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Abstract: Crocins are important natural products predominantly obtained from the stigma of saffron,
and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the
pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a
crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in
the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on β-carotene/lycopene
remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we
reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but
also β-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2
was elucidated using bioinformatic analysis and truncation studies. The protein expression optimiza-
tion results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization
of the induction conditions resulted in the production of more soluble protein. Correspondingly,
the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results
further validated its functional verification. This study not only broadened the substrate profile of
CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2
crystal structure resolution and facilitates the synthesis of crocetin and crocins.

Keywords: crocins; CsCCD2; saffron; soluble expression; fusion tag

1. Introduction

Crocins, which are highly beneficial as medicines for human disorders and spices for
flavoring and coloring, only accumulate in specific tissues, such as the stigmas of saffron
(Crocus sativus), the fruits of Gardenia jasminoides, and the flowers of Buddleja davidii, of a
few distantly related plants [1]. Numerous pharmacological studies have demonstrated
that crocins exhibit several anticancer [2], anti-oxidative [3], anti-apoptotic [4], and anti-
inflammatory effects [5]. Additionally, recent studies have reported the beneficial effects
of crocins on Alzheimer’s disease and depression [6,7]. Saffron is the primary natural
source of crocins, which confer to its stigma a characteristic dark red color [8]. Owing to
their complicated isolation from plants and chemical synthesis, crocins command high
market prices [9]. Crocins’ high price and remarkable properties in the treatment of central
nervous system and cardiovascular diseases have led numerous scientists to investigate
their biosynthetic pathway and heterologous production. With the rapid advancement in
synthetic biology, the research on the synthesis of plant natural products using microbial
fermentation has significantly progressed, overcoming the limitations of plant resources
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and providing a new route for the green and efficient production of plant natural com-
pounds [10], such as artemisinic acid [11,12], etoposide aglycone [13], and cannabinoids [14].
Consequently, the heterologous synthesis of crocins using microorganisms is a significant
addition to the existing production methods. The biosynthetic pathway of crocins includes
the cleavage of carotenoids by carotenoid cleavage dioxygenases (CCDs), oxidation of
aldehydes by aldehyde dehydrogenases (ALDHs), and transfer of glycosyl groups by UDP-
glucuronosyltransferases (UGTs) (Figure 1) [1,8,15–17]. Among them, CCDs are considered
to be rate-limiting enzymes in the biosynthetic pathway of crocins. CCDs, which are essen-
tial enzymes that catalyze carotenoid cleavage, are classified into four subfamilies—CCD1,
CCD4, CCD7, and CCD8 [18]. The CCD1 subfamily is responsible for the production of
volatile terpenoids, which are crucial for the formation of plant aroma [19]; the CCD4
subfamily is crucial for plant color formation [20–22]. CCD7 and CCD8 participate in the
synthesis of the plant hormone strigolactone and play an important role in the germina-
tion of lateral roots and lateral buds [23]. Thus, the screening and identification of CCDs
responsible for the synthesis of crocin precursors are crucial areas of research.
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In 2014, Frusciantea et al. reported a novel key enzyme CsCCD2 from saffron, which is
considered to be the first key enzyme in the biosynthetic pathway of crocins [8]. It catalyzed
the cleavage of zeaxanthin to produce crocetin dialdehyde but did not use β-carotene and
lycopene as substrates. To further increase catalytic efficiency, researchers have engineered
CsCCD2 variants with broader substrate profiles for crocin biosynthesis using a “hybrid-
tunnel” strategy. Based on the results of a directed evolution study, CsCCD2S323A was
reported to have additional catalytic activity on β-carotene and improved catalytic effi-
ciency [24]. Despite having better catalytic efficiency than the wild-type, the yield of the
engineered strain remains in the milligram range and needs further optimization. In con-
trast, heterologous protein expression of CCDs is a significant challenge that impedes the
discovery of molecular and physiological functions to some extent [25]. The low catalytic
efficiency of CsCCD2 may be attributed to its misfolding during heterologous expression
in E. coli. However, a protein expression optimization study of CsCCD2 remains missing.

