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Abstract: α-Farnesene, an acyclic volatile sesquiterpene, plays important roles in aircraft fuel, food
flavoring, agriculture, pharmaceutical and chemical industries. Here, by re-creating the NADPH and
ATP biosynthetic pathways in Pichia pastoris, we increased the production of α-farnesene. First, the
native oxiPPP was recreated by overexpressing its essential enzymes or by inactivating glucose-6-
phosphate isomerase (PGI). This revealed that the combined over-expression of ZWF1 and SOL3
increases α-farnesene production by improving NADPH supply, whereas inactivating PGI did not
do so because it caused a reduction in cell growth. The next step was to introduce heterologous
cPOS5 at various expression levels into P. pastoris. It was discovered that a low intensity expression
of cPOS5 aided in the production of α-farnesene. Finally, ATP was increased by the overexpression of
APRT and inactivation of GPD1. The resultant strain P. pastoris X33-38 produced 3.09 ± 0.37 g/L of
α-farnesene in shake flask fermentation, which was 41.7% higher than that of the parent strain. These
findings open a new avenue for the development of an industrial-strength α-farnesene producer by
rationally modifying the NADPH and ATP regeneration pathways in P. pastoris.

Keywords: α-farnesene; Pichia pastoris; cofactor engineering; pentose phosphate pathway; NADH kinase

1. Introduction

α-Farnesene, one of the simplest sesquiterpenes, has an enormous application in
nature and industry. For example, α-farnesene works as a chemical signaling molecule to
signal danger and to implicate the orientation of aphids and termites in nature [1]. Addi-
tionally, α-farnesene serves as an intermediate in the industry’s production of high-value
products such as squalane, biofuel, vitamin E and vitamin K1 [2–4]. The use of α-farnesene
in agriculture, chemicals, bioenergy, medicine and cosmetics is therefore significant eco-
nomically [1,3]. Plant extraction is the main way to make α-farnesene since it is widely
present in plants, such as apples and Artemisia annua [1,4,5]. However, the drawbacks
of plant extraction, such as poor yield, high production costs, the scarcity of feedstock
and the severe environmental damage, restrict their industry use [3,5,6]. Researchers fo-
cus on using microbial fermentation to produce α-farnesene as a result, and numerous
efficient methods have been used to modify microorganisms to enhance the biosynthesis
of α-farnesene, such as enhancing the α-farnesene biosynthesis pathway, blocking the
downstream α-farnesene biosynthesis pathway, rewriting the central carbon metabolism,
compartmentalizing the supply ways of precursors, relieving the inhibition of cell growth
and optimizing the metabolic process [3,4,7–9]. In the previous study, we constructed
an α-farnesene high-producing strain, Pichia pastoris X33-30, by the dual regulation of
cytoplasm and peroxisomes [3]. PCAT1 promoters were replaced with PGAP promoters in
X33-30 to obtain the strain X33-30*, which produced 2.17 ± 0.15 g/L of α-farnesene in
shake flasks. The strain P. pastoris X33-30* enhanced the supply of isopentenyl pyrophos-
phate (IPP) and dimethylallyl pyrophosphate (DMAPP). Despite the fact that there are
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two pathways for producing IPP and DMAPP, the mevalonate (MVA) pathway and the
methylerythritol-4-phosphate (MEP) pathway [5], no fewer than six molecules of ATP
and NADPH are required to produce one molecule of α-farnesene (Figure 1). The overall
stoichiometry of α-farnesene biosynthesis via the MVA pathway is: 9 acetyl-CoA + 9 ATP +
3 H2O + 6 NADPH + 6 H+ → 1 α-farnesene + 9 CoA + 6 NADP+ + 9 ADP + 3 Pi + 3 PPi
+ 3 CO2 [10]. With the exception of the precursor acetyl-CoA, the α-farnesene synthesis
equation shows that the cofactors ATP and NADPH are also crucial. However, relatively
little research has focused on the role of ATP and NADPH in the synthesis of α-farnesene.
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Figure 1. The schematic diagram of α-farnesene biosynthetic pathways with NADPH and ATP
regeneration pathway in Pichia pastoris. The pathways of NADPH biosynthesis are shown in blue
lines, and the pathways of NADPH catabolism are shown in red lines. The pathways of ATP
biosynthesis are shown in green lines, and the pathways of ATP catabolism are shown in pink lines.
The key genes are listed in ellipses. Abbreviations: HMG-CoA, hydroxymethylglutaroyl coenzyme A;
IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate;
FPP, farnesyl pyrophosphate.

