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Abstract: Bladder cancer (BCa) is associated with significant morbidity, with development linked to
environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in
the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges
such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to
use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we
review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs
are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
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1. Introduction

Bladder cancer (BCa) is among the most common human malignancies, resulting in
over 17,000 deaths annually in the United States [1]. Prognosis of BCa is largely dependent
on whether there is muscle invasion present or not. Approximately 75% of bladder tumors
are non-muscle invasive at the time of diagnosis, and even with treatment approximately
40% will recur and 10% will progress. [2]. Muscle-invasive bladder cancer (MIBC) is associ-
ated with greater morbidity and mortality, and is typically managed more aggressively than
non-muscle invasive bladder cancer (NMIBC), often requiring neoadjuvant chemotherapy,
radical cystectomy, and pelvic lymph node dissection.

Progression to muscle-invasive disease is a critical element to address in reducing
the morbidity and mortality associated with BCa and may be dependent on several fac-
tors. First, BCas have historically been described as arising from two distinct pathways:
a non-invasive pathway characterized by mutations in oncogenes, and an invasive pathway
characterized by mutations in tumor suppressor genes [3]. Specific genetic alterations may
indeed influence risk of developing muscle invasive disease. Recent work has evaluated dif-
ferential RNA expression in BCa in order to characterize the disease into distinct molecular
subtypes, which links genetic alterations with clinical characteristics such as recurrence and
progression of disease [4–8]. Mutations in genes that impact chromosomal stability, such as
DDR, P53 and APOBEC genes are associated with high risk of recurrence and progression,
while alterations in genes involved in early cell-cycle processes such as RAS, FGFR3, and
uroplakin genes are associated with low risk of recurrence and progression [9,10].

Several studies have identified microRNAs (miRNAs) as potential biomarkers for
diagnosing and predicting survival among patients with BCa [11–13]. MiRNAs are short,
noncoding molecules that negatively regulate gene expression by binding to the untrans-
lated regions of gene transcripts. In addition to miRNAs, there are long non-coding RNAs
(lncRNAs) and circular RNAs (cirRNAs); these are both classes of non-coding RNAs that
work within axes involving miRNAs to regulate gene expression and that will be dis-
cussed briefly. MiRNAs are readily isolated from cell-free matrices such as urine [14]
and serum [15] of patients with BCa with minimal risk to the patient. In BCa, they have
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been studied in conjunction with the epithelial to mesenchymal transition (EMT) phe-
notype [16,17], as well as chemoresistance and recurrence. The focus of this manuscript
are those miRNAs that have been specifically linked to BCa resistance and recurrence.
Several recent studies that have examined miRNA-based biomarkers and identified the
roles of these miRNAs in BCa recurrence and resistance; this has the potential to inform the
management of BCa patients.

2. Methods

In this review, PubMed (https://www.ncbi.nlm.nih.gov/pmc/) and Google searches
from 19 September through 24 October 2022 were used to identify miRNAs associated with
either BCa recurrence or chemoresistance. Search terms used to identify relevant papers
include microRNA, bladder cancer, chemoresistance, recurrence, and selection focused
on primary research papers that also included gene targets. A selection of papers looking
at other non-coding RNAs were also included to highlight that (i) they also play a role
in bladder cancer outcomes and that (ii) axes involving miRNAs frequently also include
non-coding RNAs. These miRNAs and details pertaining to their potential gene targets
are listed in Tables 1 and 2 below. MiRNAs identified in the search were then analyzed
in KEGG pathway analysis using DIANA-mirPath v. 3.0 [18]. Predicted gene targets are
based on the experimentally validated miRNA interactions derived from TarBase v. 7.0 [19]
(University of Thessaly, Volos, Greece).

The resulting heat maps depict significant pathways resulting from pathways union
analysis using FDR correction and conservative statistics with a modified Fisher’s Exact
Test, p < 0.0001. The results of the KEGG analyses are included below in Figures 1 and 2.
Notable pathways for recurrence include cell cycle, transcriptional regulation in cancer, the
Hippo signaling pathway, and fatty acid metabolism/biosynthesis. For chemoresistance,
these pathways include TGF-beta, fatty acid metabolism/biosynthesis, cell cycle, and the
Hippo signaling pathway. These pathways and their aberrant expression are linked to
cancer-associated phenotypes such as EMT.