The biosynthetic pathway of carotenoids in Erwinia species has been precisely identi-
fied [26]. crtE (GGPP synthase) can catalyze farnesyl pyrophosphate to form geranylgeranyl
pyrophosphate (GGPP). crtB (PPPP synthase) is responsible for phytoene formation from
GGPP, and phytoene is catalyzed by crtI (phytoene desaturase) to form lycopene. crtY
(lycopene cyclase) is involved in β-carotene production from lycopene, and crtZ (β-carotene
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hydroxylase) can transfer β-carotene to zeaxanthin. Three plasmids were constructed based
on these genes and used in carotenoid biosynthesis in E. coli. E. coli with pACCAR25∆crtX,
which contained crtE, crtI, crtB, crtY, and crtZ from E. uredovora, was used in zeaxanthin
production. E. coli with pACCAR16∆crt harboring crtE, crtI, crtB, and crtY from E. uredovora
can produce β-carotene. E. coli with pACCRT-EIB, which comprises crtE, crtI, and crtB from
E. uredovora, is responsible for lycopene accumulation [26]. It establishes a solid foundation
for the in vivo functional identification of the CCD gene.

In this study, we constructed the CsCCD2 gene in a pET32a prokaryotic expression
vector, and three engineered E. coli harboring pACCAR25∆crtX, pACCAR16∆crt, and
pACCRT-EIB were used for functional identification via in vivo assays [26]. Using ultra-
performance liquid chromatography (UPLC) and UPLC with tandem mass spectrometry
(UPLC-MS/MS), we demonstrated that the wild CsCCD2 not only exhibited a catalytic
impact on zeaxanthin but also possessed cleavage activity for β-carotene and lycopene. The
molecular basis of the varied functionality of CsCCD2 was also elucidated via a truncation
study. Furthermore, a protein expression optimization study of CsCCD2 revealed that
maltose-binding protein (MBP)-CsCCD2 was soluble using E. coli as the host organism at
an induction temperature of 16 ◦C with 0.8 mM isopropyl-beta-D-thiogalactopyranoside
(IPTG). Additionally, the catalytic efficiency of CsCCD2 was enhanced as protein solubil-
ity increased. This will establish the groundwork for further research into the catalytic
mechanism of CsCCD2 and provide important genetic tools for the synthesis of crocetin
and crocins.

2. Results
2.1. Functional Characteristics of CsCCD2

The prokaryotic expression vector TRX-CsCCD2 (Table 1, Figure 2A) was constructed
and co-transformed with pACCAR25∆crtX, pACCRT-EIB, or pACCAR16∆crt into E. coli
BL21(DE3) to create the TRX-CsCCD2-Z/L/B engineered strains. The pET32a vector
(Table 1, Figure 2A) was also co-transformed with these three engineered plasmids to
form pET32a-Z/L/B as a control. Following IPTG induction, the products were extracted
and identified using UPLC and UPLC-MS/MS. The characteristic spectrums of crocetin
dialdehyde (with mainly two maximum absorptions at 443.90 nm and 467.01 nm), zeax-
anthin (with mainly two maximum absorptions at 450.30 nm and 473.90 nm), lycopene
(with mainly three maximum absorptions at 446.71 nm, 468.47 nm, and 498.65 nm), and
β-carotene (with mainly two maximum absorptions at 449.57 nm and 474.39 nm) are
demonstrated in Figure S1A–D, respectively. The UPLC results depicted that the extracts of
TRX-CsCCD2-Z/L/B produced a new peak at 14.55 min in accordance with the retention
time of the crocetin dialdehyde standard. The characteristic spectrum of the new peak was
parallel to the crocetin dialdehyde standard. Based on the UPLC-MS/MS analysis, the m/z
of the new peak was 297.1855, which also corresponded to the crocetin dialdehyde standard
(Figure 3C). Moreover, the fragmentation pattern of this new peak was consistent with the
standard. However, no crocetin dialdehyde product was detected in pET32a-Z/L/B. These
results revealed that TRX-CsCCD2 cleaved zeaxanthin, β-carotene, and lycopene.

