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Abstract: Mutual synergistic folding (MSF) proteins belong to a recently emerged subclass of dis-
ordered proteins, which are disordered in their monomeric forms but become ordered in their
oligomeric forms. They can be identified by experimental methods following their unfolding, which
happens in a single-step cooperative process, without the presence of stable monomeric intermediates.
Only a limited number of experimentally validated MSF proteins are accessible. The amino acid
composition of MSF proteins shows high similarity to globular ordered proteins, rather than to
disordered ones. However, they have some special structural features, which makes it possible to
distinguish them from globular proteins. Even in the possession of their oligomeric three-dimensional
structure, classification can only be performed based on unfolding experiments, which are frequently
absent. In this work, we demonstrate a simple protocol using molecular dynamics simulations, which
is able to indicate that a protein structure belongs to the MSF subclass. The presumption of the known
atomic resolution quaternary structure is an obvious limitation of the method, and because of its high
computational time requirements, it is not suitable for screening large databases; still, it is a valuable
in silico tool for identification of MSF proteins.

Keywords: mutual synergistic folding; disordered proteins; oligomeric proteins; molecular dynamics
simulations; cooperative two-state unfolding

1. Introduction

Mutual synergistic folding (MSF) proteins belong to a recently emerged subclass of
disordered proteins, which are ordered in their oligomeric state, but disordered in their
monomeric state [1,2]. For ordering the structure of a traditional disordered protein, a
template with an already stable, ordered structure is needed. In the case of MSF proteins,
folding happens cooperatively with the association of the disordered subunits. The struc-
tural organization of these proteins is highly dynamic, depending on their oligomeric
state, probably resulting from their local concentrations. There have been several break-
throughs in the history of protein structure research, starting with the atomic resolution
structure determination of globular proteins [3], through the discovery of transmembrane
protein structures [4], and the “coupled folding and binding” mechanisms of disordered
proteins [5,6]. With the discovery of these new protein classes, the original concept was
also broken, and the knowledge of a protein’s three-dimensional structure provides us with
relevant information. In the case of transmembrane proteins, information about the position
of the membrane is not included in the structures, thus novel methods were needed for
their localization [7]. For disordered proteins, the structure of a single ordered–disordered
complex does not tell us anything about the probably different structures of other possible
complexes, which can be formed with different interaction partners [5]. These newly discov-
ered protein classes had one property in common, their amino acid composition showed a
significant difference from the previously known ones. The recognition of MSF proteins as
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a novel protein subclass did not bring such a breakthrough; furthermore, their amino acid
composition does not differ substantially from that of globular proteins [8–11]. It is still un-
clear why MSF proteins evolved in such a manner. What kind of advantage can be resulting
from the unfolding of the whole protein upon losing its native oligomeric structure? There
is an ongoing research project unraveling the role of this potential concentration-dependent
regulation mechanism and an investigation of the structural organization of MSF proteins.

There is only a single published collection of experimentally validated MSF proteins
available, the Mutual Folding Induced by Binding (MFIB) database [2]. This database
contains 205 proteins in several different oligomeric assemblies, homodimers being the
most populated assembly class containing 98 protein entries. Among these 98 entries,
31 structures belong to the coils and zyppers structural class, which have special structural
features, and thus should not be handled together with traditional globular proteins.
Although the small size of the database made it difficult to understand the structural
features behind this phenomenon, we recently managed to identify some special structural
features on the largest homo- and hetero-dimeric subsets of the MFIB database [8–10].
We are currently working on the development of a structure-based prediction method,
which could be used to increase the number of identified MSF proteins. Since experimental
validation is needed for a reliable classification of MSF proteins during the construction
of the MFIB database, a large number of research papers had to be processed to filter out
reliable experimental evidence. Chances are high that there are a lot more oligomeric MSF
protein structures present in the Protein Data Bank (PDB) database, which could not be
classified as MSF proteins because of the lack of unfolding experiments. Since a larger
database of MSF proteins would facilitate the ongoing research projects, the need for a
tool has emerged, which could be used in the absence of unfolding experimental results
to support the MSF classification. In this work, we propose a simple protocol based on
molecular dynamics (MD) simulations, performed on the experimental oligomeric and
hypothetical monomeric structures of proteins.