Table 1. miRNAs and associated targets/regulators involved in BCa recurrence.

miRNA Target/Regulator Function Reference

MiR-22-3p Not identified Elevated miR-22-3p showed reduced recurrence-free survival (RFS). [20]

MiR-34a Not identified

Downregulation associated with recurrence and poorer prognosis
[21]. Higher expression of miR-34a associated with lower

likelihood of recurrence. MiR-34a upregulation showed less
invasion and colony formation [22].

[21,22]

MiR-100 FGFR3 Reduced miR-100 associated with less recurrence. * [23]

MiR-138 Cyclin D3 Downregulation of miR-138 linked to recurrence. [23]

MiR-146a-5p
Two separate

pathways involving
YAP1 and COX2

Downregulation associated with recurrence. Subsequent regulation
of ALDH1A1 and SOX2. [24]

MiR-148a Not identified Downregulation of miR-148a in BC patients linked to recurrence
and metastasis. [25]

MiR-152 Not identified Higher expression of miR-152 linked to lower RFS in NMIBC. [26]

MiR-155 Not identified MiR-155 upregulation associated with recurrence. [27]

MiR-187-5p Not identified Oncogene, promotes proliferation and mobility while
decreasing apoptosis. [28]

MiR-200a family Not identified
Reduced miR-200a-3p showed reduced RFS [20]. Lower expression
of miR-200a in BCa, and downregulation linked to higher chance of

recurrence [29].
[20,29]

MiR-210 Not identified Higher expression of miR-210 found in patients with recurrence. [30]

https://www.ncbi.nlm.nih.gov/pmc/
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Table 1. Cont.

miRNA Target/Regulator Function Reference

MiR-214 Not identified
Reduced miR-214 expression in BCa urines pre-op compared to

post. Linked to RFS [31]. Mir-214 downregulation linked to
recurrence [32].

[29–32]

MiR-221/222 Not identified
Downregulated in BCa, but miR-222 is upregulated in high

grade/invasive BCas. MiR-222 upregulation (Ta/T1 cancers) linked
to recurrence.

[33]

MiR-302b EPS8 (potential) Tumor suppressor, lessens proliferation, migration, and invasion.
Promotes apoptosis. [34]

Let-7f-5p LIN28 Tumor suppressor, represses cell viability and migration. [35]

* p value > 0.05.

Table 2. miRNAs and associated targets/regulators involved in BCa chemoresistance.

miRNA Target/Regulator Function Reference

MiR-7-5p ATG7 Upregulation of miR-7-5p inhibited invasive characteristics.
Promotes chemosensitivity. [36]

MiR-21 PTEN Promotes chemoresistance to doxorubicin and proliferation in
transitional cell carcinoma; inhibits doxorubicin-induced apoptosis. [37]

MiR-22-3p NET1
MiR-22-3p promotes chemoresistance. More cell viability, colony

formation, and less apoptosis with upregulation of miR-22-3p
via mimic.

[38]

MiR-23a SFRP1 protein and
Wnt signaling Linked to chemoradiation response. [39]

MiR-27a
SFRP1 protein and

Wnt signaling,
RUNX-1

Linked to chemoradiation response [39]. Rs11671784 SNP (wherein A
is replaced with G) results in reduced chemosensitivity [40]. [39,40]

MiR-30a-3p MMP2, MMP9
Combination of cisplatin and miR-30a-3p resulted in improved

apoptosis and reduced cell viability. Upregulation of miR-30a-3p via
mimic lessened migration and invasion.

[41]

MiR-31 ITGA5
MiR-31 promotes chemosensitivity to mitomycin-C and upregulation

inhibits proliferation, migration, and invasion. Downregulation
associated with higher risk of recurrence in noninvasive UBC.

