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Abstract: Alzheimer’s disease is a neurodegenerative disease characterized by the formation of
amyloid plaques constituted prevalently by amyloid peptides. Due to the well-known challenges
related to the study in solution of these peptides, several membrane-mimicking systems such as
micelle constituted by detergent—i.e., DPC and SDS—have been deeply investigated. Additionally,
the strategy of studying short fragments instead of the full-length peptide turned out to be advan-
tageous in exploring the structural properties of the different moieties in Aβ in order to reproduce
its pathologic effects. Several studies reveal that among Aβ fragments, Aβ(25−35) is the shortest
fragment able to reproduce the aggregation process. To enrich the structural data currently available,
in the present work we decided to evaluate the conformational changes adopted by Aβ(25−35)
in SDS combining CD and NMR spectroscopies at different times. From the solved structures, it
emerges that Aβ(25−35) passes from an unordered conformation at the time of the constitution of
the system to a more ordered and energetically favorable secondary structure at day 7, which is
kept for 2 weeks. These preliminary data suggest that a relatively long time affects the kinetic in the
aggregation process of Aβ(25−35) in a micellar system, favoring the stabilization and the formation
of a soluble helix conformation.

Keywords: Alzheimer; Aβ(25−35); NMR; structural biology; micelles

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease responsible for the slow
and progressive destruction of brain cells, a condition which promotes the onset of total
mental decline [1–3]. Nowadays, over 50 million people are affected by Alzheimer’s or
related dementia [4]. Based on the amyloid cascade hypothesis, the neurodegeneration
caused by AD is due to the formation of fibrils composed of aggregated amyloid peptides
and consequent plaques [5–9]. It is known that the aggregation process of amyloid-β (Aβ)
peptides may be influenced by different factors, like metal ions, pH, temperature, and
the environment in which they are located [10–12]. Several studies based on solid-state
nuclear magnetic resonance (ssNMR) demonstrated that the full-length Aβ(1−40) and
Aβ(1−42) tend to form polymorphic protofibrils which rearrange as raw β-sheet structures,
predictive of β-organized superstructures in mature fibrils. However, the intermediate
states leading to protofibrils are still under investigation [13–15]. Moreover, the rapid
aggregation mechanism of these peptides raises an issue in setting the in vivo conditions
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to study Aβ peptides in solution because a barely aqueous system would drive the self-
interaction between the highly hydrophobic C-terminal region and the central Aβ moiety,
forming the transient β-hairpin crucial for the aggregation process [9,16].

Although Aβ peptides tend to fibrillate in plain water, the interaction with the cell
membrane is believed to be crucial for the pathological role of the peptide [17]. Therefore,
several membrane-mimicking systems have been explored to study Aβ and its fragments.
Mixtures of organic solvents—such as trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-
2-propanol (HFIP)—with water were largely exploited mainly in early structural studies
of Aβ peptides [18–26]. Micelles, on the other hand, represent one of the most used
membrane-mimetic systems thanks to their low molecular weight and high reproducibility.
In a recent study, Serra-Batiste et al. explored various surfactant micelles for the forma-
tion of oligomeric complexes. They demonstrated that in dodecyl phosphocholine (DPC)
micelles Aβ(1−42) peptide, rather than Aβ(1−40), β-sheet-structured oligomers tends
to form due to the higher hydrophobic nature of the longer amyloid-β fragment [27,28].
Another membrane-mimetic system extensively used for studying Aβ peptides is sodium
dodecyl sulphate (SDS) micelles. Indeed, Aβ peptides are characterized by an overall
positive charge, which allows the peptides to interact with the negatively charged surface
formed by SDS micelles [21,29]. Conformational studies of wild-type and mutant Aβ

peptides in SDS demonstrated that the peptide–micelles interaction is significantly affected
by the primary structure [30–32]. Still, obtaining the full-length amyloid peptides is not a
simple task, and several works have focused their study on shorter domains of Aβ peptide,
which are excellent starting points for probing the behavior of parent proteins in different
systems [24,33–37]. Several Aβ fragments react similarly to the parent peptides when
placed in the SDS micelle system. In particular, different studies have been performed
to investigate the behavior in SDS micelles of Aβ fragments encompassing residues 10Y-
M35 [38–41]. Among these fragments, Aβ(25−35) represents the shortest sequence of Aβ