2. Results

Molecular dynamics simulations are known to reproduce well the thermal unfolding
of proteins [12]. The basic idea was to compare the behavior of the hypothetical monomeric
and experimental dimeric structures of MSF and globular proteins using all-atom NPT MD
simulations. Since many MFIB entries are human proteins, simulations were performed at
310 K. This facilitates slightly larger thermal fluctuations compared to a 300 K simulation
and prevents undesired thermal denaturation at the same time.

Since we planned the investigation of several proteins, we had to find the optimal
simulation strategy, which provides simulation trajectories close to a quasi-equilibrium state
but is computationally efficient at the same time. During the initial phase of the protocol
development, we experimented with different (250, 500, 1000, and 4 × 250 ns) simulation
times and compared the results obtained on a single globular and MSF test protein. We
found that a single 1000 ns simulation provided the most converged backbone root-mean-
square deviation (RMSD) plots and the highest average RMSD values among all simulations.
Only backbone atoms were taken into account during the RMSD calculations, and the
structure obtained after the initial default relaxation protocol was used as a reference. See
Figure 1 for example backbone RMSD plots obtained for a globular, a validated MSF, and
an expected MSF protein.
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Figure 1. Example backbone RMSD plots obtained from the monomeric (red curve) and dimeric 

(blue curve) MD simulation of the (A) 4low globular protein; (B) 4cn0 expected MSF protein; and 

(C) 4me7 MSF protein. 

Figure 1. Example backbone RMSD plots obtained from the monomeric (red curve) and dimeric
(blue curve) MD simulation of the (A) 4low globular protein; (B) 4cn0 expected MSF protein; and
(C) 4me7 MSF protein.
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The size of the fully prepared systems was in the range of 10–28 k atoms. The longest
simulations run almost 3 days long on our Nvidia Quadro P6000 GPU card, with a typ-
ical GPU runtime of about 4 days per protein including both dimeric and monomeric
simulations. For the last couple of simulations, GPU time on an Nvidia RTX A4500 card
was also used to perform the MD simulations. Even with the doubled hardware resource,
performing longer simulations was not realistic in a reasonable time.

In this work, we investigate only homodimers as a model system to understand the
structural background of MSF proteins. These are the simplest oligomeric structures built
up from two identical protein chains. Higher oligomeric forms, such as tetra or hexamers,
could exist in several oligomeric forms (as dimers for example), which would complicate
the problem. Since the mostly populated MFIB assembly class is the homodimeric one, this
approach seems to be adequate. We used homodimeric structures from the MFIB database,
and entries from our reference globular homodimeric (GHOD) dataset presented in our
previous publication [10]. The usage of homodimers also simplified the simulation protocol,
because only one monomeric simulation had to be performed. Already on heterodimeric
structures, additional monomeric simulations of the second proteins chain should have
been performed. Because of the high computational time required for a 1000 ns simulation,
screening of the complete MFIB and GHOD datasets using our own hardware resources
was not realistic; thus, we selected six MSF and six globular proteins. We expect that there
are several MSF proteins in our globular GHOD dataset, which were not identified as MSF
proteins because of lacking experimental evidence. During the selection of the globular
proteins, we were applying a dual strategy. On the one hand, we tried to avoid the selection
of possible MSF proteins as real globular references. On the other hand, we were looking
for suspicious proteins expected to belong to the MSF subclass, as an internal test set. Real
globular proteins were selected among GHOD entries with low buried/accessible peptide
bond ratios and low Shannon information entropy values, which were found typical for
globular proteins in our previous publication [10]. We also selected six suspicious proteins
from the GHOD dataset with high buried/accessible peptide bond ratios and high Shannon
information entropy values, which were found to be characteristic of MSF proteins. The
simulation of these 18 proteins took more than 2 months of GPU time.

