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Abstract: Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from
cancer patients can have profound implications for development of metastasis, prognosis, choice of
treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations
can misinform patient management decisions or become missed opportunities for personalized
medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations
but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches
to detection of low-level mutations provide a simple, straightforward, and affordable alternative to
enrich and detect such alterations and is broadly available to low-resource laboratory settings. This
review summarizes the traditional uses of enzymatic mutation detection and describes the latest
exciting developments, potential, and applications with specific reference to the field of liquid biopsy
in cancer.
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1. Introduction

In the field of cancer, low-level tumor somatic DNA mutations can have profound
implications for development of metastasis, prognosis, choice of treatment, follow-up, or
early cancer detection. Unless detected, such low-frequency DNA alterations can misinform
patient management decisions or become missed opportunities for personalized medicine.
While next-generation sequencing (NGS) technology or digital droplet PCR (ddPCR) can
identify low-level mutations, substantial time, effort, and expense are still required for
NGS-based diagnostics, while ddPCR requires special instrumentation. In cases where a
limited number of pre-defined, hotspot mutations are sought, or when access to advanced
instrumentation is unavailable, simpler methods to remove unaltered, WT DNA alleles
and enrich mutated alleles can be applied. Enzymatic approaches to eliminate WT alleles
are particularly attractive in this regard due to their simplicity, low cost, and general
availability in basic laboratories. This review describes traditional and recently developed
enzymatic methods for mutation enrichment and detection in clinical samples, with an
emphasis on detecting low-level mutations in liquid biopsies. Figure 1 schematically
illustrates the three main categories of enzymatic mutation detection methods. Table 1 lists
enzymatic mutation detection methods along with their sensitivity limits and intended use,
towards detecting mutations at known DNA target sites or mutation scanning (discovery
of unknown mutations).
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Figure 1. Schematic figure illustrating the concept behind the three different approaches of 
enzymatic mutation detection including restriction enzymes, mismatch recognition enzymes, and 
oligonucleotide-guided enzymes, including subsequent variations and enhancements for each 
method. 

Table 1. Enzymatic mutation enrichment and detection techniques. VAF: Variant Allele Frequency. 

Enzymatic Methods Application of 
Genotypic Selection Type of Mutation Sensitivity (%VAF) Year (Reference) 

Restriction Enzymes 
RSM-PCR (1) Pre-PCR Known point mutation 0.0001–0.1 1990 [1] 
RFLP-PCR (2) Pre-PCR Known point mutation 0.0001–0.1 2004 [2] 
AIRS-RFLP (3) Post-PCR Known point mutation 0.01–0.1 1989 [3] 

REMS (4) Pre/Post-PCR Known point mutation 0.01 1998 [4]  
APRIL-ATM (5) Post-PCR Known point mutation 0.01–0.1 2002 [5]  
FLAG assay (6) Pre-PCR Known point mutation 0.1–1 2007 [6]  

RMC (7) Pre-PCR Known point mutation 0.0001–0.1 2005 [7]  
iFLP (8) Pre-PCR Unknown point mutation 0.001–0.1 2004 [8]  

Mismatch Recognition Enzymes 
MutS Post-PCR Unknown point mutation 1–5 1995 [9] 

MutY/TDG-LM-PCR Post-PCR Unknown point mutation 1–5 2002 [10]  
Endo V Post-PCR Unknown point mutation 1–5 2004 [11] 

Endo VII Post-PCR Unknown point mutation 1–5 1995 [12] 
sRT-MELT Post-PCR Unknown point mutation 1–5 2007 [13] 

T7E1 Post-PCR Unknown deletion/point mutation 1–5 1995 [14] 
Oligonucleotide-Guided Enzymes 

DASH (9) Post-PCR Known point mutation 0.1 2016 [15] 
CUT-PCR Pre-PCR Known point mutation 0.01 2022 [16] 
PASEA (10) Post-PCR Known point mutation 0.01 2021 [17] 

Figure 1. Schematic figure illustrating the concept behind the three different approaches of
enzymatic mutation detection including restriction enzymes, mismatch recognition enzymes,
and oligonucleotide-guided enzymes, including subsequent variations and enhancements for
each method.

Table 1. Enzymatic mutation enrichment and detection techniques. VAF: Variant Allele Frequency.

Enzymatic Methods Application of
Genotypic Selection Type of Mutation Sensitivity (%VAF) Year (Reference)

Restriction Enzymes

RSM-PCR (1) Pre-PCR Known point mutation 0.0001–0.1 1990 [1]

RFLP-PCR (2) Pre-PCR Known point mutation 0.0001–0.1 2004 [2]

AIRS-RFLP (3) Post-PCR Known point mutation 0.01–0.1 1989 [3]

REMS (4) Pre/Post-PCR Known point mutation 0.01 1998 [4]

APRIL-ATM (5) Post-PCR Known point mutation 0.01–0.1 2002 [5]

FLAG assay (6) Pre-PCR Known point mutation 0.1–1 2007 [6]

RMC (7) Pre-PCR Known point mutation 0.0001–0.1 2005 [7]

iFLP (8) Pre-PCR Unknown point mutation 0.001–0.1 2004 [8]

Mismatch Recognition Enzymes

MutS Post-PCR Unknown point mutation 1–5 1995 [9]

MutY/TDG-LM-PCR Post-PCR Unknown point mutation 1–5 2002 [10]

Endo V Post-PCR Unknown point mutation 1–5 2004 [11]
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Table 1. Cont.