NADPH acts as a cofactor for catalyzing the formation of mevalonate from 3-hydroxy-
3-methyl glutaryl coenzyme A (i.e., HMG-CoA) (Figure 1). Moreover, the extra demand
for NADPH has been discussed as being responsible for the heterologous protein produc-
tion. Researchers have found that the amount of NADPH available is closely linked to
the amount of biomass and heterologous proteins [11,12]. In addition, NADPH is also
used to protect cells against endoplasmic reticulum (ER) stress and oxidative stress [11,13].
It should be noted that the MVA pathway is the major pathway for producing IPP and
DMAPP in P. pastoris [3], and thus six molecules of NADPH and nine molecules of ATP are
needed to produce one molecule of α-farnesene. On the other hand, yeast and bacteria use
NADH more than NADPH as a reduced cofactor of catabolism [4]. Thus, increasing the
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intracellular NADPH level or eliminating NADPH consumption is a common strategy to
facilitate NADPH-dependent products, including terpenoid [14,15]. For example, Liu et al.
compared the effects of six native enzymes involved in NAPDH regeneration in Yarrowia
lipolytica and found that mannitol dehydrogenase benefits the increase in squalene pro-
duction [16]. In addition, the introduction of a synthetic version of the Entner–Doudoroff
pathway from Zymomonas mobilis into E. coli MG1655 has been shown to be able to increase
the NADPH regeneration rate 25-fold and thus increase terpenoid production [17]. In
P. pastoris, there are two inherent routes for NADPH generation, i.e., the oxidative branch
of the pentose phosphate pathway (oxiPPP) and the acetate biosynthetic pathway [9,11,18].
However, the key enzymes in oxiPPP were negatively controlled by NADPH and ATP
at the transcriptional and/or the translational level [11,19]. Although the heterogeneous
expression of NADH kinase (i.e., POS5, catalyzed NADH to form NADPH) would increase
the NADPH regeneration in P. pastoris [11], NADH plays a pivotal role in ATP regener-
ation [18,20]. Except as the energy currency in cells, ATP is a key factor in α-farnesene
biosynthesis (Figure 1) [21]. Therefore, ATP availability is extremely important for cell
growth and α-farnesene biosynthesis and adequate supplies of NADH are needed for the
cell because ATP is mainly produced by NADH oxidation via electron transport phos-
phorylation (ETP) under aerobic conditions [22]. How to efficiently supply NADPH and
ATP has already become an important research direction in developing an α-farnesene
high-producing strain.

In this work, the biosynthetic pathways of NADPH and ATP were rationally recon-
structed in a strain of P. pastoris that produces a lot of α-farnesene, called P. pastoris X33-30*.
This reconstructed the metabolic pathways of carbon in P. pastoris X33 to produce more
α-farnesene. To do this, the native oxiPPP was first rebuilt in the strain X33-30* by over-
expressing the key enzymes in oxiPPP or by turning off the glucose-6-phosphate isomerase
in glycolysis. Subsequently, the heterologous POS5 from S. cerevisiae was introduced
into P. pastoris and controlled by different intensities of promoters to further optimize the
NADPH supply. Finally, increasing ATP availability was attempted by increasing the
supply of adenosine monophosphate (AMP) for ATP synthesis and decreasing NADH con-
sumption in the shunt pathway. As a result, the resultant strain P. pastoris X33-38 produced
3.09 ± 0.37 g/L of α-farnesene after 72 h in shake flask fermentation. These findings show
that increasing the availability of NADPH and ATP in P. pastoris increases α-farnesene
production and offers a new way to build an industrial-strength α-farnesene producer by
rationally modifying the NADPH and ATP regeneration pathway in P. pastoris.

2. Results and Discussion
2.1. Combined Over-Expression of ZWF1 and SOL3 Improves the NADPH Supply and Thus
Increases α-Farnesene Production in P. pastoris X33-30*