The function of DAN1-CsCCD2, was identified again in this study using the same
methodology as previously reported [8]. The prokaryotic expression vector DAN1-CsCCD2
was co-transformed with pACCAR25∆crtX, pACCRT-EIB, or pACCAR16∆crt into E. coli
BL21(DE3) to construct the DAN1-CsCCD2-Z/L/B engineered strains. The pTHIO-DAN1
vector was co-transformed with these three engineered plasmids to form pTHIO-DAN1-
Z/L/B as a control (Table 1). After being induced by arabinose, the products were extracted
and tested using UPLC and UPLC-MS/MS. The UPLC results indicated that only DAN1-
CsCCD2-Z exhibited a chromatographic peak with the same retention time as the crocetin
dialdehyde standard. Mass spectrometry further confirmed that the product was the
substance crocetin dialdehyde. These results demonstrated that DAN1-CsCCD2 only
exhibited catalytic activity against zeaxanthin and had no activity on β-carotene or lycopene,
which was consistent with the results reported in the literature (Figure 3B).
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Table 1. Plasmids used in this study.

Plasmids Relevant Properties or Genetic Marker a Source or Reference

pACCAR25∆crtX pACYC184 plus crtE, crtI, crtB, crtY, and crtZ from E. uredovora, CmR [26]
pACCAR16∆crt pACYC184 plus crtE, crtI, crtB, and crtY from E. uredovora, CmR [26]
pACCRT-EIB pACYC184 plus crtE, crtI, and crtB from E. uredovora, CmR [26]
pTHIO-DAN1 pBR322 ori and pUC ori, AmpR [27]
DAN1-CsCCD2 pTHIO-DAN1 plus CsCCD2 from saffron [8]
DAN1-CsCCD2-T pTHIO-DAN1 plus truncated CsCCD2 This study
pET32a pBR322 ori and f1 ori, AmpR Novagen
TRX-CsCCD2 pET32a plus CsCCD2 from saffron This study
pET41a pBR322 ori and f1 ori, KanR Novagen
GST-CsCCD2 pET41a plus CsCCD2 from saffron This study
pET28a pBR322 ori and f1 ori, KanR Novagen
pET28a-SUMO pET28a plus SUMO•Tag This study
pET28a-MBP pET28a plus MBP•Tag This study
SUMO-CsCCD2 pET28a-SUMO•Tag plus CsCCD2 from saffron This study
MBP-CsCCD2 pET28a-MBP•Tag plus CsCCD2 from saffron This study

a AmpR, KanR, and CmR represent ampicillin, kanamycin, and chloramphenicol, respectively.
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Figure 2. Different expression patterns plasmid maps and its protein expression analysis. (A–D), five
plasmid maps of pET32a, TRX-CsCCD2, GST-CsCCD2, Sumo-CsCCD2 and MBP-CsCCD2. (E,F), SDS-
PAGE analysis of the CsCCD2 with different fusion tags at 16 ◦C. ↑, indicates the protein supernatant.
↓, indicates the protein precipitate. The band of CsCCD2 fusion protein was labeled with blue arrows
in (E,F).
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2.2. Optimization of CsCCD2 Protein Expression

The low soluble expression of CsCCD2 may be responsible for its poor activity or inac-
tivation. To enhance the soluble expression of CsCCD2, three different fusion expression
plasmids were constructed, including GST-CsCCD2, SUMO-CsCCD2, and MBP-CsCCD2
(Figure 2B–D). Additionally, different induction temperatures and IPTG concentrations
were tested. Following 24 h of induction with 0.5 mM IPTG, the CsCCD2 proteins were suc-
cessfully expressed among the three vectors and displayed as 96 kDa, 75 kDa, and 104 kDa
protein bands on sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
respectively. At a 37 ◦C induction temperature, CsCCD2 protein was only detected in the
inclusion body section of all three protein expression patterns (Figure S2A,B). At a 28 ◦C
induction temperature, CsCCD2 protein was only detected in the inclusion body section of
GST-CsCCD2 and SUMO-CsCCD2 expression patterns; however, it exhibited slightly solu-
ble expression in MBP-CsCCD2 (Figure S2C,D). When the induced temperature decreased
to 16 ◦C, CsCCD2 was only detected in the inclusion body section of SUMO-CsCCD2.
Notably, in GST-CsCCD2 and MBP-CsCCD2, CsCCD2 was expressed with more soluble
protein. The SDS-PAGE results demonstrated that MBP-CsCCD2 had better solubility than
GST-CsCCD2 (Figure 2E,F). It can be inferred that a lower induction temperature is more
suitable for CsCCD2 expression. Furthermore, the results of induction with different IPTG
concentrations on MBP-CsCCD2 at 16 ◦C indicated that 0.8 mM was the best concentration
for CsCCD2 expression (Figure S3). In conclusion, the best soluble expression pattern of
CsCCD2 was obtained from MBP-CsCCD2 at an induction temperature of 16 ◦C with a
0.8 mM IPTG concentration for 24 h.