Enzymatic Methods Application of
Genotypic Selection Type of Mutation Sensitivity (%VAF) Year (Reference)

Endo VII Post-PCR Unknown point mutation 1–5 1995 [12]

sRT-MELT Post-PCR Unknown point mutation 1–5 2007 [13]

T7E1 Post-PCR Unknown deletion/point mutation 1–5 1995 [14]

Oligonucleotide-Guided Enzymes

DASH (9) Post-PCR Known point mutation 0.1 2016 [15]

CUT-PCR Pre-PCR Known point mutation 0.01 2022 [16]

PASEA (10) Post-PCR Known point mutation 0.01 2021 [17]

dCas9-based
minor-allele enrichment Post-PCR Known point mutation 0.1 2018 [18]

Cas9-ECL probe (11) Pre-PCR Known point mutation 0.01 2022 [19]

SHERLOCK (12) Post-PCR Known point mutation 0.1 2017 [20]

HOLMES (13) Post-PCR Known point mutation 0.1 2018 [21]

CRISPR-Cas12a
mediated SERS-LFA (14) Pre-PCR Known point mutation 0.01 2022 [22]

PAND (15) Post-PCR Known point mutation 0.1 2019 [23]

A-Star Post-PCR Known point mutation 0.01–0.1 2021 [24]

NAVIGATER (16) Pre-PCR Known point mutation 0.01–0.1 2020 [25]

APESA (17) Post-PCR Known point mutation 0.01–0.1 2012 [26]

IVME (18) Post-PCR Unknown point mutation 0.01–0.1 2022 [27]

NaME-PrO (19) Pre-PCR Known point mutation 0.01–0.1 2016 [28]

(1) Restriction-site mutation; (2) Restriction Fragment Length Polymorphism-PCR; (3) Artificial introduction of
a restriction site; (4) Restriction Endonuclease-Mediated Selective; (5) Amplification via Primer Ligation at the
Mutation; (6) FLuorescent Amplicon Generation; (7) Random Mutation Capture; (8) Inverse PCR-based Amplified
RFLP; (9) Depletion of Abundant Sequences by Hybridization; (10) Programmable Enzyme-Assisted Selective
Exponential Amplification; (11) Cas9-electrochemiluminescence probe; (12) Specific High Sensitivity Enzymatic
Reporter UnLOCKing; (13) One-HOur Low-cost Multipurpose highly Efficient System; (14) Cas12a mediated Surface
Enhanced Raman Scattering-lateral flow assay; (15) PfAgo-mediated Nucleic acid Detection method; (16) Nucleic
Acid enrichment Via DNA Guided Argonaute from Thermus thermophilus; (17) Apurinic/apyrimidinic-probe-
based endonuclease IV signal amplification system; (18) Endonuclease IV-mediated substrate structure allosteric;
(19) Nuclease assisted Minor-Allele enrichment using Probe Overlap.

2. Restriction Enzymes

Restriction endonucleases (REs) are conventionally employed to detect known
point mutations [1,29]. They detect and cleave double-stranded DNA (dsDNA) through
their specific recognition sequence with high selectivity [30]. This feature, besides
their affordability, has turned REs into a commonly used approach for enriching and
detecting known mutations that fall within their specific recognition site. Although
their use is limited to the fraction of mutations that occur within their recognition
sequence, the selectivity and sensitivity achieved for such mutations, plus their ease of
use made RE-based mutation enrichment one of the first approaches to be applied in
molecular diagnostics [1,29,30]. In this section, original and newer RE-based techniques
for mutation detection are briefly discussed.

In 1990, Restriction-Site Mutation (RSM) detection was introduced for detecting muta-
tions that alter RE recognition sites such that mutant DNAs show resistance to endonuclease
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activity [1]. Following incubation of the interrogated DNA with a specific RE, wild-type
DNA is digested while mutations at any base within the enzyme recognition sequence
retain DNA in intact form. A PCR that amplifies the interrogated locus with primers
encompassing the recognition sequence is then performed, thereby generating products
highly enriched for mutations. As an example application, RSM was applied for detection
of mutations generated in mutagen-exposed tissues [1]. Following DNA extraction from
tissues, mutagen-exposed DNA underwent AluI digestion, followed by PCR for codons
12/13 of the N-RAS gene. PCR amplicons were visualized on a polyacrylamide gel to
resolve intact DNA indicating mutations in N-RAS. This early work revealed a promising
method for mutation detection and propelled the development of similar RE-based muta-
tion detection, restriction fragment length polymorphism RFLP-PCR, and PCR-RFLP [31].
RSM/RFLP methods provide semi-quantitative mutation detection while being less labori-
ous than alternative approaches. An optimized RSM/RFLP method can detect minority
mutant alleles at allelic frequencies as low as 10−6 mutant-to-wild type alleles. To achieve
this selectivity, the RE step must be performed prior to performing a PCR step [2]. Such
pre-PCR enrichment processes represent noticeable advantages. Applying them to genomic
DNA can circumvent inevitable PCR errors during a pre-amplification step. Moreover,
following the genotypic selection step, they can be combined with diverse endpoint detec-
tion methods. In order to boost sensitivity even further using RFLP-PCR, a preliminary
RE digestion was applied directly to genomic DNA followed by PCR and a second RE
digestion [32]. When optimized, this process enriches the gene of interest and subsequently
improves the limit of detection (LOD) down to 10−8 mutant allelic frequency. In the first
reported application of this technique [32], mutagen-exposed human cells were assessed
for TP53 gene hotspot mutations. Following the specific digestion process and PCR, the
mutation-containing amplicons were cloned and detected by specific probes.