The oxiPPP is the main inherent route for NADPH generation in P. pastoris, which
is catalyzed by glucose-6-phosphate dehydrogenase (ZWF1), 6-gluconolactonase (SOL3),
6-phosphogluconate dehydrogenase (GND2), and D-ribulose-5-phosphate 3-epimerase
(RPE1) [11,18]. The key enzymes in oxiPPP were optimized to overexpress in a α-farnesene
high-producing strain, P. pastoris X33-30*, to increase NADPH availability for α-farnesene.
Firstly, we overexpressed the single genes zwf1 (encoding ZWF1), sol3 (encoding SOL3),
gnd2 (encoding GND2) and rpe1 (encoding RPE1) in strain X33-30*, which resulted in
strains X33-30*Z, X33-30*S, X33-30*G and X33-30*R, respectively. Compared to strain X33-
30*, strains X33-30*Z and X33-30*S had higher NADPH concentrations, whereas strains
X33-30*G and X33-30*R had no discernible difference in NADPH concentrations at 24 and
72 h (Figure 2a). Similarly, strains X33-30*Z and X33-30*S increased α-farnesene production by
about 8.7% and 12.9%, respectively, when compared to strain X33-30* at 72 h (Figure 2b).The
similar results were also found in previous studies, in which the overexpression of ZWF1
or SOL3 increased the foreign protein production in P. pastoris [23–25] and the terpenoid
production in S. cerevisiae [26,27] due to the increased intracellular NADPH level. ZWF1 and
SOL3 catalyzed the first and the second steps of the oxiPPP and were inhibited by NADPH
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and ATP [11,23], which catalyzed the rate-limiting steps in oxiPPP [24]. In addition, the
native expression level of sol3 in P. pastoris was low [28]. Therefore, this may be why
the strain X33-30*Z with the overexpression of ZWF1 and the strain X33-30*S with the
overexpression of SOL3 increased the NADPH availability and thus increased α-farnesene
production. It should be noted that the overexpression of GND2 had no positive effects
on increasing the NADPH availability and α-farnesene production (Figure 2), which was
similar to the results reported by Kim et al. [29] and Nocon et al. [24] but different to the
results reported by Prabhu and Veeranki [23]. Rebnegger et al. [28] pointed out that gnd2
shows a high expression level, while sol3 shows a low expression level in P. pastoris. Based
on this, we speculated that GND2 was not a rate-limiting enzyme and the overexpression
of GND2 only did not enhance the carbon flux in oxiPPP.
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Figure 2. Screening the best enzyme in oxiPPP for α-farnesene biosynthesis. (a) Overexpression of the
key enzymes in oxiPPP affects the intracellular NADPH level. (b) The effects of overexpression of the
key enzymes in oxiPPP on α-farnesene production after 72 h cultivation. The strain X33-30* was used
as the control (grey bar). These data represent average values and standard deviations achieved from
at least three independent experiments. Different letters indicate statistically significant differences
(p < 0.05).

To further analyze the synergetic effects of these key genes in oxiPPP on NADPH and
α-farnesene production, we tried out different expression combinations of these genes,
looking for the highest performing combos. As can be seen from Figure 3a, the resulting
strain X33-30*ZSGR (i.e., the combined overexpression of ZWF1, SOL3, GND2 and RPE1)
showed the highest intracellular NADPH level, followed by the strain X33-30*ZSG (i.e.,
the combined overexpression of ZWF1, SOL3 and GND2). Interestingly, the combined
overexpression of GND2 and RPE1 (i.e., strain X33-30*GR) had no obvious effect on in-
creasing NADPH levels (Figure 3a), which was similar to the single overexpression of
GND2 or RPE1 (Figure 2a). This may be due to the bottlenecks of the rate-limiting step,
which is catalyzed by ZWF1 and SOL3 [24]. However, it should be noted that α-farnesene
production was not increased with the increase in the intracellular NADPH level in the
corresponding strain (Figure 3b). Among the test strains, the strain X33-30*ZS (i.e., strain
X33-31) produced the highest α-farnesene (i.e., 2.54 ± 0.21 g/L) despite the third-highest
NADPH levels (Figure 3). In contrast, although the strains X33-30*ZSGR and X33-30*ZSG
showed the top two NADPH levels (Figure 3a), they showed the worst α-farnesene produc-
tion, even lower than the original strain X33-30* (Figures 2b and 3b). Nocon et al. [24] and
Prabhu and Veeranki [23] also found similar results, in which the combined overexpression
of ZWF1, SOL3, RPE1 or/and GND2 would be detrimental to foreign protein production.
This may be due to the fact that the excess overexpression of the key enzymes in oxiPPP
may imbalance the PPP flux [24] or disturb the acetyl-CoA biosynthetic pathway [29], thus
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negatively impacting product formation. As can be seen from Figures 2 and 3, the NADPH
content is lower at 72 h than at 24 h, most probably because the α-farnesene synthesis
requires a large amount of NADPH in the middle and late stages of fermentation and thus
consumes a large amount of intracellular NADPH. Although the α-farnesene yield of strain
X33-30*S and strain X33-31 did not show a statistically significant difference in Figure 3b
(data not shown), the α-farnesene yield of strain X33-31 was higher than that of strain
X33-30*S (Figure 3b). In order to finally obtain the highest α-farnesene producing strain,
the strain X33-31 was chosen to be further modified to increase α-farnesene production.
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72 h of cultivation. The strain X33-30*S was used as the control (grey bar), and the best strain is
shown by the red bar.
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2.2. Inactivation of Glucose-6-Phosphate Isomerase Disturbs the Cell Growth and Thus Negatively
Affects α-Farnesene Biosynthesis in P. pastoris X33-31

