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Abstract: Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specifica-
tion, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains
unclear. This is because interruption of BMP signaling before or during neural induction causes
severe effects on subsequent neural developmental processes. To examine the role of BMP signaling
in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on
neural induction and suppressed BMP signaling at different time points during gastrulation using a
temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa
and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass
BMP regulation on neural induction, induce the number of proliferating neural progenitors, and
reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of
the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking
down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling
in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These
results reveal the time window for the proliferation of neural progenitors during zebrafish develop-
ment and a fine balance between BMP and Notch signaling in regulating the proliferation of neural
progenitor cells.

Keywords: BMP; Notch; neural progenitors; zebrafish

1. Introduction

Neural progenitor cells are proliferative and multipotent cells that can differentiate
into various cell types, such as neurons, oligodendrocytes, and astrocytes of the central
nervous system [1]. These cells are generated from the neuroectoderm during early em-
bryonic development. Studies in Xenopus and zebrafish demonstrated that during early
gastrulation, secreted neural inducers, such as Noggin, Follistatin, and Chordin, inhibit
bone morphogenetic protein (BMP) signaling at the dorsal side of the animal cap, where
they repress the epidermal fate and induce the neural fate of the ectoderm. In contrast,
the ventral ectoderm expresses a high level of BMP and differentiates into the epidermis.
This process, termed neural induction, specifies the neuroectoderm within the ectoderm
and is conserved in vertebrates. However, other signals, such as fibroblast growth fac-
tor (FGF) and Wnt, have also been demonstrated as key modulators in neural induction
(reviewed in [2]). These signaling pathways and their downstream transcription factors
not only govern neural induction, but also regulate the competence and specification of
neural progenitor cells in the neuroectoderm, as well as the formation and expansion of
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neural plates (reviewed in [3,4]). Therefore, spatial and temporal regulation studies, such
as transplantation, tissue-specific promoter-driven gene expression, and electroporation,
have been performed in animal models to clarify the role of these signaling pathways in
neural induction and the development of neural progenitor cells.

BMPs belong to the transforming growth factor-beta (TGF-β) superfamily, which
mediates a diverse array of cellular processes, including proliferation, differentiation, and
apoptosis [5]. BMPs bind to type 1 and type 2 serine/threonine transmembrane receptors
(BMPR1 and BMPR2, respectively) in recipient cells. Upon binding, BMP receptors phos-
phorylate carboxy-terminally located serine residues in downstream transcription factors
SMAD1/5/9. Upon phosphorylation, these transcription factors form complexes with the
common mediator SMAD protein SMAD4, and the complex subsequently accumulates in
the nucleus to activate the transcription of downstream genes, such as inhibitors of differ-
entiation (Id) and Msx [6,7]. BMPs also initiate SMAD-independent signaling pathways,
such as the MAPK, PI3K-AKT, protein kinase C, and Rho-GTPase signaling pathways
(reviewed in [8]). BMP signaling exhibits pleiotropic effects on the developing nervous
system and adult homeostasis. The BMP signaling gradient establishes the dorsoventral
axis and negatively regulates neural induction to suppress neuroectoderm formation ([9,10],
reviewed in [11]). Once the neural tube closes, BMP functions as a morphogen to regulate
neural tube patterning and specify the neuronal subtypes in the dorsal neural tube (re-
viewed in [12]). Furthermore, BMP signaling regulates neurogenesis and gliogenesis. BMP2
and BMP4 have been shown to promote astrocyte formation by suppressing oligodendro-
cyte formation. [13,14]. BMP2 restricts proliferation and induces neuronal differentiation
of neuroepithelial cells [15], whereas BMP4 overexpression stimulates neuronal differ-
entiation [16]. In contrast, BMP2, 4, or 7 suppress the generation of olfactory receptor
neurons [17] and reduce neurogenesis in cultured mouse fetal telencephalic neuroepithelial
cells [18,19]. However, the role of BMP signaling in regulating the development of neural
progenitor cells has mostly been demonstrated in in vitro studies and requires further
confirmation in vivo.

In this study, we bypassed the effect of BMP signaling on the regulation of embryonic
development before early gastrulation, including dorsoventral patterning, mesoderm
formation, and neural induction, and examined the specific role of BMP signaling in the
development of neural progenitors. We inhibited BMP signaling at distinct time points
during zebrafish gastrulation using a transgenic fish line that carries the dominant-negative
form of the Bmp type 1 receptor (DN-BmpR1aa) and confirmed the results using a chemical
inhibitor of BMP signaling, dorsomorphin homologue 1 (DMH1). We defined the time
point for the effect of BMP signaling during neural progenitor development and discovered
that Notch-Her2 signaling underlies this regulation.