To partly overcome the major limitation of RE application to solely mutations located
within their recognition site, an approach was employed to generate an artificial enzymatic
recognition site during PCR synthesis. This method, Artificial Introduction of a Restriction
Site (AIRS) employs a modified primer to change one or more nucleotides for the purpose
of creating RE recognition sites for WT sequences, but not for mutated sequences [3], thus
leading to removal of WT sequences after application of RE on the resulting PCR product.
This technique raises the RE limitations and can detect mutations even in the absence
of natural restriction sites, at the cost of performing an extra PCR reaction prior to RE
digestion, which has the potential for introduction of PCR errors.

In 1998, a thermostable restriction enzyme PCR BstNI was employed during a PCR re-
action to enable mutated DNA enrichment in a closed tube format. This one-step approach,
Restriction Endonuclease-Mediated Selective (REMS)-PCR, was shown to detect effectively
KRAS mutations in fresh/paraffin-embedded colorectal tumors [4]. The simultaneous
activity of BstNI endonuclease and Taq polymerase, along with employing three sets of
primers, results in selective amplification of mutant DNA strands. The PCR products are
then visualized via gel electrophoresis. The primer combinations used during REMS-PCR
provide information on whether a mutation is present, and whether the restriction en-
zyme and the polymerase are both active during the reaction. REMS-PCR benefits from
the thermostability of BstNI to reduce sample handling and to bypass separate enzyme
digestion steps, thus shortening the process and reducing the probability for sample cross-
contamination. Like RSM and RLFP, this method provides convenience and speed, but the
limit of detection LOD is dependent on the ability of the enzyme for complete depletion of
mutated strands.

An inverse approach, Amplification via Primer Ligation at the Mutation (APRIL-ATM),
detects mutations creating a new enzymatic restriction site. Unlike RFLP, APRIL-ATM does
not use the endonuclease activity to eliminate WT alleles, but to digest and ligate mutated
alleles to an oligonucleotide tail that acts as primer in a PCR reaction [5]. This method
applies an initial pre-amplification to the targeted sequence. Following dephosphorylation,
an oligonucleotide is ligated uniquely at the digested position which contains phosphory-
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lated termini. A second round PCR is then performed using the ligated oligonucleotide as
a primer to amplify the mutated DNA, and a third PCR is also applied prior to visualizing
PCR amplicons on an agarose gel. APRIL-ATM was used for mutation detection in both
genomic DNA and cDNA samples [5]. Comparing classical RFLP-PCR with APRIL-ATM,
the latter overcomes problems associated with incomplete RFLP enzymatic digestion since
only successful enzymatic digestion reveals a mutation. On the other hand, the three PCR
steps make APRIL-ATM cumbersome and increase the risk of contamination. Another RE-
based technique, FLAG assay (FLuorescent Amplicon Generation), can provide real-time
PCR signal generation coupled with mutation enrichment and detection during PCR, using
a highly thermostable endonuclease (PspGI) [6]. FLAG applies primers doubly labeled
with a quencher and a fluorophore that carry a tag sequence containing a PspGI recogni-
tion site. During primer extension, the tag sequence becomes double-stranded, cleaved
by PspGI, separating the fluorophore and quencher and generating a detectable signal.
Besides real-time mutation enrichment and detection, FLAG is also able to simultaneously
genotype mutant alleles using PNA (peptide nucleic acids) probes. This technique could
detect and genotype KRAS codon 12 mutations in a closed-tube reaction with an LOD
of 10−3 mutant allelic frequency. The PNA-mediated FLAG approach could detect and
genotype low-abundance somatic mutations within a large excess of WT DNA through a
single-step process for both tumor biopsies and fluid specimens. Of note, FLAG cannot be
applied for targeted regions containing natural PspGI recognition sites.

Using bead-based hybrid capture of targeted sequences in combination with the
highly discriminatory feature of REs for mutant alleles led to development of Random
Mutation Capture (RMC) for detecting random mutations in cancer genomes. This tech-
nique integrates bead-based capturing of DNA targets with RE-mediated enrichment [7,33].
Exhaustive digestion of genomic DNA by REs that do not target the studied sequence is
followed by a hybridization step with uracil-containing biotinylated probes for enriching
the desired sequences. This preliminary digestion boosts the efficiency of depleting WT
sequences in the subsequent main RE digestion step. The captured targets are purified by
streptavidin magnetic beads and incubated with a specific RE to cleave WT strands but
leave intact sequences harboring sites modified due to a mutation. Finally, the undigested
strands can be detected by real-time PCR using flanking primers for the RE recognition
site. RMC provides a sensitive and quantitative detection approach for multiple mutations.
Combining RE digestion with bead-based target enrichment leads to a high sensitivity
of ~10−6% VAF for detecting minority mutant alleles [7,33]. RMC has the potential to be
applied in a multiplexed setting, but it is ultimately limited by the completeness of enzy-
matic digestion. An enzymatic approach applied to detection of random mutations that
overcomes this issue employs inverse PCR, RFLP, and dHPLC for genome-wide mutation
scanning. Inverse PCR-based Amplified RFLP (iFLP) applies genomic circularization on
fragmented genomic DNA followed by RE digestion on circularized DNA [8]. Sequences
with mutations generating a new RE recognition site are cut and converted into linear DNA
which can be ligated to generic linkers and amplified. When combined with dHPLC, this
approach could screen unknown mutations down to 10−5 variant allelic frequency with
minimal false positives, since only successfully digested circles could be amplified and
detected. iFLP could enrich multiple mutations in colorectal tumor samples to detect un-
known random mutations generated by a deficient mismatch repair system. While sensitive
and highly specific, iFLP is laborious and detects a limited number of all possible mutations.