Previous research indicated that the overexpression of the transcription factor STB5 in-
creased cytosolic NADPH concentrations because STB5 upregulated the expression of most
genes in the PPP and repressed the expression of glucose-6-phosphate isomerase-coding
genes in glycolysis [29,30]. Due to the fact that STB5 is a basal regulator of the PPP, it is pos-
sible that the overexpression of STB5 did not increase protopanaxadiol production [29]. PGI
(encoded by pgi) competes with ZWF1 for glucose-6-phosphate, which catalyzes glucose-
6-phosphate to form frucose-6-phosphate (Figure 1). In order to investigate the effect of
PGI on α-farnesene production, the PGI was inactivated in strain X33-31, resulting in strain
X33-31∆P. As a control, strain X33-30*∆P (i.e., the deletion of pgi in strain X33-30*) was also
achieved. Unfortunately, the inactivation of PGI in the strain X33-31 had negative effects
on α-farnesene production, in which the resultant strain X33-31∆P only produced about
5% of α-farnesene compared with the strain X33-31 (0.13 ± 0.06 g/L vs. 2.54 ± 0.21 g/L)
(Figure 4a). In addition, the inactivation of PGI increased the intracellular NADPH level
but repressed cell growth (Figure 4b,c). In the past, Qin et al. [31] also found that the
expression of pgi controlled by the ultra-low intensity promoter NAT2p in Saccharomyces
cerevisiae decreased the cell growth and 3-hydroxypropionic acid production. The possible
reason for this could be that PGI plays an important role in the central carbon metabolism
in yeast [32]. In addition, Aguilera and Zimmermann [33] suggested that the inactivation
of PGI in S. cerevisiae prevents growth on glucose. However, it should be noted that turning
off PGI in the strain X33-30* had little effect on producing more α-farnesene, even though
cell growth slowed down (Figure 4). These results indicate that the inactivation of PGI
enforced the carbon flux into PPP, thus increasing the NADPH availability for α-farnesene
biosynthesis. Since the surplus NADPH cannot be re-oxidized, the PGI-deficient strain did
not grow on glucose [34]. Thus, we speculated that the reason for which the strain X33-
30*∆P did not visibly decrease cell growth is that more NADPH was used to biosynthesize
α-farnesene. The previous results have reinforced this speculation. For example, Fiaux
et al. [35] restored cell growth on glucose of the PGI-deficient S. cerevisiae mutant through
the heterologous expression of transhydrogenase UdhA from E. coli. Although the strain
X33-30*∆P produced more α-farnesene than the strain X33-30*, its final titer of α-farnesene
was still lower than that of strain X33-31 (2.23 ± 0.18 g/L vs. 2.54 ± 0.21 g/L) (Figure 4a),
indicating that inactivating the glucose-6-phosphate isomerase is not the best strategy for
increasing α-farnesene production in strain X33-31.
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Figure 4. Inactivation of PGI1 negatively affects α-farnesene biosynthesis. (a) α-Farnesene titers.
(b) Dry cell weight (DCW). (c) The intracellular NADPH level at 24 h and 72 h. The strains X33-30*
and X33-31 were used as the control (grey bar). These data represent average values and standard
deviations achieved from at least three independent experiments. Different letters indicate statistically
significant differences (p < 0.05).
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2.3. Low Intensity Expression of POS5 from S. cerevisiae Balances the NADPH/NADH Ratio and
Thus Promotes α-Farnesene Biosynthesis in P. pastoris

It is well known that the intracellular NADH level is higher than the intracellular NADPH
level [36–38]. Previous research indicated that the heterologous expression of NADH kinase
POS5 provides another source of NADPH, except for the oxiPPP in yeast [11,26]. To further
promote α-farnesene production by optimizing the NADPH supply, we introduced the
cPOS5 targeting in the cytosol from S. cerevisiae in strain X33-31. Interestingly, the resultant
strain X33-32 with gene cPOS5 controlled by promoter PGAP showed bad cell growth
and α-farnesene production, but it showed the increased productivity of NADPH and
α-farnesene (Figure 5). POS5 catalyzed the NADH to form NADPH, thereby reducing cell
energy resources [11]. In addition, excess NADPH in cell would repress cell growth, glucose
consumption and product production [37,39]. These observations may be an underlying
cause of the decreased cell growth and α-farnesene production.
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values and standard deviations achieved from at least three independent experiments. Different
letters indicate statistically significant differences (p < 0.05).
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To try to solve this problem, we then decreased the expression level of POS5 by
replacing PGAP with a series of weak promoters. According to previous reports, the
relative intensities of the promoters PPISI, PGPM1, PMET3 and PPGK1 were 40%, 15~40%,
13% and 0~10%, respectively, when compared to PGAP [40–42]. α-Farnesene production
(i.e., 2.77 ± 0.18 g/L) increased by about 9.1% in strain X33-35 with gene cPOS5 controlled
by PMET3 compared to strain X33-31 (i.e., 2.54 ± 0.21 g/L) (Figure 5c). Correspondingly,
strain X33-35 also exhibited a high intracellular NADPH level (Figure 5b). In addition,
decreasing the expression level of POS5 restored cell growth as compared with the strain
X33-32 (Figure 5a), indicating that excess NADPH in cells would be detrimental to cell
growth. There results indicate that the overexpression of POS5 under the PMET3 promoter
has a positive effect on promoting α-farnesene production. To further prove this conclusion,
we overexpressed POS5 under the PMET3 promoter in the X33-30* strain, which resulted in
strain X33-30*C. Strain X33-30*C showed a higher α-farnesene production and productivity
than strain X33-30* because it exhibited a high intracellular NADPH level (Figure 5).