able to mimic the biological behavior of the full-length amyloid peptides, forming large
β-sheet aggregates and reproducing the toxicity of the peptide [21,42–45]. Conformational
studies indicate that Aβ(25−35), like Aβ(1−42), undergoes a conformational transition
depending on the environmental conditions, passing from a soluble and unordered sec-
ondary structure to an aggregated fibrillary β-sheet structure [46]. Previous conformational
analysis of Aβ(25−35), performed with nuclear magnetic resonance (NMR) in SDS and
LiDS micelle solutions, demonstrated the presence of a helix on 28K-L34, proving that
Aβ(25−35) has structural features similar to its parent peptide Aβ(1−42) [47]. As the
amyloid peptide tends to aggregate over time, the great threat is represented by the final
formation of the pathological amyloid plaques [48–50]. Because this often represents a
point of no return, it is fundamental to mitigate and, in the most promising hypothesis,
reverse this process while in the prodrome stages of the pathology. Although it is assessed
that the setting of the environment is crucial to modulate the conformational events that
bring to the formation of the fibrils, little is known about how time would gradually affect
the secondary structure of amyloid in solution. In this work, we exploited Aβ(25−35) as a
model to mimic the structural features of the Aβ(1−42) full-length, in the folding–unfolding
process, with careful attention to the conformational intermediates occurring during the
soluble-aggregate transition. To this end, we performed circular dichroism (CD) and NMR
analysis to evaluate the effect of SDS micelles on the conformation of Aβ(25−35) at days 0,
4, 7, and 14; additionally, we measured the diffusion coefficients and the hydrodynamic
radii of Aβ(25−35) at different times to investigate the behavior of the peptide–micelle
complex.

2. Results
2.1. Circular Dichroism Experiments

Figure 1 shows CD spectra of Aβ(25−35) recorded in SDS micelle solution at the time
of the constitution of the system and after 4, 7, and 14 days. The CONTIN analysis indicates
that Aβ(25−35) in SDS micelles at day 0 presents 52% of random coil and 39% of β-sheet
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conformation. After 4 days the content of β-sheet is unchanged, but there is an increase
in the helix conformation (35–40%) at expenses of the random coil conformation. The
increased ratio in helix conformation is conserved for the full duration of the experiments.
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Figure 1. CD curves and secondary structure quantification performed with CONTIN algorithm of
Aβ(25−35) peptide in SDS micelles at the time of the constitution of the system and after 4, 7 and
14 days.

2.2. NMR Spectroscopy
2.2.1. DOSY Experiments

To analyze the diffusion behavior of Aβ(25−35) peptide in the SDS micelle solution
over time, we recorded pseudo-2D DOSY experiments. Details about DOSY spectra and
diffusion curves are reported in Figures S1 and S2. Table 1 shows the diffusion coefficients
of SDS micelles and Aβ(25−35) peptide, respectively.

Table 1. Diffusion (D) values (m2/s) of Aβ(25−35) in SDS obtained by DOSY experiments.

D (m2/s) SDS D (m2/s) Aβ(25−35)

Day 0 6.98 ± 0.06 × 10−11 6.78 ± 0.07 × 10−11

Day 4 6.67 ± 0.40 × 10−11 6.45 ± 0.17 × 10−11

Day 7 6.45± 0.04 × 10−11 6.43 ± 0.19 × 10−11

Day 14 6.58 ± 0.19 × 10−11 6.60 ± 0.14 × 10−11

The diffusion coefficients (D) calculated from DOSY spectra for SDS micelles and
Aβ(25−35) at different time points are very similar. The calculation of the hydrodynamic
radius are based on the diffusion coefficient of Aβ(25−35) and SDS detergent, respectively,
using 1,4-dioxane as a reference resulted in a 26 Å hydrodynamic radius [51]. This value
corresponds to the Rh calculated for SDS micelles in water [52–54]. It is constant for all the
experimental conditions, and as is common to SDS and Aβ(25−35) peptide, indicates an
interaction of the peptide with the SDS micelles which is conserved over time.