Overall, RE-based detection methods render highly selective, available, and low-cost
approaches, some of which can be performed directly on genomic DNA without a pre-
amplification step. The main drawbacks include the limited number of mutations that can
be detected, the possibility of false-positive results due to incomplete enzymatic digestion,
and the demanding optimization of certain assay formats.
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3. Mismatch Recognition Enzymes

Mismatch recognition enzymes are involved in the DNA mismatch repair (MMR)
pathway and are evolutionary highly conserved. The MMR pathway in bacteria and mam-
malian cells can identify and correct base–base mis-pairs and indels. Mismatch-detecting
enzymes have been utilized to enrich minority known or unknown mutations in molecular
diagnostics. In 1995, immobilized bacterial MutS protein was applied to enrich PCR am-
plicons containing unknown mutations. MutS recognizes heteroduplex DNA formed via
denaturation and cross-hybridization of PCR products containing WT and mutated alle-
les [9]. MutS was able to detect most mis-paired bases, except C:C, and indels [9]. Following
MutS-aided mutation enrichment and amplification, the nucleotide change could be identi-
fied via Sanger sequencing. While the immobilized-MutS approach was the first attempt to
enzymatic detection of mismatches, the technique is cumbersome due to the required bead-
washing steps that may also cause poor reproducibility. MutY is another bacterial-origin
enzyme employed to detect mutations via mismatches formed by cross-hybridizing WT
DNA with DNA carrying G > T mutations [34]. Subsequently, an approach using MutY
or thymine-DNA glycosylase (TDG) which cleave G > A and T > G mismatches, respec-
tively, coupled with ligation-mediated PCR (LM-PCR) was described [10]. In this approach,
cross-hybridized mutant/WT DNA duplexes undergo de-phosphorylation to eliminate
phosphorylated DNA ends. Next, TDG/MutY enzymes are applied to remove mismatched
thymidine or adenine, thereby generating apurinic/apyrimidinic sites (AP sites) that are
converted to 5′-phosphate-containing strand breaks via heating. Following oligonucleotide
ligation at the 5′P-containing termini, LM-PCR is performed to exponentially amplify selec-
tively the mutation-containing strands. The MutY/TDG/LM-PCR approach is amenable to
multiplexing enrichment of unknown mutations. Moreover, the downstream detection can
be adapted to bead-based capturing by using biotinylated aldehyde reactive probes [35].
The technique can enrich MutY/TDG-recognized nucleotide mismatches with a moderate
selectivity with LOD of ~1% VAF but cannot enrich small deletions, A > T or G > C changes.
Endonuclease V is another mismatch recognition enzyme that can identify and cleave
heteroduplex DNA one base downstream from the mismatch position [11]. In 2004, a
high-sensitivity mutation scanning assay employed Endo V and ligase-based proofreading
in a single-step process. The real-time proofreading leads to a remarkable decrease in
background cleavage and boosts the sensitivity because DNA ligase preferentially fills in
background nicks in perfectly matched regions, but not near mismatched positions. Then,
internally labeled primers amplify the cleaved fragments with a 5′-terminus, thereby de-
tecting the mutations. The EndoV/ligase mutation scanning assay demonstrated a variable
sensitivity depending on mutation context, with typical LODs of 1–2% VAF for KRAS
and TP53 mutations, respectively. T4 endonuclease VII (endo VII) has also been used for
cleavage at mismatches [12].