We performed 1000 ns all-atom NPT MD simulations at 310 K temperature on both
the dimeric and a hypothetical monomeric structures using the Desmond [13] program of
the Schrödinger 2022-3 [14] software package, with the Optimized Potentials for Liquid
Simulations (OPLS) forcefield [15]. We were analyzing the last 50 ns of the simulations
by calculating average backbone RMSD values using the initially relaxed structure as a
reference. The results are listed in Table 1. We have found that the RMSD values obtained
from the monomeric simulations were higher in every case. In the case of the real globular
homodimers, the ratio of the monomeric/dimeric average RMSD values was in the range
of 1.20–1.62. For the validated MSF and expected MSF proteins, the ratio was in the
range of 2.24–5.33 and 2.26–4.59, respectively. This behavior was expected because MSF
proteins should not be stable in their theoretical monomeric state. Unfolding may not
happen during 1000 ns simulations, but the significantly higher RMSD values support our
hypothesis. Among the globular proteins, the highest average RMSD values were obtained
for a putative XRE family transcriptional regulator protein (PDB code: 2ofy). Despite the
large absolute values, the monomeric/dimeric RMSD ratio was only 1.36, which seems to
be a typical value for globular proteins. For every validated or expected MSF protein, the
ratio was at least 2.24. Among the MSF proteins, the lowest monomeric RMSD value was
observed for the E. coli Met repressor (PDB code: 1cmb) protein. This relatively low RMSD
value was accompanied by the lowest dimeric RMSD value in this group, resulting in a high
ratio of 2.51. From these observations, we concluded that, independent from the absolute
RMSD values, high ratios of the monomeric/dimeric RMSD values are characteristic of
MSF protein structures. Because ratios obtained for globular and MSF proteins are well
separated, a threshold value close to the lowest observed ratio for experimentally validated
MSF proteins can be used to identify MSF proteins. Based on the simulation already
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performed, we suggest a threshold value of 2.2 for the differentiation between MSF and
globular proteins. This threshold can be fine-tuned by future simulations on MSF and
globular proteins.

Table 1. Average RMSD values obtained from the monomeric and dimeric MD simulations.

PDB Code Structure Class Monomeric RMSD [Å] Dimeric RMSD [Å] Ratio

1m2d globular 3.59 3.00 1.20

1oqj globular 5.06 4.23 1.20

2ofy globular 5.94 4.37 1.36

3n4w globular 1.85 1.43 1.29

4low globular 4.47 3.12 1.43

4rd7 globular 4.48 2.76 1.62

1gyx globular * 7.15 3.17 2.26

2ge7 globular * 12.13 2.64 4.59

3n8b globular * 10.49 2.39 4.39

4aeq globular * 8.64 3.10 2.79

4cn0 globular * 8.50 2.13 3.99

5fs4 globular * 8.41 3.57 2.36

1cmb MSF 5.18 2.06 2.51

2ay0 MSF 7.14 2.58 2.77

2cpg MSF 6.63 2.91 2.28

3wpd MSF 11.77 2.21 5.33

4ec7 MSF 5.70 2.54 2.24

4me7 MSF 10.13 2.63 3.85
* Expected MSF.

A structured-based prediction method is currently in development to identify MSF
proteins based on their atomic resolution quaternary structure. The method will include
the identification of buried/accessible residues using three-dimensional structures and
Shannon information entropies calculated from amino acid sequences. The presented
protocol is indispensable for the optimization of the parameters in our prediction method.
This protocol is the only tool for validation of the initial predictions in the absence of
experimental unfolding experiments.

3. Discussion

Molecular dynamics simulation is a powerful tool for investigating protein unfold-
ing. The following example demonstrates well the effectiveness of MD simulations. We
uncovered an entry in our GHOD database (PDB code 1wv9), which was erroneously
classified as a globular homodimer. We obtained 1.70 Å and 1.69 Å RMSD values for the
monomeric, and dimeric simulations, respectively. We checked the simulation trajectory,
which showed that the two protein chains were separated during the simulation. We
checked the PDBePISA [16] quaternary structure prediction of this entry, and it proved to
be a monomeric structure with two protein chains in the asymmetric crystallographic unit.