2.2.2. Analysis of Aβ(25−35) Structures

1D 1H, 2D 1H-1H Total Correlation Spectroscopy (TOCSY) and Nuclear Overhauser Ef-
fect Spectroscopy (NOESY) spectra of Aβ(25−35) in SDS micelles at 0, 4, 7 and 14 days were
collected on a Bruker 600 MHz at 298 K (Figures S3–S6). A 1H chemical shift assignment
was carried out by iteratively analyzing TOCSY and NOESY spectra with SPARKY [55,56].
2D 1H-1H spectra show 11 well-dispersed amide chemical shifts and uniform resonance line
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widths according to the characteristics of a structured peptide (Tables S1–S4). The sequen-
tial chemical shift assignment was performed according to the Wüthrich procedure [57].
The NOEs were translated into interprotonic distances using CALIBA routine of CYANA
3.1 software and then used as restraints for the NMR structure calculations [58]. Table 2
reports the statistics for the structural calculation of the NMR ensemble of Aβ(25−35)
peptide at 0, 4, 7, and 14 days in SDS micelles. The table shows a significant increase in
total NOEs recorded in the different NOESY spectra over time.

Table 2. Statistics for the structural calculation of the NMR ensemble of Aβ(25−35) peptide at 0, 4, 7,
and 14 days in SDS micelles.

Day 0 Day 4 Day 7 Day 14

Number of Experimental Restraints after CYANA

Total NOEs 169 203 217 217

Intra residual 112 118 123 121

Short-range 53 56 60 60

Medium-range 4 29 34 36

Long-range 0 0 0 0

RMSD

bb/heavy Å 2.15/3.09 0.63/1.21 0.58/1.21 0.25/0.94

Ramachandran analysis

Favorable regions 40.0% 40.6% 41.7% 84.3%

Additional allowed regions 41.7% 43.1% 29.7% 14.3%

Generously allowed regions 18.0% 14.9% 28.6% 1.1%

Disallowed regions 0.3% 1.4% 0.0% 0.3%

Figure 2 summarizes the sequential and medium-range NOE effects observed in the 2D
NOESY spectra. The sequential NOE plots report at day 0 only one α,N(i,i+2) effect between
residues 29G-G33. The paucity of NOE reveals the prevalence of disordered conformations
with the presence of rare half-turn structures in the central part of the peptide. From
day 4, several N,N(i,i+2), α,N(i,i+2), α,N(i,i+3) and α,β(i,i+3) effects indicate the rising of
turn-helical structures involving the residues 29G-M35. On days 7–14, additional NOEs are
observable in the N-terminal region, consistent with the rising of stable, regular secondary
structures including all the peptide sequence. Interestingly, analysis of the NMR structure
bundle indicates a progressive reduction of the conformer families moving from day 0 to
day 14. At the beginning, Aβ(25−35) is disordered: a variety of conformer populations
are evident, with a sporadic half-turn on the N-terminus. From day 4, high occurrence of
regular conformations is evident, with the definition of a 310 helix on the residues 28K-I32

at day 14.
The Ramachandran plots in Figure 3 confirm that Aβ(25−35) at day 0 is characterized

by three different clusters of conformations, which are β-sheet, right-handed and left-
handed helix. Starting from day 4, the peptide loses the contribution provided by the
β-sheet secondary structure, still conserving both orientations of the helix conformation.
Conversely, at days 7 and 14, the peptide assumes predominantly right-handed helix
conformation.
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Figure 2. On the left, overview of the sequential and medium-range nuclear Overhauser enhance-
ments (NOEs) used to calculate the Aβ(25−35) structure ensembles obtained at day 0 (A), day 4 (B),
day 7 (C) and day 14 (D). On the right, ribbon visualization of the representative structures of the
corresponding calculated ensembles.
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in SDS micelles.

Procheck-NMR analysis performed on the solved Aβ(25−35) PDB structures [59]
allowed obtaining the Ramachandran plot for each residue of the NMR-calculated bundle
of structures. Based on this analysis, we observed that Aβ(25−35) N-terminal and C-
terminal residues tend to assume over time dihedral angle values close to those of a
right-handed helix (Figure S9A–D). By comparing these values with those deposited in
PDB for Aβ(1−40) NMR structure in SDS (PDB ID: 1BA4) (Figure S9E), it is possible to
affirm that the structure of the short Aβ(25−35) after 14 days is similar to the Aβ(1−40)’s,
validating the use of Aβ(25−35) as a valuable Aβ(1−40) structural model [29].