The described mismatch recognition-based methods can efficiently detect a fraction
of all possible mutations. An alternate method, s-RT-MELT, uses CEL I (Surveyor™)
enzyme [36] that shows excellent selectivity and detects all point mutations down to
10−2 allele frequency [13]. At first, targets are amplified by region-specific primer pairs
containing a high melting domain (GC-clamp) at the 5′ end of the forward primer and an
M13 tail at 5′ end of the reverse primer. After cross-hybridization of WT/mutated PCR
amplicons and formation of mismatches at mutation positions, Surveyor™ is employed
to generate double strand breaks at mismatches. Following digestion, terminal deoxynu-
cleotidyl transferase (TdT) is used to add an oligonucleotide tail to 3′ OH ends created
by the digestion. Subsequently, real-time PCR at a reduced denaturation temperature
selectively amplifies only the mutation-containing fragments since undigested fragments
carry a GC-clamp that does not denature at a reduced temperature. Utilizing real-time PCR
coupled with melting curve analysis renders a closed tube approach for unknown mutation
screening in clinical samples. PCR amplicons containing mutation-positive strands could
be purified and sequenced using primers targeting the M13 tail. The multiplex single-tube
s-RT-MELT was used for parallel scanning of mutations in TP53 exons 5–9. The results
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demonstrated that the s-RT-MELT approach retains the sensitivity for enriching all types of
low-level unknown mutations in a multiplexed fashion and eliminates the requirement for
DNA-size-dependent methods such as gel electrophoresis and dHPLC. T7 Endonuclease
1 (T7E1) can also discriminate between homoduplex and heteroduplex dsDNAs. Although
it detects and cleaves deletion-induced heteroduplexes more efficiently in comparison with
single base-induced heteroduplexes. In the original description of the T7E1 method in 1995,
cross-hybridized PCR products underwent T7E1 digestion and then was assessed by gel
electrophoresis [14]. A comparative study demonstrated that T7E1 is advantageous for
detecting heteroduplexes containing small deletions, while Surveyor performs better in rec-
ognizing single nucleotide mismatches [37]. Overall, mismatch-detecting enzymes enable
facile enrichment of most or all unknown point mutations, independent of sequence con-
text, and are amenable to multiplexed approaches. However, the selectivity and efficiency
of these enzymes are inferior to RE-based mutation enrichment methods.

4. Oligonucleotide-Guided Enzymes

Over the last decade, several mutation enrichment and detection methods have been
developed in which synthetic oligonucleotides are used to guide mismatch-sensitive en-
zymes towards interrogated DNA targets [38]. A broad category of these methods belongs
to two endonuclease families, including CRISPR/Cas and Argonaute. The two methods
share similar workflows yet have a distinct difference. The enzymatic activity of Cas
endonucleases is dependent on the existence of a PAM site within the targeted sequence.
PAM is a specific, three-base nucleotide sequence motif located downstream of the region
identified by Cas [39]. In contrast, Argonaute (Ago) endonucleases do not require a specific
motif for activity, thereby bypassing a limitation [40].

The dependence of Cas enzyme activity on the presence of a PAM site for Cas en-
donucleases offers a way to identify mutations that alter PAM sites. CRISPR/Cas-based
techniques use guide RNAs (gRNAs) coupled with Cas to hybridize to targeted sequences.
If gRNA and target sequence form a PAM-containing fully matched hybrid for WT samples,
Cas can cleave the targeted double stranded DNA. Thus, similar to the prior discussed
RE-based enrichment methods, the ability of CRISPR/Cas system to accurately distin-
guish between a PAM-containing sequence and a mutant PAM could be employed for
enriching rare mutations. The Depletion of Abundant Sequences by Hybridization, DASH
(Figure 2), employs CRISPR-Cas9 complex coupled with gRNAs against PAM-containing
WT sequence to deplete them in next-generation sequencing libraries or PCR amplicon
pools. This process results in enhancing the yield of mutation sequencing to enable a
detection limit LOD ~0.1% variant allelic frequency in an affordable approach [15]. DASH
was able to increase the percentage of mutant allele KRAS G12D in PCR amplicons de-
rived from tumors from 0.1% to 6%. The KRAS G12D mutation alters the PAM sequence
such that Cas-gRNA complex cannot create a double-strand break effectively for mutated
sequences, thus allowing subsequent mutant amplification. The same approach has also
been applied during CRISPR-mediated Ultrasensitive detection of Target DNA-PCR (CUT-
PCR) with enhanced sensitivity and efficiency [16]. This method also selectively removes
high-abundance WT sequences using gRNAs specific to PAM-containing WT DNA. A
difference between DASH and CUT-PCR is that CUT-PCR can be applied directly on gDNA
prior to PCR, while DASH is mostly applied on PCR-amplified products. Furthermore,
in CUT-PCR—besides Cas9 endonuclease—a second enzyme Cpf1 with a different PAM
sequence is used. This dual cleavage strategy leads to encompassing nearly 80% of cancer-
related substitutions included in COSMIC database [16]. In another recent variation of
the same principle, isothermal recombinase polymerase amplification (RPA) was used
along with Cas9-mediated WT sequence cleavage [17]. This method, called Programmable
Enzyme-Assisted Selective Exponential Amplification (PASEA), can increase the variant
allele frequency of mutant alleles up to 800-fold. In the PASEA approach, WT and mutant
alleles are amplified concurrently via RPA, while Cas9-gRNA complex selectively degrades
WT strands, thereby enriching mutant alleles during isothermal amplification. PASEA
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shows an unprecedented mutation enrichment; however, its versatile application is limited
by the necessity of a PAM motif close to the targeted mutations. In an inverse approach,
instead of cleaving WT DNA, deactivated Cas9 enzymes are used to bind mutated DNA
via specific gRNAs [18]. In this approach, mutant-specific gRNAs guide a modified version
of Cas9 enzymes that can bind but not digest targeted mutations, which subsequently
become tagged with polyhistidine (His-tag). Subsequently, mutant strands are separated
by immunomagnetic beads. This method could concurrently enrich three hotspot EGFR
mutations in tumor samples from non-small cell lung cancer (NSCLC) patients up to 20-fold
and detect them by qPCR. Recently, CRISPR/Cas9 has been applied in combination with
electrochemiluminescence (ECL) technology to enable sensitive single-base-specific DNA
detection. For this purpose, gRNAs carrying a 30-nucleotide extension region are used to
attach the ECL probe tag and create a ‘light-switch’ molecule. The target sequence is ampli-
fied by biotin-tagged forward primers, then the gRNA-Cas9-probe complex hybridized
to mutant strands can be captured by Streptavidin-magnetic beads. The integration of
Cas9 with an electrochemiluminescence probe (Cas9-ECL probe) can distinguish EGFR
L858R mutant with a 0.01% VAF from the WT [19]. Since this method is adjustable with the
commercial ECL immunoassay analyzer, the endpoint detection process can be simplified
in most clinical settings.
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Figure 2. Depletion of Abundant Sequences by Hybridization (DASH) method removes excessive
wide-type (WT) DNA in PCR amplicons using guide RNA (gRNA) against PAM-containing WT
sequences, in conjunction with Cas9 enzyme. When a mutation alters the PAM sequence, the Cas9-
gRNA complex cannot create a double-strand break efficiently, thus the intact mutant strands are
amplified selectively and are detected via subsequent detection methods.