These results indicate that a low intensity expression of cPOS5 in strain X33-31 or
strain X33-30* benefits from maintaining the right amount of NADPH for cell growth
and α-farnesene production. Despite having a higher NADPH concentration and cell
growth (Figure 5a,b), strain X33-34 produced no more α-farnesene than strain X33-31
(i.e., 2.56 ± 0.26 g/L vs. 2.54 ± 0.21 g/L) (Figure 5c), indicating that another limiting
factor hampered α-farnesene biosynthesis in strain X33-34. As can be seen from Fig-
ure 1, nine molecules of ATP are needed to produce one molecule of α-farnesene. ATP is
mainly produced by NADH oxidation via ETP under aerobic conditions [22]. As a result,
we hypothesized that ATP availability is another limiting factor for further increasing
α-farnesene production.

2.4. Overexpression of Adenine Phosphoribosyltransferase Enhances the Precursor AMP Supply
and Thus Increases the ATP Availability and α-Farnesene Production in P. pastoris

ATP can be synthesized either by substrate level phosphorylation (SLP) or by ETP in
aerobic respiring bacteria, and the ETP is the main route for ATP generation using NADH
as an electron donor [22,43]. In the process of ETP, AMP or/and ADP are used as the
substrate for ATP biosynthesis [22]. In theory, increasing the AMP or ADP supply could
increase the ATP availability. To test this theory, the endogenous adenine phosphoribosyl-
transferase (APRT) was overexpressed in strain X33-35, resulting in strain X33-37. As a
control, the endogenous APRT was also overexpressed in strain X33-30*, resulting in strain
X33-30*A. APRT catalyzes the formation of AMP from adenine and 5-phospho-α-Dribose-
1-diphosphate (PRPP) [44], and we found that the intracellular ATP level of strain X33-37
was 9.4% higher than that of strain X33-35, while the intracellular NADH level was slightly
lower than that of strain X33-35. Strain X33-30*A showed the same trend as strain X33-37 in
that the intracellular ATP level was higher and the intracellular NADH level was slightly
lower than strain X33-30* (Table 1). Similar results were also found in previous reports,
in which the mutated Corynebacterium glutamicum with the inactivation of AMP nucleosi-
dase showed an increased intracellular ATP level and a decreased intracellular NADH
level [20]. The most likely reason for this is that more NADH was used for ATP biosynthesis
through ETC due to the abundant supply of AMP. Unsurprisingly, the overexpression of the
aprt gene promoted cell growth and α-farnesene production. The DCW and α-farnesene
production of strain X33-37 reached 2.35 ± 0.11 g/L and 2.94 ± 0.25 g/L (Figure 6),
which were 10.3% and 6.1% higher than those of strain X33-35 (i.e., 2.13 ± 0.16 g/L and
2.77 ± 0.18 g/L, respectively), respectively. Strain X33-30*A also showed increased
α-farnesene production as compared with strain X33-30* (i.e., 2.38 ± 0.18 g/L vs.
2.17 ± 0.15 g/L) (data not shown). ATP is a key factor for cell growth and maintenance
and controlling the intracellular environment [45], and thus an adequate ATP supply could
increase biomass. In addition, the biosynthesis of one molecule of α-farnesene requires at
least nine molecules of ATP (Figure 1), so the increased intracellular ATP level effectively
pulled more carbon flux into the α-farnesene biosynthetic pathway, resulting in higher
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α-farnesene production. These findings suggest that the overexpression of endogenous
APRT promotes increased α-farnesene production by facilitating AMP biosynthesis and
thus increasing ATP supply.

Table 1. Comparison of intracellular nucleotides concentrations in P. pastoris strains (µmol/(g DCW)) a.