Both validated and predicted MSF proteins show significantly larger fluctuations
in their monomeric form, resulting in higher monomeric/dimeric average RMSD ratios.
We are confident that proteins with a monomeric/dimeric RMSD ratio over 2.2 can be
considered MSF proteins. This protocol can be applied to expected MSF proteins, iden-
tified by our development structure-based prediction method. The experiment-based
MFIB database can be expanded by the MD simulation validated predictions, resulting
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in a significantly larger dataset. This new larger dataset is planned to be used for the
development of a sequence-based MSF prediction method. In our recent work [10], we
already showed that Shannon information entropy values calculated from the amino acid
sequences are useful measures for the differentiation of MSF and globular proteins. The
increased database size could provide an improved sequence-based prediction method
in terms of statistical significance. With the recent development of the highly accurate
AlphaFold-Multimer [17] oligomeric protein structure prediction method, we will even
have the possibility to model the structure of proteins identified by the sequence-based
prediction method. The current protocol can be possibly improved for use on Alphafold-
Multimer provided model structures, possibly requiring a stable simulation trajectory and
adequately low average RMSD values obtained from MD simulation performed on the
supposedly stable oligomeric structures.

4. Materials and Methods

MSF protein structures were downloaded from the MFIB [2] database, using the
modified structures where available. Globular protein structures were downloaded from
the PDB database [18]. The structures were prepared for MD simulations using the Protein
Preparation module [19] of the Schrödinger software package [14] using default options
with the addition of the fill-in missing side-chains + loops, and cap termini extra options.
Ligands were deleted from the prepared structures. After the hydrogen bond optimization
step, a hydrogen-only minimization and a subsequent all-atom minimization step was
performed using 0.7 Å RMSD termination criteria. The default 0.3 Å value resulted in an
unstable monomeric simulation already at the beginning of the default relaxation protocol.
The resulting dimeric structures were saved for the MD simulations. A hypothetical
monomeric structure was created by deleting the second protein chain from the already
prepared dimeric structures.

The Desmond [13] program was used for the all-atom NPT MD simulations performed
at 310 K temperature and 1.01325 bar pressure using the default parameters (2 fs time
step, 9 Å Coulombic cutoff, Nose-Hoover chain thermostat [20], and Martyna-Tobias-
Klein isotropic barostat [21]), with the OPLS4 forcefield [15]. During NPT simulations,
the number of atoms (N), the pressure (P), and the temperature (T) of the system are
kept constant (isothermal–isobaric ensemble). The systems were set using the System
Builder module of the Schrödinger Suite 2022-3 [14] software package. The simple point
charge (SPC) [22] solvent model was used for setting up the simulation systems. In the
case of the dimeric structures, a distance of 10 Å was used to set up a triclinic periodic
boundary box. In the case of the monomeric structures, because of the higher expected
fluctuations, a moderately increased distance of 12 Å was used to minimize artificial
contacts between protein chains in neighboring simulation boxes. Since the number of
atoms, and consequently the simulation time depends heavily on this distance, no larger
distances were allowed. Finally, the systems were neutralized by the addition of the
appropriate number of sodium or chloride ions.

After applying the default relaxation protocol 1000 ns, NPT MD simulations were
performed at 310 K temperature, and during the simulations, 1000 frames were saved. After
the simulations, the backbone RMSD vs. time plots were visually checked if the simulation
produced a convergent trajectory. For the analysis, the last 50 frames were used to calculate
an average backbone RMSD value with the run analyse_simulation.py program provided
by the Schrödinger 2022-3 software package [14], using the structure obtained after the
initial default relaxation protocol as reference (frame 0).

For the selection of the real globular and expected MSF proteins, we used the method-
ology described in our previous publication [10]. The buried/accessible peptide bond
ratios were calculated using relative solvent accessible surface values calculated by the
FreeSASA 2.03 [23] program. The Shannon information entropy values [24] were calcu-
lated using our own programs using BioPython [25], utilizing the ELKH Cloud hardware
infrastructure [26].
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5. Conclusions

The presented protocol can be used to validate the MSF classification of oligomeric
proteins in possession of their atomic resolution quaternary structures. The protocol can
be used to remove the hindrance originating from the limited size of the MFIB database
containing only experimentally validated MSF proteins. Unfortunately, the protocol is not
appropriate to screen the whole PDB database using commodity hardware resources, but it
can be used to validate proteins identified by a structure-based MSF prediction method.
Hereby, the size of the MSF database can be increased significantly, which will serve as
a good basis for future work on the characterization and sequence-based prediction of
MSF proteins.
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