Cas9 endonuclease is not the only CRISPR effector enzyme used for mutation enrich-
ment. Two similar platforms, Specific High Sensitivity Enzymatic Reporter UnLOCKing
(SHERLOCK) and one-HOur Low-cost Multipurpose Highly Efficient System (HOLMES),
employ Cas13a and Cas12a endonucleases, respectively [20,21]. Both these techniques bene-
fit from a specific digestion pattern of Cas13a and Cas12a named “collateral effect” [41]. The
collateral effect enables them to cleave single-stranded guide RNA/DNA in a nuclease-like
pattern. By using single stranded probes labeled by quencher and fluorescent, a fluorescent
signal is generated via the collateral effect, upon forming a fully matched Cas/gRNA/target
complex. Recently, Cas12a mediated Surface Enhanced Raman Scattering (SERS) was com-
bined with lateral flow assay (LFA) to render a sensitive pre-PCR enrichment method based
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on CRISPR-Cas system [22]. Using CRISPR-Cas12a mediated SERS LFA, point mutations
as low as 0.01% can be identified. Although all CRISPR/Cas-based enrichments methods
require a mutation that is adjacent to a PAM site to operate, the utility of these meth-
ods could potentially be expanded by modifying their required PAM sequence through
genetic engineering.

In contrast to Cas endonucleases, the enzymatic activity of Ago family is not dependent
on the existence of a sequence motif. This feature makes Ago-based methods more versatile
for mutation detection. The PfAgo-mediated Nucleic acid Detection method (PAND) is the
first Ago-based process developed to detect mutant alleles and has an LOD ~0.1% VAF [23].
PAND employs Pyrococcus furiosus Argonaute (PfAgo) for a sequential two-stage cleavage
process. In the first round, the enzyme cleaves the hybridized three input-gDNAs such
that a new gDNA (ngDNA) is formed in which the mutant allele exists. The ngDNA is a
16-nucleotide single-stranded DNA (ssDNA) that triggers a second round of PfAgo activity
to cleave fully matched molecular beacons. The synthetic molecular beacon is fully matched
with mutant alleles and can be detected and cleaved by ngDNA-PfAgo complex. By this
means, mutations at a targeted sequence are detected by fluorescence emission. The A-Star
technique (Figure 2) also uses the thermostable PfAgo enzyme. However, in A-Star, gDNAs
are designed for attaching to WT strands [24]. A-Star leads to a strong decline in unwanted
WT amplicons during PCR, resulting in ~75-fold mutation enrichment. Another member
of Ago endonuclease family from Thermus thermophilus, TtAgo, has also been applied for
eliminating WT templates enabling a ~60-fold enrichment [25]. In this method, Nucleic
Acid enrichment Via DNA Guided Argonaute from Thermus thermophilus (NAVIGATER,
Figure 3), the enzymatic process and PCR are performed in successive steps to improve
sensitivity. The TtAgo enzyme is thermostable, and its activity is not significantly impaired
by high temperatures. The 15–16 nt gDNAs hybridize to both sense and antisense strands
of WT sequences at ~80 ◦C during a one-hour incubation. Mismatches in gDNA/target
hybrids formed due to mutations impede TtAgo activity. Noticeably, during NAVIGATER
there is no distinct denaturation step, and dsDNAs unwind partially during the high
temperature (~80 ◦C) and long incubation time applied. Another feature of NAVIGATER
is that it can also be performed in a pre-PCR setting, although this can lead to a reduced
mutation-enrichment efficiency.