Strains NADH NAD+ NADH/NAD+ NADPH NADP+ NADPH/NADP+ ATP

X33-30* 4.92 ± 0.10 11.32 ± 0.53 0.43 0.051 ± 0.003 0.213 ± 0.015 0.24 5.93 ± 0.26
X33-30*A 4.81 ± 0.23 11.83 ± 1.05 0.41 0.058 ± 0.004 0.215 ± 0.010 0.27 6.28 ± 0.22

X33-30*∆ga 5.16 ± 0.20 11.05 ± 1.05 0.47 0.064 ± 0.004 0.201 ± 0.010 0.32 6.20 ± 0.30
X33-31 4.68 ± 0.35 12.03 ± 1.12 0.39 0.073 ± 0.005 0.194 ± 0.017 0.38 5.19 ± 0.45
X33-35 3.19 ± 0.24 13.76 ± 1.24 0.23 0.075 ± 0.007 0.186 ± 0.009 0.40 3.07 ± 0.42
X33-37 2.93 ± 0.31 14.21 ± 1.38 0.21 0.073 ± 0.009 0.199 ± 0.015 0.37 3.36 ± 0.23
X33-38 3.27 ± 0.04 13.63 ± 1.09 0.27 0.077 ± 0.004 0.186 ± 0.018 0.41 4.03 ± 0.37

a The cells cultured in YPD medium for 24 h in shake flasks were used for analysis. All data are meaning values
of at least three determinations of at least three independent experiments with ± SD.
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Figure 6. Overexpression of APRT to increase ATP supply for α-farnesene production. (a) The cell
growth of strain X33-37 with overexpression of APRT. (b) The α-farnesene production of strain X33-37
with overexpression of APRT. The strain X33-35 without overexpression of APRT was used as the
control. These data represent average values and standard deviations achieved from at least three
independent experiments.

2.5. Deletion of NADH-Dependent Dihydroxyacetone Phosphate Reductase Elevates the
Intracellular NADH Level and Thus Elevates the Intracellular ATP Level and α-Farnesene
Production in P. pastoris

NADH plays an important role in maintaining the redox balance and energy gener-
ation of NADH [18]. It can used as precursor for the regeneration of NADPH and ATP.
In order to maintain the abundant supply of NADH, we tried to decrease the NADH
consumption in the shunt pathway. To do this, we discarded the NADH-dependent dihy-
droxyacetone phosphate reductase (GPD1) in strain X33-37, resulting in strain X33-38. As
a control, the GPD1 in strain X33-30* was also inactivated, resulting in strain X33-30*∆ga.
GPD1 catalyzes the biosynthesis of glycerol from dihydroxyacetone phosphate and uses
NADH as a reducing cofactor (Figure 1). Previous research indicated that the glycerol
biosynthetic pathway plays an important role in maintaining the intracellular NADH and
NAD+ levels [46]. Therefore, the intracellular NADH level and NADH/NAD+ ratio in the
strain X33-38 increased by 11.6% and 28.6% as compared with strain X33-37, respectively
(Table 1). Meanwhile, strain X33-38 had improvements in both the intracellular NADPH
level and the ATP level (Table 1). The activation of GPD1 was also increased the intracellular
NADH/NAD+ ratio, the NADPH/NADP+ ratio and ATP in strain X33-30*∆ga (Table 1),
indicating that the deletion of NADH-dependent GPD1 elevates the intracellular NADH
level and ATP level. As a result, the α-farnesene production of strain X33-38 reached
3.09 ± 0.37 g/L after 72 h in shake flask fermentation, which was 5.1% higher than that
of strain X33-37 (i.e., 2.94 ± 0.25 g/L) (Figure 7a). The DCW of strain X33-38 was also
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slightly increased as compared with strain X33-37 (i.e., 2.41 ± 0.23 g/L vs. 2.35 ± 0.11 g/L)
(Figure 7b). Although strain X33-30*∆ga did not show a significant difference in cell growth
as compared with strain X33-30* (Figure 7d), it showed a higher α-farnesene production
than that of strain X33-30* (Figure 7e). It is worth noting that the GPD1-deficient strains (i.e.,
strains X33-38 and X33-30*∆ga) did not accumulate glycerol throughout the fermentation
process, which was different from the strains X33-30* and X33-37 (Figure 7c,f). GPD1 is a
key enzyme in glycerol biosynthesis [47] and He et al. [46] discovered similar results, in
which the strain S. cerevisiae DRY01 with GPD1 silencing significantly reduced glycerol
accumulation. These results show that removing GPD1 not only increases the amount
of NADH, but also decreases the flow of carbon in the shunt pathway, which produces
more α-farnesene.
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resent average values and standard deviations achieved from at least three independent experiments.

3. Materials and Methods
3.1. Strains and Medium

All engineered strains used in this study are based on the P. pastoris strain X33-30 [3].
E. coli JM109 strain was used to maintain and amplify plasmids, and recombinant strains
were cultured at 37 ◦C in LB medium containing 50 mg/L kanamycin, 25 mg/L zeocin or
100 mg/L ampicillin. P. pastoris-engineered recombinant strains were cultivated in YPD
medium at 30◦ and screened with 100 mg/L zeocin or 500 mg/L geneticin, recovery of
selectable markers by the Cre/LoxP system. The rich YPD medium contained 20 g/L
glucose, 20 g/L peptone and 10 g/L yeast extract. The medium YPDA for inducing Cre
enzyme expression contained 20 g/L L-galactose, 10 g/L yeast extract and 20 g/L peptone.