[42]

MiR-34a TCF1, LEF1, Cdk6,
SRT-1 (sirtuin), CD44

Downregulated in BCa; promotes chemosensitivity to epirubicin [43]
and to cisplatin [44,45]. Higher expression of miR-34a represses

metastatic characteristics [43,45].
[43–45]

MiR-93 LASS2 (but no
direct binding) MiR-93 promotes chemoresistance. [46]

MiR-98 LASS2
Expressed at higher levels in BCa. Upregulation via mimic resulted in
increased proliferation, greater cisplatin and doxorubicin resistance,

and repression of apoptosis.
[47]

MiR-101 COX2 MiR-101 promotes chemosensitivity to cisplatin. [48]

MiR-101-3p EZH2, affects MRP1
expression MiR-101-3p promotes chemosensitivity. [49]

MiR-129-5p Wnt5a Expression of miR-129-5p promotes response to gemcitabine. [50]

MiR-130b CYLD Involved in promoting chemoresistance. [51]

MiR-143 IGF-1R MiR-143 promotes chemosensitivity. Upregulation of IGF-1R linked to
reduced survival and recurrence. [52]
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Table 2. Cont.

miRNA Target/Regulator Function Reference

MiR-193a-3p LOXL4, HOXC9,
PSEN1, ING5

MiR-193a-3p promotes chemoresistance (oxidative stress pathway)
[53,54]. MiR-193a-3p reported to target PSEN1 gene and affect DNA

damage response [55]. Interaction with ING5 also occurs through DNA
damage response pathway [56].

[53–56]

MiR-193a-5p AL-2α MiR-193a-5p is involved in chemoresistance. Upregulation of
miR-193a-5p linked to increased migration and resistance to cisplatin. [57]

MiR-200b IGFBP3, ICAM1,
TNFSD10

MiR-200b promotes chemosensitivity. More broadly, miR-200 family
members (miR-200b, miR-200a, and miR-429) were downregulated in

cisplatin-resistant cell lines.
[58]

MiR-214 Netrin-1 Tumor suppressor activity; miR-214 upregulation resulted in reduced
colony formation and invasion. MiR-214 promotes chemosensitivity. [59]

MiR-218 Glut1 MiR-218 promotes chemosensitivity to cisplatin. [60]

MiR-222 PPP2R2A MiR-222 is implicated in chemoresistance. Acts through AKT/mTOR
and autophagy pathways. [61]

MiR-325 HAX-1 MiR-325 promotes chemosensitivity. [62]

MiR-424 UNC5B and SIRT4 Promotes cisplatin resistance via downregulation of UNC5B and SIRT4. [63]

MiR-455-5p Regulated by
HOXA-As3

Promotes sensitivity to cisplatin, reduces proliferation, and
promotes apoptosis. [64]

MiR-486-5p

Gene expression
changes observed in
caspase-9, caspase03,
P53, SIRT1, OLFM4,

SMAD2, Bcl-2, ROCK,
CD44, MMP9

MiR-486-5p functions as tumor suppressor and
promotes chemosensitivity. [65]

miR-3682-3p Regulated by BMI1
and regulates ABCB1

BMI1 inhibits miR-3682-3p transcription to induce chemoresistance.
Elevated BMI1 is also associated with poorer RFS. [66]
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Figure 1. DIANA miRPath [18] KEGG analysis results identified several pathways that may be 
related to recurrence in bladder cancer. Relevant pathways, based on predicted gene targets of these 
miRNAs, include proteoglycans in cancer (92 genes), Hippo signaling (49 genes), cell cycle (69 
genes), adherens junctions (32 genes), ECM receptor-interaction (15 genes), fatty acid metabolism 
(14 genes), and fatty acid biosynthesis (4 genes). 

Figure 1. DIANA miRPath [18] KEGG analysis results identified several pathways that may be
related to recurrence in bladder cancer. Relevant pathways, based on predicted gene targets of these
miRNAs, include proteoglycans in cancer (92 genes), Hippo signaling (49 genes), cell cycle (69 genes),
adherens junctions (32 genes), ECM receptor-interaction (15 genes), fatty acid metabolism (14 genes),
and fatty acid biosynthesis (4 genes).
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Figure 2. DIANA miRPath KEGG analysis results identified several pathways that may be related 
to chemoresistance in BCa. Relevant pathways, based on predicted gene targets of these miRNAs, 
include proteoglycans in cancer (124 genes), Hippo signaling (68 genes), cell cycle (52 genes), TGF-
beta signaling (44 genes), adherens junctions (40 genes), ECM receptor-interaction (31 genes), fatty 
acid metabolism (15 genes), and fatty acid biosynthesis (6 genes). 