2.3. The Catalytic Activity Study of CsCCD2-Fusion Protein

To examine the catalytic activity of CsCCD2-fusion protein, GST-CsCCD2, SUMO-
CsCCD2, and MBP-CsCCD2 were constructed and transformed into E. coli BL21 (DE3)
harboring pACCAR25∆crtX, pACCAR16∆crt, or pACCRT-EIB to form GST/SUMO/MBP-
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CsCCD2-Z/B/L engineered strains, respectively. After induction at 16 ◦C for 24 h, the
UPLC results revealed that all engineered strains produced crocetin dialdehyde but with
varying crocetin dialdehyde yields. MBP-CsCCD2 exhibited higher conversion efficiency
than GST-CsCCD2 and SUMO-CsCCD2 in vivo, which was consistent with the results
of protein expression (Figure 4A–C). Thus, the use of the MBP tag can greatly improve
the soluble expression of CsCCD2 and result in higher CsCCD2 enzyme activity in the
engineered E. coli.
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2.4. Transforming the Catalytic Activity of CsCCD2 Using Tailored Truncation

In order to better understand the catalytic difference between TRX-CsCCD2 and
DAN1-CsCCD2, a comparative analysis of the open reading frames (ORFs) of CsCCD2,
TRX-CsCCD2, and DAN1-CsCCD2 was conducted. There were two distinct variances
between them, namely sections I and II (Figure 5). To the best of our knowledge, the redun-
dant or missing amino acid sequence can have a significant impact on the three-dimensional
structure of proteins, which in turn affects protein function. Thus, we truncated section II of
DAN1-CsCCD2 and obtained DAN1-CsCCD2-T mutant (Figure 6A). Following functional
characteristic analysis, DAN1-CsCCD2-T indicated cleavable activity toward β-carotene
and lycopene in addition to zeaxanthin. Furthermore, DAN1-CsCCD2-T exhibited greater
conversion efficiency than that observed before truncation (Figure 6B,C). This result indi-
cated that the redundant amino acid sequences at the carbon-terminal end of CsCCD2 had
a remarkable influence on its catalytic activity.
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3. Discussion

Crocins, a class of highly valuable apocarotenoids derived primarily from saffron,
have significant pharmacological activity for treating human disorders [28]. CsCCD2 is
the rate-limiting enzyme involved in the biosynthetic pathway of crocins in saffron. It has
been reported that CsCCD2 can only cleave the 7,8 and 7’,8’ double bonds of zeaxanthin
sequentially to produce crocetin dialdehyde, but not without the cleavage of β-carotene
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and lycopene [8]. In this study, we replicated the functional assay of CsCCD2 and obtained
results consistent with those of previous investigations. Further research revealed that
MBP-CsCCD2 can effectively express its soluble form using E. coli as the host organism.
Intriguingly, beta-carotene and lycopene, previously believed to be non-recognizable as
substrates, were indeed accepted as substrates by CsCCD2 in this study. What caused
this difference?

First, in this study, the CsCCD2 was subcloned into a pET32a prokaryotic expression
vector to form TRX-CsCCD2. The ORF in TRX-CsCCD2 was TRXA•Tag-6×His-thrombin-
S•Tag, which exhibited cleavage activity of zeaxanthin, β-carotene, and lycopene. However,
in a previous report, researchers used the pTHIO-DAN1 prokaryotic expression vector
to examine the functional characteristics of CsCCD2. pTHIO-DAN1 is a derivative of
pBAD/Thio (Invitrogen, Paisley, UK) carrying the pUC18 polylinker [27]. The ORF in
DAN1-CsCCD2 was HP-thioredoxin-enterokinase-CsCCD2-V5•tag-6×His. The distinct
open expression frame may account for the divergent functionality of CsCCD2.