3.2. Construction of Plasmids and Strains

Some of the constructed strains and recombinant plasmids in this study were listed
in Table 2, respectively. The designed primers were listed in Table S1 of “Supplementary
Materials”. The integration site of the strain was the PGAP promoter site, or the his4 site. The
specific strain construction procedures were included in the “Supporting Information”. The
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LoxP sites in the Cre/LoxP system were mutated into Lox71 and Lox66 sites, respectively,
to prevent repeated cleavage and recombination by the Cre enzyme. The details of DNA
manipulation and transformation were described in “Supporting Information”.

Table 2. The main strains used in the study.

P. pastoris Characteristics Reference

X33-30 An α-farnesene-producing strain derived from P. pastoris X33 by dual
regulation of the carbon’s metabolic pathways in cytoplasm and peroxisomes [3]

X33-30* In the X33-30 strain, PCAT1 promoters were replaced with PGAP promoters. This study
X33-31 Strain X33-30* with overexpression of ZWF1 and SOL3 This study
X33-32 Strain X33-31 with overexpression of cPOS5 under control by promoter PGAP This study
X33-33 Strain X33-31 with overexpression of cPOS5 under control by promoter PPISI This study
X33-34 Strain X33-31 with overexpression of cPOS5 under control by promoter PGPM1 This study
X33-35 Strain X33-31 with overexpression of cPOS5 under control by promoter PMET3 This study
X33-36 Strain X33-31 with overexpression of cPOS5 under control by promoter PKEX2 This study
X33-37 Strain X33-35 with overexpression of APRT This study
X33-38 Strain X33-37 with inactivation of GPD1 This study

pGAPZA Zeocinr, expression vector with GAP promoter Invitrogen
pPIC3.5k Kana r, expression vector Invitrogen
pGAP-Z Zeocinr, pGAPZA plasmid with mutated LoxP site and his4 gene This study
pPISI-Z Replacing the GAP promoter with the PISI promoter in the pGAP-Z plasmid This study

pGPM1-Z Replacing the GAP promoter with the GPM1 promoter in the pGAP-Z plasmid This study
pMET3-Z Replacing the GAP promoter with the MET3 promoter in the pGAP-Z plasmid This study
pPGK1-Z Replacing the GAP promoter with the PGK1 promoter in the pGAP-Z plasmid This study
pGAP-1 pGAP-Z carrying gene zwf1 This study
pGAP-2 pGAP-Z carrying gene sol3 This study
pGAP-3 pGAP-Z carrying gene gnd2 This study
pGAP-4 pGAP-Z carrying gene rpe1 This study
pGAP-5 pGAP-Z carrying gene cPOS5 This study
pPISI-1 pPISI-Z carrying gene cPOS5 This study

pGPM1-1 pGPM1-Z carrying gene cPOS5 This study
pMET3-1 pMET3-Z carrying gene cPOS5 This study
pPGK1-1 pPGK1-Z carrying gene cPOS5 This study
pAPRT-1 pGAP-Z carrying gene aprt This study

pCas9-PG1-sg pPIC3.5k plasmid with PTHX1 promoter, cas9 and PG1-sgRNA. Additionally,
the his4 gene was replaced with the ARS gene of P. pastoris This study

pCas9-GPD1-sg pPIC3.5k plasmid with PTHX1 promoter, cas9 and GPD1-sgRNA. Additionally,
the his4 gene was replaced with the ARS gene of P. pastoris This study

3.3. Shake Flask Culture Conditions and Biomass Analysis

For activation, preserved strains were cultured in YPD medium at 30 ◦C. Then, the
appropriate amount of activated strain was added into 10 mL of liquid medium overnight
to become seed medium. The initial cells OD600 with 50 mL of YPD fermentation medium
was 0.15. The pH of 100 mM/L potassium phosphate buffer was adjusted to 6.0, and then
add into the fermentation broth, accounting for 10% of it. The upper layer was overlaid
with 10% n-dodecane, and the fermentation was completed after 72 h in a reciprocating
shaker at 30 ◦C with 100 rpm. OD600 of P. pastoris cells were measured using ultraviolet
spectrophotometer (UV2100, Shanghai, China). Dry cell weight (DCW) was measured as
described by Tomas et al. [11].