3. EMT 
An important mechanism linked to both recurrence and chemoresistance is EMT. 

This process involves the conversion of epithelial to mesenchymal cells resulting from 
changes in polarity and adhesion [67], and is characterized at the molecular level by 

Figure 2. DIANA miRPath KEGG analysis results identified several pathways that may be related
to chemoresistance in BCa. Relevant pathways, based on predicted gene targets of these miRNAs,
include proteoglycans in cancer (124 genes), Hippo signaling (68 genes), cell cycle (52 genes), TGF-
beta signaling (44 genes), adherens junctions (40 genes), ECM receptor-interaction (31 genes), fatty
acid metabolism (15 genes), and fatty acid biosynthesis (6 genes).

3. EMT

An important mechanism linked to both recurrence and chemoresistance is EMT.
This process involves the conversion of epithelial to mesenchymal cells resulting from
changes in polarity and adhesion [67], and is characterized at the molecular level by
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changes including E-cadherin downregulation and N-cadherin upregulation [67]. Notably,
EMT is a mechanism of metastasis, since the aforementioned molecular, and consequently
cellular, changes allow cancer cells to move to other areas of the body using means such
as migration and invasion [68]. There is a significant body of work investigating the role
of EMT in BCa, especially with respect to recurrence and chemoresistance, the central
themes of this review. Specifically, studies have looked at EMT-related genes to predict
prognostic outcomes in patients with BCa [50,69] and at the role of non-coding RNAs
that regulate the EMT pathway through axes involving miRNAs [70,71]. One important
group of miRNAs involved in BCa EMT is the miR-200 family: work has shown that
miR-200c and miR-200b inhibit EMT [72,73], and miR-200 expression is broadly linked to
improved bladder cancer survival [74]. Other miRNAs involved in the EMT phenotype
and included in Table 1 include miR-302b, which inhibits proliferation, migration, and
invasion [34] and let-7f-5p, which is also characterized by tumor suppressor activity and
inhibits cell viability and migration [35]. In addition to recurrence, EMT is also involved in
mediating chemoresistance; in fact, EMT, recurrence, and chemoresistance work in concert
with one another. Studies have found that EMT markers are upregulated in chemoresistant
cells, with restoration of sensitivity via TGF-beta downregulation [75] and that oncogenic
proteins modulate EMT to induce resistance to chemotherapeutic agents [76,77]. Two
key pathways that have been linked to the EMT phenotype are Wnt signaling [78,79] and
TGF-beta [80,81]. While the TGF-beta pathway is not focused on in detail here, there are
several manuscripts looking at non-coding RNAs, including miRNAs, that are involved in
BCa carcinogenesis (and specifically EMT): This includes miR-758-3p which is regulated
by the lncRNA CASC9 [82], miR-663, which represses invasion and migration [83], miR-
143-3p, which acts as a tumor suppressor and whose downregulation via LINC02470
promotes EMT [84], and miR-200b, which inhibits the metastatic phenotype [85]. TGF-beta
signaling has also been linked to chemoresistance in a pathway that involves miR-145
downregulation [86]. The Wnt pathway, on the other hand, will be explored in greater
detail in connection to PTEN, a protein target regulated by miR-21 (Table 2) and whose
downregulation has been linked to poor prognosis and chemoresistance in BCa.

4. Cell Cycle

The cell cycle, or the process through which cells grow, undergo DNA replication, and
ultimately divide is carefully regulated, and disruptions can result in adverse consequences.
The cycle is separated into five phases: G1, and G2, which precede DNA replication (S)
and the mitotic (M) phases, respectively, and G0, a dormant phase [87]. One key family
of proteins that regulates the cycle is cyclin-dependent kinases (CDKs), which work in
concert with cyclin protein substrates [87]. Cyclins and their associated kinases have been
implicated in BCa, where they show biomarker and treatment potential [88,89]. While there
does not appear to be any work showing that miRNAs directly bind to and regulate the
expression of cyclins in connection to BCa recurrence, work by Wu et al. 2022 described
an axis in which circGLIS3 sponges miR-1273f, effectively inhibiting its expression [90].
This leads to expression of SKP1 and cyclin D1, promoting BCa cell proliferation [90].
This is an excellent example of how different classes of noncoding RNAs such as cirRNAs
and miRNAs work together to regulate gene expression and consequently the cellular
phenotype. Additionally, miR-138, included in Table 1, is positively correlated with cyclin
D3 expression [23].