Second, to explain the divergent functionality of CsCCD2 in the aforementioned two
plasmids, an amino acid sequence comparative analysis was conducted, demonstrating
two different sections between them, namely section I and section II (Figure 5). Thus, we
hypothesized whether the amino acid sequence redundancy and deletion caused functional
divergence. To verify this hypothesis, a DAN1-CsCCD2 without section II was constructed,
namely DAN1-CsCCD2-T. Functional identification demonstrated that DAN1-CsCCD2-T
exhibited splitting activity on zeaxanthin, β-carotene, and lycopene. To some extent, the
truncation study shed light on the molecular mechanism of functional divergence. This
further suggests that using wild-type genes and thus avoiding additional modification
sequences is better for conducting functional gene identification studies.

Third, as an important enzyme involved in the carotenoid cleavage process, CsCCD2
exhibits relatively high specificity in substrate recognition and catalytic activity. The low
catalytic efficiency of CsCCD2 may also be attributed to its insoluble expression in E. coli.
Thus, it is critical to investigate the soluble protein expression of CsCCD2. Furthermore,
a crystallographic structure analysis is the most direct and efficient way to gain a better
understanding of the molecular catalytic mechanism of CsCCD2. To the best of our knowl-
edge, the crystal structures of only three CCD family members have been determined,
including SynACO (4OU9) in Synechocystis sp. PCC 6803 [29], viviparous-14 (3NPE) in
maize (Zea mays) [30], and NdCCD (6VCF) in Nitrosotalea devanaterra [25]. However, the
crystal structure analysis of the CCD subfamily in the plant kingdom remains a significant
challenge, and the insoluble expression of plant CCD limits its research progress.

Fusion expression is one of the most effective strategies, which can either increase the
recombinant protein expression or participate in the protein-folding process, to enhance
the soluble expression of recombinant protein [31,32]. Many studies have demonstrated
that some highly soluble proteins promoted the soluble expression of fusion proteins after
fusion [33]. GST and MBP are the most commonly used fusion tags that can improve fusion-
protein solubility and enable one-step purification via affinity chromatography [34,35].
Furthermore, SUMO can improve protein solubility by facilitating proper protein folding
and enhancing binding stability [36]. CsCCD2 fusion proteins with three different fusion
tags (GST, MBP, and SUMO) were constructed using the fusion expression technique, in-
cluding GST-CsCCD2, SUMO-CsCCD2, and MBP-CsCCD2. The optimization of protein
expression demonstrated that MBP-CsCCD2 achieved soluble expression at an induction
temperature of 16 ◦C with 0.8 mM IPTG. Concurrently, the catalytic efficiency was en-
hanced as the protein solubility increased. This breakthrough in the soluble expression of
CsCCD2 will greatly promote the progress of CCD crystallographic structure studies in the
plant kingdom.
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4. Materials and Methods
4.1. Chemicals and Strains

Standards of lycopene (CAS, 502-65-8), β-carotene (CAS, 7235-40-7), zeaxanthin (144-
68-3), and crocetin dialdehyde (CAS, 502-70-5) were purchased from Sigma-Aldrich (Sigma-
Aldrich Corp., St. Louis, MO, USA). Phanta Max Super-Fidelity DNA Polymerase was
purchased from Vazyme (Nanjing Vazyme Biotech Co., Ltd., Nanjing, China). A ClonEx-
press II One Step Cloning Kit C112 was purchased from Vazyme. IPTG was purchased
from Solarbio (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China). All restric-
tion endonucleases were purchased from Takara (Takara Biomedical Technology (Beijing)
Co., Ltd., Beijing, China). T4 DNA Ligase was purchased from Takara. A DNA plas-
mid isolation kit and DNA gel extraction kit were purchased from Tiangen (TIANGEN
Biotech (Beijing) Co., Ltd., Beijing, China). Tryptone and yeast extract were purchased
from Thermo (Thermo Fisher Scientific Inc., Waltham, MA, USA). E. coli DH5α and E. coli
BL21 (DE3) were purchased from Tiangen. Z/B/L represent the BL21 (DE3) harboring
pACCAR25∆crtX, pACCAR16∆crt, or pACCRT-EIB, respectively. All the chemical reagents
utilized in this experiment were of analytical grade.