3.4. Quantification of α-Farnesene

The fermentation broth was centrifuged at 12,000 rpm for 10 min. Then, the upper layer
of n-dodecane liquid was filtered. A total of 100 µL of samples in n-dodecane phase were
taken out and diluted ten times, and then a small amount of anhydrous copper sulfate was
added to remove residual water. Quantification was performed using Shimadzu GC-2010
plus, a gas chromatograph equipped with a flame ionization detector (FID). The detection
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method of α-farnesene is as described by Liu et al. [3]. The standard α-farnesene, antibiotics
and chemicals were purchased from Sigma (Sigma-Aldrich, Burlington, MA, USA).

3.5. Quantification of Intracellular NADH/NAD+, NADPH/NADP+ and ATP

Strains were cultivated in YPD medium for 24 h or 72 h, and cells were harvested
by centrifugation at 4 ◦C for 30 min at 10,000× g and re-suspended in cold PBS buffer to
OD600 = 10. The intracellular NADH/NAD and NADPH/NADP were extracted according
to the previously described method by Faijes et al. [48], and the intracellular ATP was
extracted according to Ni et al.’s reports [49]. Their concentrations were measured using
the NADH/NAD+ Quantification Colorimeteric Kit, NADPH/NADP+ Quantification
Colorimeteric Kit and ATP Colorimetric/Fluorometric Assay Kit (BioVision, Inc., Milpitas,
CA, USA) according to the manufacturers’ instructions.

3.6. Statistical Analysis

The experiments in this study were independently performed at least three times, and
data are expressed as mean and standard deviation (±SD). Student’s t test was used to
discuss the statistical difference among the experiment data.

4. Conclusions

α-Farnesene is biosynthesized from farnesyl pyrophosphate (FPP) and dimethylallyl
pyrophosphate (DMAPP), which are mainly produced through the mevalonate (MVA)
pathway in P. pastoris [3,6], and thus six molecules of NADPH and nine molecules of ATP
are needed to produce one molecule of α-farnesene (Figure 1). Although many effective
strategies have been used to increase α-farnesene production in yeast, for example, in
P. pastoris [3], Saccharomyces cerevisiae [50,51] and Yarrowia lipolytica [2,52], these studies
mainly focused on modifying the carbon’s metabolism pathway to enhance the carbon flux
in the α-farnesene biosynthetic pathway. We first attempted to rationally reconstruct the
NADPH and ATP biosynthetic pathways in order to increase α-farnesene production in an
α-farnesene-producing strain, P. pastoris X33-30*. The resultant strain, P. pastoris X33-38,
produced 3.09 ± 0.37 g/L of α-farnesene after 72 h in shake flask fermentation, which is
the highest value ever reported to the best of our knowledge (Table 3).

Table 3. Overview on the production of α-farnesene.

Strains Culturing
Methods Carbon Source Final Titers

(g/L)
Productivity

(g/L/h) a References

P. pastoris X33-38 Shake flasks Glucose 3.09 0.043 This work

S. cerevisiae WH62S
Shake flasks Glucose 1.48 0.009

[50]Fed-batch Glucose 10.4 0.043
P. pastoris X33-30 Shake flasks Sorbitol + Oleic acid 2.56 0.036 [3]

Synechococcus elongatus
SeHL-FN03 Shake flasks CO2 5.0 × 10−3 2.604 × 10−5 [53]

Yarrowia lipolytica LSC28 Shake flasks Glycerol 9.0 × 10−2 7.500 × 10−4
[2]

Fed-batch 2.57 0.021
C. glutamicum JP-2 48-well plates Glucose 0.28 NA b [54]

Y. lipolytica F5 Shake flasks
Glucose

1.70 5.903×10−3
[6]

Fed-batch 25.55 0.089
a Estimated from reference. b NA: unavailable.

In P. pastoris, oxiPPP is the main pathway for NADPH generation, but the overexpres-
sion of all genes in oxiPPP is not an adequate choice for increasing α-farnesene production
due to the disturbance of the carbon flux in the PPP [24] and acetyl-CoA biosynthetic
pathways [29]. The combined over-expression of ZWF1 and SOL3 improves the NADPH
supply, thus increasing α-farnesene production. Furthermore, the intracellular NADPH
level can be increased further through the heterologous expression of cPOS5 rather than
PGI inactivation, resulting in an α-farnesene production of 2.77 ± 0.18 g/L in strain X33-35.
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Increasing the ATP supply, as the other key cofactor in α-farnesene production, also plays
an important role in promoting α-farnesene production. The strain X33-38, with the over-
expression of APRT and the deletion of GPD1 to increase the supply of AMP and NADH
for ATP generation, exhibits visibly increased cell growth and α-farnesene production.
Therefore, the rational modification of the NADPH and ATP regeneration pathways plays
a vital role in facilitating α-farnesene biosynthesis in P. pastoris. These results also provide
new directions and references for constructing strains for NADPH and/or ATP-dependent
production of high-added value products.
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