3. Discussion

Aggregation of Aβ peptide is a matter of time and modulating the formation of the
monomers or the soluble fibrils could represent a winning strategy to prevent AD [60].
Unfortunately, this is a very difficult task because of the tendency of amyloid peptides to
aggregate in aqueous conditions, which makes these molecules troublesome to study in
an experimental context. In this regard, systems of micelles composed of SDS have been
exploited to study the solution structures for the full-length Aβ(1−42) and several frag-
ments [27,28,30,31,61], among which, Aβ(25−35) represents the shortest portion capable of
mimicking the aggregation process [21,24,42,45,47]. In this work, we study the behavior
of Aβ(25−35) in SDS at 0, 4, 7, and 14 days to gain insights on the conditions in which
this fragment can reproduce to the greatest extent the features of the full-length in this
system. Preliminary CD analysis shows that Aβ(25−35) in SDS passes from a tendentially
disordered conformation at day 0, characterized by prevalent random coil and β-sheet
conformations, to a more ordered one, after four days, where the helix conformations rise
and increase for over the experimented time (Figure 1). Diffusion experiments performed
by NMR spectroscopy evidence that the peptide Aβ(25−35) interacts with the micelles
right from the early stages, suggesting a behavior comparable with other amyloid peptide
fragments, whose interaction with SDS micelles has been widely studied [41,61]. This
interaction is maintained throughout the analysis as confirmed by the diffusion values and
the hydrodynamic radii similar to SDS micelles’ ones, in accordance with data reported in
literature [62–64]. Two-dimensional TOCSY and NOESY experiments revealed that NOE
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effects between the peptide’s protons significantly increase from day 0 to day 4, particularly
in the 28K-M35 region. Indeed, at days 7–14, this effect is also extended to residue 27N,
suggesting that the peptide tends to stabilize its conformation over time. The transition to
ordered conformations is evident in the 2D-NOESY spectra with the appearance of new
inter-residues peaks. Aβ(25−35) in SDS passes from unstable β-like conformation to a
more ordered and stable α-helix structure encompassing the residues 29G-M35 after 7 days
(Figure 2). Eventually, at day 14, this α-helix conformation converts to a 310 helix and shifts
on the residues 28K-I32. These data suggest that the C-terminus represents the Aβ(25−35)
moiety most affected by the effects of the time in the proposed system. The Ramachandran
plot analysis supports this evidence: at day 0 Aβ(25−35) presents a structure with a dense
cluster of dihedral angles in the β-sheet region (Figure 3A), which is already lost at day 4
(Figure 3B) in favor of a rather helical structure, whereas at days 7 and 14 there is a lower
number of clusters, all concentrated in the region of right-handed helix dihedral angle
values (Figure 3C,D). By analyzing the Ramachandran plot residue by residue, it is possible
to observe that the residues primarily involved in the β-sheet conformation are situated
in the N-terminus (Figure S9A). However, it is possible to observe that for all the residues
of the sequence the dihedral angle values tend to cluster at day 7 in helix conformations,
except for the 33G-L34 amino acids which are characterized by regular helix structures
only at day 14. Remarkably, by comparing the Aβ(25−35) dihedral angle values obtained
on the last day with those of the corresponding residues of Aβ(1−40) in SDS (PDB ID:
1BA4), it is possible to observe a significant similarity of the structures (Figure S9D,E). In
conclusion, this explorative study highlights that the amyloid fragment may prefer a 7-day
delay of settling from the time of the constitution of the system to assume energetically
favorable conformations, similar to those of the parent Aβ(1−40) amyloid peptide in the
same conditions. Therefore, it is mandatory that special attention be given to the choice of
timing when negatively charged micelles are chosen for structural studies.

4. Materials and Methods
4.1. Sample Preparation
4.1.1. Aβ(25−35) Peptide Synthesis

Aβ(25−35), was manually synthesized using Fmoc/tBu solid-phase peptide synthesis
(SPPS) following Merrifield strategy [37,65]. The peptide was purified by reversed-phase
chromatography (HPLC) using Phenomenex C18 column. The peptides were characterized
on a Finningan LCQ Deca ion trap instrument equipped with an electrospray source (LCQ
Deca Finnigan, San José. CA, USA). The samples were directly infused in the ESI source
using a syringe pump at a flow rate of 5.0 mL/min. The data were analyzed using the
Xcalibur software. The sample purity was >98%.