Cyclin D3, and FGFR3, a well-studied protein explored below, may be used to identify
BCa patients who are likely to recur using noninvasive methods [91]. Additional work
has explored the utility of cyclins as biomarkers for recurrence including in papillary
urothelial bladder cancer [92,93]. There is very limited literature looking at cyclins in
BCa chemoresistance, and the potential role of non-coding RNAs; this represents an area
requiring further exploration.
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5. FGFR3

The Fibroblast growth factor receptor 3 (FGFR3) gene is often mutated in BCa, and
these mutations may be associated with less aggressive cancers and better patient out-
comes [94–96]. FGFR3 is included here because of its importance in BCa development, the
progress that has been made so far in developing FGFR3-focused treatments, and due to its
potential regulation by several miRNAs in BCa [97], including miR-99/100, which may be
connected to recurrence. Measuring miR-100 levels in either blood or urine may offer in-
sight into FGFR3 expression and aid in identifying patients who may benefit from targeted
therapies [96]. More broadly, there is a plethora of information around FGFR3 in recurrence.
Recent work by Sikic et al. 2021 found that FGFR3 expression was correlated with a higher
likelihood of recurrence [98], and an earlier study looked at FGFR3 as one of three urine
biomarkers for BCa recurrence [99]. Studies of FGFR3 in BCa are fairly well developed; in
fact, there are clinical trials examining FGFR3 inhibitors in cancer treatment. Two such trials
are PROOF 302 (phase III), which is investigating the utility of infigratinib, an inhibitor,
in a specific subset of BCa patients [100] and FIGHT-101 (phase I/II), which is evaluating
the treatment potential of pemigatinib, another FGFR inhibitor, in patients across different
cancers including bladder [101]. Interestingly, while the PROOF 302 patient population
includes only patients with FGFR3 mutations, FIGHT-101 is nonspecific [100,101].

There is more limited information around FGFR3 in chemoresistance although FGFR3
mutations have been linked to chemoresistance via Akt pathway activation [102,103]. On
the flip side, FGFR3 mutations in conjunction with ERCC1 expression has also been reported
to confer chemosensitivity [104]. This suggests that response to chemotherapy in patients
with FGFR3 mutations varies according to the specific genetic alteration. Interestingly, di
Martino et al. 2019 describe overlap between FGFR3 and the Hippo pathway, discussed
further below. They found that FGFR3 acts through ETV5 and ultimately TAZ upregulation
to initiate morphological changes promoting BCa progression [105]. Convergence between
FGFR3 and the Hippo pathway is an important finding, because TAZ may represent an
important target to halt BCa progression.

6. Hippo Signaling

One pathway implicated in the KEGG analyses for both BCa recurrence and chemore-
sistance is Hippo. This pathway is involved in regulating organ size and is characterized as
a tumor suppressor, with its dysregulation linked extensively to cancer [106–108]. One of
the key molecules within the pathway is the oncogenic Yes-associated protein (YAP) [106],
which works in concert with TAZ and TEAD to control proliferation and apoptosis at the
transcriptional level [109]. Proliferation and apoptosis are characteristics whose regulation
(or lack thereof) is linked to invasive potential and consequently recurrence. While there
is limited work examining the role of YAP in BCa recurrence, a study by Ghasemi et al.
reported higher YAP expression in recurrent BCa [110]. There is additional work look-
ing more broadly at agents that modulate BCa progression through YAP [111,112] and at
molecules, including miRNAs, that affect BCa development through YAP [113,114]. YAP
is also involved in BCa chemoresistance, with studies examining the naturally-derived
ailanthone as an inhibitor of proliferation and migration in cisplatin-resistant BCa cells
through YAP and Nrf2 repression [115,116]. Nrf2 is another transcription factor regulating
phenotypic characteristics including chemoresistance, and it appears to communicate with
YAP in modulating response to chemotherapy, with work showing that repression of the
two increases chemosensitivity [117]. YAP, described in Table 1, along with Nrf2, are targets
that merit further exploration in BCa treatment and have been explored by Cheng et al.
where they discuss YAP-targeting agents as a way to address chemoresistance [118].