4.2. Plasmid Construction and Culture Conditions

The CsCCD2 (Genbank Accession Number: KJ541749.1) gene with a single-base
mutation G1179T from Crocus sativus was synthesized by GenScript (GenScript Biotech
Corp., Nanjing, China) and subcloned into a pET32a vector using KpnI and EcoRI restriction
endonucleases (the G1179T single-base mutation is a synonymous mutation that aims to
remove an EcoRI site from the coding sequence). In order to optimize CsCCD2 protein
soluble expression, pET41a-GST-F/R, pET28a-SUMO-F/R, and pET28a-MBP-F/R primers
were used for the cloning of CsCCD2, which carried corresponding restriction sites (Table 2).
Next, the CsCCD2 was subcloned into the pET41a (with GST tag) and the modified pET28a
(with SUMO tag or MBP tag) prokaryotic expression vectors using digestion and ligation.
To further delve into the reasons behind the non-conversion of DAN1-CsCCD2, a truncated
mutation study was carried out. CCD2-T-F and CCD2-T-R were used for the truncation
study of CsCCD2 using one-step cloning. All the recombinant plasmids were confirmed
using colony polymerase chain reaction and Sanger sequencing. E. coli DH5α was used for
plasmid propagation and E. coli BL21 (DE3) was used for the expression of recombinant
protein. Lysogeny broth medium (per liter: 10 g tryptone, 5 g yeast extract, and 10 g NaCl)
was used for the propagation of E. coli.

Table 2. Primers used in this study.

Primers Sequence (5′–3′) Restriction Endonuclease
(Underlined)

pET41a-GST-F CATGCCATGGGCGAAAACCTGTACTTTCAAGGCATGGCAAATAAGGAGGAG NcoI
pET41a-GST-R CCCAAGCTTTCATGTCTCTGCTTGGTGCTTCTG HindIII
pET28a-SUMO-F CCCAAGCTTCCGAAAACCTGTACTTTCAAGGCATGGCAAATAAGGAGGAG HindIII
pET28a-SUMO-R AAGGAAAAAAGCGGCCGCTCATGTCTCTGCTTGGTGCTTCTGAAGTTC NotI
pET28a-MBP-F CTAGCTAGCGAAAACCTGTACTTTCAAGGCCATATGATGGCAAATAAGGAGGAGGCAG NheI
pET28a-MBP-R CCCAAGCTTTCATGTCTCTGCTTGGTGCTTCTG HindIII
CCD2-T-F CCAAGCAGAGACATGAGTTTAAACGGTCTCCAGCTT -
CCD2-T-R ACTCATGTCTCTGCTTGGTGCTTCTGAAGTTCT -

4.3. The Function Assay of CsCCD2 in Bacteria

The TRX-CsCCD2 vector was co-transformed with pACCAR25∆crtX, pACCRT-EIB, or
pACCAR16∆crt into E. coli BL21 (DE3). The engineered strains were precultured overnight,
and 2 mL cultures were inoculated into 40 mL LB with 50 µg/mL ampicillin and 34 µg/mL
chloramphenicol. After being grown at 37 ◦C and 200 rpm for approximately 3 h (OD600
about 0.6), 1.0 M IPTG was added for a final concentration of 0.3 mM, and the culture was
induced at 16 ◦C and 160 rpm for 24 h. The cultures were centrifuged at 4500× g for 10 min,
and the pellets were ultrasonically extracted with 800 µL acetone to detect the catalyst.
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The extract was filtered into vials for UPLC and UPLC-MS/MS analysis. Prof. Giovanni
Giuliano generously contributed the plasmids pTHIO-DAN1 and DAN1-CsCCD2. Their
function assays were repeated as described [8]. Following co-transformation of pTHIO-
DAN1 and DAN1-CsCCD2 with pACCAR25∆crtX, pACCRT-EIB, or pACCAR16∆crt into
E. coli BL21 (DE3), the positive colony was cultured overnight. Two milliliters of cultures
were inoculated into 50 mL of LB (containing 50 µg/mL ampicillin and 34 µg/mL chlo-
ramphenicol) and grown at 37 ◦C for 3 h to an OD600 of 0.7. The cells were induced using
0.2% (wt/vol) arabinose for 16 h at 20 ◦C. Moreover, the fusion proteins (GST-CsCCD2,
SUMO-CsCCD2, and MBP-CsCCD2) were induced following the protocol of TRX-CsCCD2
induction. Truncated protein (DAN1-CsCCD2-T) was examined based on the methods of
DAN1-CsCCD2 induction.