4.1.2. Sample Preparation for Analyses

Before performing experiments, Aβ(25–35) peptide was previously treated according
to the defibrillation procedure [66]. Subsequently, SDS micelles were prepared by dissolving
Aβ(25–35) peptide in an SDS/PBS (pH 7.4) mixture. To obtain SDS micelles, we used a
concentration of 80 mM, which is 10-fold the SDS critical micellar concentration (c.m.c.) [67].
The final concentration of Aβ(25–35) peptide was 0.15 mM.

4.2. CD Experiments

CD spectra were obtained using a JASCO J-810 spectropolarimeter, with the aid of a
1 mm long quartz cell, working at a temperature of 25 ◦C. The CD curves were acquired by
an average of 4 scans, in a measuring range of 260-190 nm, at a bandwidth of 1 nm and at a
scanning speed of 10 nm/min. Each spectrum was processed by subtracting the solvent
spectrum. The analysis of the CD curves was performed using the CONTIN algorithm of
the online platform DICHROWEB [68,69].
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4.3. NMR Experiments
4.3.1. NMR Data Recording and Processing

Aβ(25−35) and SDS-d25 were prepared as described before. All NMR samples were
given 10% (v/v) D2O. Further, 1D, 2D (1H-1H-TOCSY and 1H-1H-NOESY), and pseudo-2D
(DOSY) experiments were recorded at 25 ◦C on a Bruker Avance 600 MHz spectrometer
equipped with a 5 mm triple resonance 1H, 13C and 15N, z-axis pulsed-field gradient probe
head. The water signal was suppressed using the excitation sculpting gradient pulse [70].
All the spectra were transformed and visualized in TopSpin 3.1 (Bruker Biospin). For the
structure calculation of Aβ(25−35) peptide at different time, 2D spectra were iteratively
analyzed using SPARKY software [55,56]. Chemical shifts assignment was obtained using
the standard approach described by Wuthrich [57]. Diffusion constants of peptide over
time were acquired by pseudo 2D diffusion ordered spectroscopy (DOSY) experiments
by a stimulated echo bipolar pulse field gradient (stebpgp1s) program [71,72]. A total of
32 spectra with gradient strengths ranging from 2% to 98% of the maximum value were
recorded. A diffusion time ∆ of 60 ms and gradient length δ of 1.0 ms were used in all
the experiments. The spectra were analyzed using TopSpin Dynamics Center (Bruker,
Fällanden, Switzerland). The diffusion values were obtained by fitting the peak intensity
decays using the Stejskal-Tanner equation [73]:

f (g) = I0e−γ
2g2δ2(∆− δ

3 )D

Using the Wilkins equation, it was possible to determine the hydrodynamic radius
(Rh) of Aβ(25−35) peptide from the diffusion values. We added 1,4-dioxane to a final
concentration of 10 mM as internal standard. Because the hydrodynamic radius value of
1,4-dioxane is tabulated as 2.12 Å, it was used as an internal reference and used for the
calculation of Rh [51,74]:

Rh,prot =
Dref ·Rh,ref

Dprot

where Dref and Rh,ref, respectively, are the diffusion and the hydrodynamic radius of the in-
ternal reference, and Dprot and Rh,prot, respectively, are the diffusion and the hydrodynamic
radius of Aβ(25−35) peptide.

4.3.2. Structure Calculations

NOESY peaks were integrated using the Gaussian fit integration method of SPARKY
software. Peak volumes deriving from the assignment were translated into upper distance
bounds with the CALIBA routine from the CYANA 2.1 software package [58]. Redundant
and duplicate constraints were discarded for each sample, and the final list of constraints
was used to generate a set of 50 structures using the CYANA protocol of simulated anneal-
ing in torsion angle space (50000 steps). Entries presenting the lowest target function value
(2–12) and irrelevant residual violation (maximum violation 0.71 Å) were analyzed using
Schrodinger’s Maestro 12.5.139 [75]. Procheck-NMR was used to assess the quality of the
structures and to analyze the dihedral angles [59].

Supplementary Materials: The following supporting information can be downloaded at: https:
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