7. Wnt Signaling

Another important mechanism is the Wnt signaling pathway, which plays a role in
organismal development [119]. Aberrant Wnt signaling is observed in BCa, especially
in relation to invasive characteristics and EMT [120]. Specifically, studies have identified
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molecules such as EFEMP2, PYCR1, and TMEM88 which work through Wnt signaling to
promote BCa invasiveness [78,121,122]. There is significantly less information around the
connection between the Wnt pathway and BCa recurrence. A study by Cai et al. 2022 iden-
tified several lncRNAs associated with BCa prognosis in which KEGG analyses implicated
Wnt among the associated signaling pathways [123]. There is limited work on miRNAs
and Wnt signaling in recurrence, an area that warrants further investigation, as it could
yield additional targets for BCa therapy. Non-coding RNAs, including miR-148b-3p, noted
in Table 2, also regulate Wnt signaling, affecting the response of BCa cells to chemother-
apy [124]. PTEN, a binding target of miR-148b-3p, exerts an anticancer effect in BCa cells
via Wnt downregulation [124]. In addition to PTEN, another molecule in the Wnt pathway
that is often modulated is beta-catenin, a transcription factor [119] whose downregulation
results in greater chemosensitivity of BCa cells [125].

8. Fatty Acid Metabolism and Synthesis

In the DIANA miRPATH KEGG analyses for BCa recurrence and chemoresistance, both
fatty acid biosynthesis and metabolism were implicated. Fatty acids represent an energy
source for cancer cells, which obtain these acids through processes including lipogenesis
and fatty acid intake [126]. Jeong et al. 2021 found that upregulation of proteins that
mediate fatty acid intake is associated with poorer pathological and clinical outcomes [126].
In addition to these proteins, Abdelrahman et al. 2019 reported that upregulation of
fatty acid synthase (FASN), as well as E2F1 and Her2/neu expression, is associated with
BCa recurrence [127,128]. FASN has been reported to act through AKT and CCND1 to
promote survival and growth in BCa [128]. In addition to the proteins implicated in
fatty acid metabolism in BCa, downstream molecules like AKT and CCND1 may hold
treatment and/or biomarker potential. More limited work addresses the role of fatty
acids in chemoresistance. Okamura et al. 2021 found that miR-486-5p, downregulated in
cisplatin-resistant BCa cell lines, binds to EHHADH, which has been implicated in fatty
acid metabolism [129]. Additionally EHHADH is involved in metastatic characteristics
including migration and invasion [129], and therefore may also mediate resistance.

9. Conclusions

Analysis of miRNAs, along with other non-coding RNAs, can guide cancer treatment
and management by offering insight into, for example, tumors with a higher likelihood
of recurrence and that may be resistant to certain chemotherapeutic agents. It is evident
from this review that there is a need for additional work at the cellular level to explore
associations that have been reported between miRNAs and recurrence. Specifically, there
is a paucity of work exploring (i) the effects of miRNAs implicated in recurrence on the
invasive phenotype and (ii) targets, regulators, and pathways through which these miRNAs
may act. Identifying these molecules can help in developing novel treatments, as is the
case with FGFR3. There is also a need for more work to identify molecules regulating and
regulated by miRNAs that are implicated in response to chemotherapy. Once gene targets
implicated in recurrence and treatment response are identified, the pathways in which they
are involved should be further explored, since these may aid in bladder cancer treatment.
Pathways that are important for additional investigation include Hippo, Wnt, and fatty
acid metabolism, and promising gene targets include YAP and PTEN, in addition to the
well-researched FGFR3.

Though this review focuses on miRNAs, there are other non-coding RNAs, such
as long non-coding RNAs and circular RNAs, that have similarly been implicated in
BCa resistance and recurrence and which should be explored further, especially since
these networks also involved miRNAs [51,130–132]. This includes Cdr1as, a circular RNA
that mediates bladder cancer chemotherapeutic response via miR-1270 [132] and circ-
BPTF, which promotes recurrence through interaction with miR-31-5p [133]. Likewise,
the circular non-coding RNA serum biomarkers circFARSA, circSHKBP1, and circBANP
were found to be able to discriminate patients with recurrent BCa [134]. In addition, the
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long non-coding RNA FOXD2-AS1 was found to promote bladder cancer progression and
recurrence through a feedback loop with Akt [135]. In a study of the TCGA BCa dataset,
Zhang et al. [136] identified a biomarker signature composed of 14 long non-coding RNA
to predict recurrence free survival in BCa. These studies illustrate the roles, and potential
utility, of other non-coding RNA in aiding BCa treatment.