4.4. UPLC and LC-MS/MS Analysis of the Product

The samples were analyzed using a Thermo Ultimate 3000 system (Thermo Fisher
Scientific Inc., Waltham, MA, USA) equipped with a Waters Acquity UPLC® BEH C18
column (1.7 µm, 100 × 2.1 mm, Waters Co., Milford, MA, USA) at 35 ◦C with a wavelength
detector set to 440 nm. The mobile phases of acetonitrile comprising 0.1% formic acid
(A) and water comprising 0.1% formic acid (B) were used for UPLC. At a flow rate of
0.2 mL/min, the following gradient elution program was used: 0–8 min, linearly increasing
from 10% A to 50% A; 8–12 min, linearly increasing from 50% A to 90% A; 12–13 min,
linearly increasing from 90% A to 100% A; sustained 30 min.

The qualitative analysis of each product was performed using Agilent Technologies
1290 Infinity II and 6545 Q-TOF, together with Dual Agilent Jet Stream Electrospray Ion-
ization sources (Agilent Technologies, Santa Clara, CA, USA). The drying gas was set at
350 ◦C and 8 L/min; the sheath gas was set at 350 ◦C, with a gas flow rate of 11 L/min. The
nebulizer was set at 35 PSIG; the VCap was set at 3500 V. The data were analyzed using
MassHunter (version B.07.00).

4.5. Optimization of CsCCD2 Protein Expression Pattern

The fusion expression strategy was adopted to enhance the soluble expression of
CsCCD2. Three expression vectors, including GST-CsCCD2, SUMO-CsCCD2, and MBP-
CsCCD2, were constructed as aforementioned. Furthermore, various inducing temperatures
(37 ◦C, 28 ◦C, or 16 ◦C) and inducer concentrations (0.1 mM, 0.3 mM, 0.5 mM, 0.8 mM,
1.0 mM, 1.5 mM, and 2.0 mM) were also examined. When the OD600 of engineered strains
reached 0.6, 0.3 mM IPTG was added to induce protein expression at 160 rpm for 24 h.
SDS-PAGE was used to evaluate the protein expression level. Subsequently, the function
of fusion CsCCD2 proteins was confirmed using an in vivo assay, and the product was
detected as previously stated.

4.6. The Bioinformatic Analysis of CsCCD2, TRX-CsCCD2, and DAN1-CsCCD2

The ORFs of CsCCD2, TRX-CsCCD2, and DAN1-CsCCD2 were precisely identified
and translated into amino acids using MEGA (Version 6). Their amino acid sequences were
further subjected to multiple sequence alignment via DNAMAN (Version 6) to predict
differences in sequence. The common characteristics of the ORFs were predicted using
SnapGene (Version 4.1.9). The three-dimensional structure of CsCCD2 was predicted using
the online Robetta service (https://robetta.bakerlab.org/, accessed on 22 May 2023).

5. Conclusions

In summary, this study demonstrated that CsCCD2, a first key enzyme in saffron crocin
biosynthesis, can catalyze not only the cleavage of zeaxanthin but also the cleavage of
β-carotene and lycopene. The substrate profile of CsCCD2 has been expanded to allow
for the use of less-expensive raw materials (especially β-carotene) in crocin synthesis via
substrate-feeding strategies. Additionally, the soluble expression of CsCCD2 was determined

https://robetta.bakerlab.org/
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using E. coli as the host organism, paving the path for CsCCD2 crystal structure resolution
and facilitating the synthesis of crocetin and crocins using microbial fermentation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms242015090/s1.
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