Besides Cas and Ago endonucleases, additional oligonucleotide-guided enzymes
have also been applied for mutation enrichment. The apurinic/apyrimidinic-probe-based
endonuclease IV signal amplification system (APESA) uses endo IV enzyme and apurinic/
apyrimidinic probes (AP-probe) to detect point mutations [26]. The sequence of the AP-
probes matches mutation-containing sequences and is dually labeled by the quencher
and fluorophore. Since endo IV recognizes AP sites within double stranded DNA, it
cleaves the hybridized probes at optimum Tm. Consequently, the fluorophore fragment is
separated from the quencher, resulting in fluorescence signals. A remarkable point is that
the mutant template will remain intact so that it can hybridize with another AP-probe and
intensify the signals. In 2022, using endo IV and asymmetric PCR, mutant alleles with VAF
~0.01% could be enriched and detected through the endonuclease IV-mediated substrate
structure allosteric (IVME) method [27]. This assay benefits from the property of endo IV to
preferentially hydrolyze AP sites that have a fully matched nucleotide at -1 position, when
the AP site’s position is set as 0, in truncated dsDNAs. IVME employs mutant-specific
probes containing an AP site next to the mutant nucleotide. The probes have a flap structure
at the 3′ terminals to prevent an asymmetric PCR reaction. The probe-mutant hybrids are
preferred substrates of Endo IV in comparison with probe-WT hybrids in which there is
a mismatch downstream of the AP site. Endo IV also generates a 3′-OH terminus at the
single-stranded cleavage site which is used by DNA polymerase. Upon cleaving the AP site
of probe-mutant hybrids, the emerging 3′-OH is extended by DNA polymerase. Finally, the
dsDNAs formed from the previous step undergo asymmetric PCR that provides ssDNAs
compatible with different detection methodologies. IVME was used to enrich EGFR T790M
mutation in cfDNA of lung cancer patients, followed by Sanger sequencing.
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Figure 3. A-Star and NAVIGATER methods enable enzymatic mutation detection that does not
require the presence of a specific motif site near the mutation site. The A-Star method uses a
thermostable PfAgo enzyme, that makes a complex with guide DNA (gDNA) that matches WT
strand sequence. PfAgo-coupled PCR reactions are performed to cleave WT strands repeatedly
during PCR cycling and subsequently increase mutant strands exponentially. In the Nucleic Acid
enrichment VIa DNA-Guided Argonaute enzyme (NAVIGATER) method, from Thermus thermophilus,
WT alleles are detected and cleaved using TtAgo and a gDNA to bind complementary WT strands.
Following an initial pre-amplification step, the amplicons unwind during incubation at ~80 ◦C and
provide the chance for TtAgo/guide complexes to attach to WT alleles. TtAgo detects fully matched
WT/gDNA hybrids while sparing mismatches caused by mutations. A subsequent PCR reaction
amplifies mutated alleles preferentially, and these are detected via subsequent detection methods.

Thermostable duplex-specific nuclease (DSN) is also employed to develop a multiplex
enrichment method that is directly applied to genomic DNA, Figure 4 [28]. Nuclease-
Assisted Minor-Allele enrichment using Probe Overlap (NaME-PrO) utilizes DSN to cleave
fully matched double stranded DNA, with almost no sequence dependence, while sparing
mismatched DNA. Overlapping oligonucleotide probes are designed such that fully bind
both sense and antisense WT sequences at the interrogated position. NaME-PrO is applied
directly to genomic DNA, prior to PCR, and provides multi-targeted enrichment that could
be followed by various types of endpoint detection methods. NaME-PrO can be applied
both on intact DNA or, or on DNA obtained from liquid biopsies or FFPE tissues, since
the degree of fragmentation [42] does not significantly affect the result [43]. Additionally,
the NaME-PrO process was also adapted for identification of microsatellite instability
(MSI). MSI-NaME-PrO could trace MSI in a pre-PCR setting by removing unaltered micro-
satellites [44]. Another modification named methylation-specific NaME-PrO (MS-NaME)
has been developed for detecting aberrant methylation signatures [45]. Following sodium
bisulfite treatment, depending on whether methylated or unmethylated sequences are
desired for enrichment, either U-probes targeting uracil-containing sequences or M-probes
targeting 5mC-containing DNA are used to guide DSN. The former results in degrading
unmethylated DNA and the latter is used for digesting methylated DNA. NaME-PrO,
MS-NaME-PrO, and MSI-NaME-PrO have been implemented in multiplexed formats for
simultaneous enrichment of 55, 177, and several thousand targets, respectively [44–46].
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Figure 4. Nuclease-assisted minor-allele enrichment using probe-overlap (NaME-PrO) is applied
directly to unamplified genomic DNA, thus reducing the influence of polymerase misincorporations.
Using duplex-specific nuclease (DSN) along with overlapping WT-specific probes results in digesting
WT alleles preferentially. Following DNA denaturation, the temperature is lowered up to 65 ◦C,
allowing the probe hybridization and catalytic activity of DSN. Hybrids with mismatches due to
any mutation within the overlap region of sense and antisense probes escape DSN digestion. The
resulting DNA is PCR-amplified, resulting in mutation enriched products.

Collectively, mutation enrichment methods based on oligonucleotide-guided enzymes
pose robust and versatile platforms in which some drawbacks of traditional techniques
are circumvented, such as limited types of mutations identified, futile binding events, or
off-target cleavages. Moreover, a noticeable feature is their potential for running a multiplex
enrichment process.

