in Bax and Caspase induced by MPTP and improved motor
function [121]. Astaxanthin, another carotenoid, prevents neuroinflammation and protects
against neural apoptosis by regulating mitochondrial proteins [122]. The prevention of
neurodegenerative conditions, such as oxidative stress and neuroinflammation, is one of the
defining characteristics of antioxidant diets, and their potential as treatment mechanisms is
deemed promising [123].

6. Methods

This narrative review conforms to the Scale for the Assessment of Narrative Review Ar-
ticles (SANRA) guidelines [124]. The PubMed and ScienceDirect databases were searched
for articles containing the main keywords “carotenoids” or “carotenoid and aging” and
“carotenoid and skin” or “carotenoid and liver” or “carotenoid and cardiovascular disease”
or “carotenoid and eye diseases” or “carotenoid and diabetes” or “carotenoid and neu-
rodegenerative disease” published in English, between November 2004 and January 2023.
Secondary search engines (e.g., Google Scholar) were also utilized, and 209,279 scientific
articles were found. Based on extensive searches of scientific sources, the relevant published
reports that contain the main keywords, with a strong focus on more recently published
studies, were included in this narrative review. Preclinical, clinical, observational, or case–
control, prospective cohort studies, as well as reviews and meta-analyses were investigated.
No exclusion criteria based on the participant’s gender or age were applied.

7. Conclusions

Oxidative stress can be shown as a common cause of aging and aging-related diseases.
Low levels of oxidative stress may be effective in reducing the prevalence of these diseases
and preventing disease progression. It has been observed that carotenoids can be effective
in preventing aging-related diseases based on the decreasing oxidative stress and the
formation of ROS. Serum or dietary intake of carotenoids can be used in the treatment and
prevention of these diseases due to their antioxidant, anti-inflammatory, and anti-aging
properties. More studies are needed to clearly determine the effects of an appropriate dose
of carotenoid supplementation on aging and aging-related diseases.
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