Ultimately, studies looking at miRNAs, their gene targets and associated pathways,
and even other non-coding RNAs can serve as biomarkers for recurrence and resis-
tance. This information can be used to develop cell-free assays (involving either urine or
serum/plasma) and offer simple, noninvasive methods to identify patients likely to recur
and those who may exhibit chemoresistance to specific drugs. This is clinically relevant as a
key component of BCa management centers around prevention of progression of NMIBC to
muscle-invasive disease. It is important to note that there is existing work exploring liquid
biopsies as a tool in bladder cancer recurrence: this includes Urovysion, Xpert, and more
preliminary findings looking at miRNAs that may be useful [15,137,138]. In addition, there
are clinical trials investigating the potential of biomarkers to aid in treatment decisions.
Recently, a clinical trial conducted by the SWOG Cancer Research Network reported on
a gene-expression biomarker called the COXEN GC score [139]. This test aims to predict
tumor response to drug treatment. Likewise, the active BISCAY trial (NCT02546661), is
attempting to use protein and tumor antibody biomarkers in an effort to identify patients
that are likely to repond to treatment. Also, the TOMBOLA trial (NCT04138628) measures
circulating tumor DNA in an effort to identify early metastasis and thus aid in initiating
early immunotherapy. Collectively these works illustrate the coming age of biomarkers
aiding in clinical decision-making.

Management strategies for NMIBC such as intravesical instillation of bacillus Calmette-
Guérin (BCG), intravesical chemotherapies, and even systemic immunotherapies such as
pembrolizumab play an important role in reducing risk of progression to muscle-invasive
disease, but are dependent on individuals’ response to these therapies, which can vary
based on patient- and tumor-level factors. Determining a patient’s response to treatment
presents a significant challenge and although progress has been made, currently there are no
molecular biomarkers used in the clinical setting to predict response to these therapies [140].

Tumor-specific factors that can affect progression from NMIBC to MIBC include
variant histology, which is defined as BCa with histology other than typical urothelial carci-
noma (i.e., micropapillary, nested, plasmacytoid, neuroendocrine, or sarcomatoid tumors).
NMIBCs with variant histology are associated with increased risk of upstaging to muscle-
invasive disease, tend to respond less to minimally invasive treatment modalities such as
intravesical instillation of BCG, and are more frequently managed with guideline-directed
yet highly morbid procedures such as radical cystectomy when compared to typical urothe-
lial carcinomas [141,142]. Interestingly, work has been done to understand how surgical
margin further affects survival following radical cystectomy [143]. Though it is understood
that NMIBC with variant histology represents higher risk disease [144], certain variant
histologic subtypes carry higher risk than others, and debate exists on how tumor histology
should guide the aggressiveness of treatment (i.e., intravesical therapies vs. cystectomy).
Moreover, identification of variant histology is dependent on pathologists’ interpretation
and therefore intrinsically subjective. As such, adjunctive tests may provide additional
predictive value to the physician making treatment decisions. Other biomarker-based
tools in bladder cancer management include Controlling Nutritional Status (CONUT) [145]
and molecules such as PD-L1 [146]. MiRNAs offer important information pertaining to
molecules and signaling pathways that can be regulated to effectively manage bladder
cancer in conjunction with additional tools. Little is known about which miRNAs may serve
as predictors of variant histology and subsequent disease progression among patients who
have tumors with variant histology [12,147]. Identifying such miRNAs may aid physicians
in making treatment decisions for the management of non-muscle invasive BCa.

In summary, further understanding of miRNAs and their potential to serve as biomark-
ers for identification of high-risk patients who may respond poorly to conservative ther-
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apies, or whose pathways may lead to the development of targeted therapies that can
prevent the morbidity associated with radical cystectomy, may contribute to improved
patient outcomes and decreased morbidity associated with the management of BCa.
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