5. Applications in Liquid Biopsy

The importance of detecting low-level mutations in clinical fluids such as circulating
tumor cells (CTC) or circulating-free DNA (cfDNA) has been demonstrated repeatedly in
recent years. In early work, using BEAM-ing, Misale et al. [47] demonstrated that KRAS
resistance-mutations at abundance levels of ~0.1% VAF appear early-on in circulating DNA,
thus potentially enabling timely identification of patients that do not respond to targeted
therapy. Using COLD-PCR-based mutation enrichment [48–51], it was demonstrated that
NRAS mutations are an independent prognostic factor for myelodysplastic syndrome
at allelic frequencies ≥ 0.5% [52]. Overall, liquid biopsies have made significant strides
in cancer medicine over the last few years, with applications spanning early detection
of minimal residual disease, MRD [53–57], early cancer detection [58–62], assessment
of therapy effectiveness [63,64] and drug-resistance [65], as well as monitoring tumor-
dynamics [66]. The time course of tumor-circulating DNA in plasma following initiation
of therapy [67] can be prognostic [68], and often an initial ctDNA rise is followed by
a ctDNA decrease [69]. The ctDNA time-course was originally demonstrated during
uniform, external beam radiation therapy [70], while the ctDNA dynamics present in tumor
brachytherapy and other types of radiation exposure that deliver highly non-uniform
radiation-induced, lethal DNA damage [71,72] to nearby cells [73–76] remain to be explored.

Despite these advances, working with circulating tumor cells (CTCs) and circulating
free DNA (cfDNA) still presents technical challenges. For example, profiling somatic mu-
tations in circulating DNA has been difficult because of their extremely low frequency in
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the presence of high excess WT alleles. To this end, the availability of sensitive mutation
enrichment and detection technologies is important for realizing the clinical utility of liquid
biopsies [77]. NGS-based approaches for accurate enumeration of mutations as low as
0.01–0.001% have been reported [51,74–76], but NGS still requires advanced instrumenta-
tion, resources, and time. When a limited number of somatic mutations is interrogated,
genotyping approaches—including enzymatic enrichment methods—provide a practical
solution more appropriate for low-resource or non-specialized clinical settings.

Indeed, several of the recently developed enzymatic methods have been applied for
liquid biopsy applications. NaME-PrO-based enrichment has been applied for enriching
PIK3CA hotspot mutations in cfDNA samples from breast cancer (BC) patients [78]. The
NAVIGATER method has also been used for enriching and detecting KRAS G12D/V/R mu-
tations in cfDNA from patients with pancreatic cancer [25]. The results demonstrated that
NAVIGATER has a selectivity of <0.2% VAF for cfDNA analysis. Recently, a CRISPR/Cas9-
based mutant enrichment technique revealed a 93.9% sensitivity and 100% specificity in
detecting EGFR T790M mutation in cfDNA from patients with NSCLC [79]. In colorec-
tal cancer patients, CUT-PCR method could enrich five informative KRAS mutations in
cfDNA (c.34G4T, c.35G4T, c.35G4C, c.34G4C, and c.35G4A) by a common gDNA at the
same time. The results indicated that the mutant frequency increases up to 600-fold [16]. In
2022, CRISPR system combined with post-PCR cfDNA (CRISPR-CPPC), using biotinylated
gRNA and Cas9 enzyme, could enrich EGFR exon19 deletion up to 1000-fold in cfDNA
samples from NSCLC patients [79]. This method comprises the pre-PCR step, post-PCR
step coupled CRISPR/Cas9 activity, and magnetic-based enrichment. The endpoint detec-
tion method in this study was ddPCR, although the authors pointed out that CRISPR-CPPC
could be followed by a variety of detection platforms.

The amount of starting DNA for application of each method can vary depending on
whether there is an initial pre-amplification step or not. Methods that start with PCR can
operate with just sub-nanogram amounts of starting material while methods starting with
enzymatic digestion require more DNA, typically a minimum of 1–10 ng. On the other
hand, pre-amplification increases the risk for PCR-introduced errors [80], especially for
those enzymatic approaches that enable mutation scanning (Figure 1). Liquid biopsies that
contain small amounts of starting DNA require several PCR cycles for amplification and can
be particularly susceptible to PCR errors. Strategies to overcome polymerase introduced
errors have been developed, based on a principle described by Kaur and Makrigiorgos in
2003 [80,81]. While polymerase errors may occur only on a single-sense or anti-sense DNA
strand, genuine mutations are present on both DNA strands on single DNA molecules.
Accordingly, it is possible to distinguish polymerase-introduced errors from genuine muta-
tions if one tracks nucleotide changes on both sense and anti-sense strands in individual
DNA molecules [80,81]. This principle was subsequently incorporated in duplex sequenc-
ing during NGS that utilizes unique molecular identifiers (duplex-UMI) to track mutations
on both DNA strands of single duplexes [82]. While NGS-based approaches can reduce the
effect of PCR errors by using duplex-UMIs, non-NGS applications including the enzymatic
mutation detection methods are still susceptible to PCR errors when a genotypic selection
step is applied after or during PCR amplification. Standard precautions to minimize er-
rors include the use of proof-reading polymerases and inclusion of experimental replicas
to distinguish reproducibly detectable mutations from randomly occurring DNA errors.
Algorithms to minimize the effect of PCR errors have been developed for digital PCR [83].

6. Conclusions

Enzymatic-based mutation enrichment methods have evolved through the years from
the traditional approaches using restriction endonucleases that detect a minority of muta-
tions to newer methods using a variety of different enzymes that can detect all mutations
on multiple targets simultaneously. In recent years, employing endonucleases with broader
catalytic capabilities has rendered sensitive, multiplex, and affordable enrichment pro-
cesses. When it comes to liquid biopsy, enzymatic mutation detection provides a practical
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approach in view of its simplicity and availability in most clinical laboratories. Overall,
recent advances in enzymatic approaches for mutation detection promise a broad applica-
tion for detecting clinically relevant mutations, with applications in several fields including
cancer management.
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