2. Results
2.1. Bmpr1aa Is Expressed in the Developing Nervous system during Gastrulation and
Early Segmentation

In zebrafish, neural induction occurs during gastrulation (from 5.25 h post-fertilization
(hpf) to 10 hpf). During this period, the neural progenitors are specified from the ecto-
derm [20] and then at the end of gastrulation (10 hpf), the neuronal precursor cells are
formed within neural progenitors by activating the expression of proneural genes [21].
Neural progenitors give rise to neuronal precursors that generate a variety of neurons in
the nervous system during segmentation. We first analyzed the expression patterns of
one of the Bmp type 1 receptors, bmpr1aa, during the gastrulation and early segmentation
stages. The results of whole-mount in situ hybridization demonstrated that bmpr1aa was
ubiquitously expressed in the entire embryo at 5.3 hpf and 6 hpf, and from 8 hpf onward,
was expressed in the presumptive neuroectoderm and developing mesoderm (Figure 1A).
At the end of gastrulation (10 hpf), strong bmpr1aa expression was detected in the develop-
ing forebrain, midbrain, trigeminal primordium, and the sensory and motor neurons of the
spinal cord (Figure 1B). During the early segmentation stage (11 hpf), bmpr1aa was strongly
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expressed in the developing nervous system (Figure 1). This result suggested that bmpr1aa
participates in the formation of neural progenitor cells after neural induction.
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(B) The bmpr1aa is ubiquitously expressed before 8 hpf, and gradually expressed in neural tissue 
from 8 hpf. (C) bmpr1aa is expressed in developing brain at 10 hpf (end of gastrulation) and 11 hpf 
(early segmentation). fb, forebrain; mb, midbrain; hb, hindbrain; epi, epidermal; sn, sensory neuron; 
psm, presomatic mesoderm. 
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tion of dominant-negative Bmpr1aa, we used the chemical inhibitor dorsomorphin hom-
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different concentrations of DMH1 at different time points during embryonic development 
and discovered that treatment with 0.5 μM DMH1 sufficiently inhibited BMP-Smad sig-
naling demonstrated by the reduced eve1 expression (Figure 2B,D). Treatment with 0.5 

Figure 1. The expression of bmpr1aa during gastrulation and early segmentation. (A) A schematic
illustration of the lateral view of zebrafish embryo showing the regions of neuroectoderm (neural)
and surface ectoderm (epi) with dorsal to the right. (B) Zebrafish embryos were analyzed using
whole-mount in situ hybridization. These images show the lateral view of the embryos with dorsal to
the right and ventral to the left. (C) Dorsal view of flat-mounted embryos with anterial to the top.
(B) The bmpr1aa is ubiquitously expressed before 8 hpf, and gradually expressed in neural tissue from
8 hpf. (C) bmpr1aa is expressed in developing brain at 10 hpf (end of gastrulation) and 11 hpf (early
segmentation). fb, forebrain; mb, midbrain; hb, hindbrain; epi, epidermal; sn, sensory neuron; psm,
presomatic mesoderm.

2.2. Temporally Inhibiting BMP Signaling by Dominant-Negative Bmpr1aa and DMH1

BMP signaling negatively regulates neural induction [22], and the disruption of BMP
signaling at this stage disrupts neural developmental progress, thus hindering the analysis
of BMP signaling in neural progenitor cells. In order to temporally inhibit BMP signaling,
we adapted the inducible transgenic zebrafish line Tg (hsp70l: dn-bmpr1aa-eGFP) [23] which
carries a dominant-negative form of Bmpr1aa (DN-Bmpr1aa) driven by a heat-shock
promoter, thus facilitating temporal inactivation of BMP signaling. We first evaluated the
effectiveness of this transgenic line in alerting BMP signaling by analyzing the expression of
eve1, which is a downstream target of BMP signaling and is decreased in bmp mutants [24,25].
Heat-shock activation of DN-Bmpr1aa at 5.3 hpf inhibited BMP signaling, as observed
by the downregulation of eve1 expression at 6 hpf and diminished eve1 expression at
7 hpf (Figure 2A,C). These results demonstrated that overexpressing DN-Bmpr1aa inhibits
BMP-Bmpr1aa signaling 0.7 h after induction of heat-shock.

The BMP type 1 receptors initiate both Smad-dependent and Smad-independent sig-
naling cascades to control various cellular processes [8,26]. To further confirm the regulation
of dominant-negative Bmpr1aa, we used the chemical inhibitor dorsomorphin homologue
1 (DMH1), which specifically blocks Smad-dependent signaling [27]. We tested different
concentrations of DMH1 at different time points during embryonic development and
discovered that treatment with 0.5 µM DMH1 sufficiently inhibited BMP-Smad signaling
demonstrated by the reduced eve1 expression (Figure 2B,D). Treatment with 0.5 µM DMH1
reduced eve1 expression, which was identical to the effect of DN-Bmpr1aa overexpression
at the same time point. Hereafter, we used 0.5 µM DMH1 in the following experiments.
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that inactivating BMP-Bmpr1 signaling at 5.3 hpf caused the expansion of sox2 and sox3 

Figure 2. DN-Bmpr1aa and DMH1 sufficiently inhibited expression of eve1 at different time points.
All panels are animal pole views with ventral to the left. Expression of eve1 was examined using in
situ hybridization. (A) Tg (hsp70l:dnBmpr1aa-GFP) embryos were heat shock-treated at 5.3 hpf and
harvested at 6, 7, and 9 hpf showing that eve1 expression was gradually downregulated. (B) Different
concentrations of DMH1 were applied to embryos from 5.3 hpf, which inhibited eve1 expression. n,
total number of embryos analyzed from three independent experiments. (C,D) qRT-PCR confirmed
the expression levels of eve1 of in situ hybridization in (A,B). The percentages in each panel in (A,B)
indicate the proportion of embryos displaying the same phenotype as that shown in the photographs
of the total embryos examined. Quantitative data are presented as mean ± standard deviation (SD);
****, p < 0.0001.

Id3 and Msx1b (previously named Msxb) are direct downstream targets of the BMP-
Smad signaling pathway. Upon binding of BMPs, BMP receptors phosphorylate Smad1/5/9
and the phosphorylated Smad1/5/9 and Smad4 complex directly bind to the 5′ regulatory
elements of id3 and msx1b and induce their expression [28–30]. To further confirm that
dominant-negative Bmpr1aa and DMH1 were sufficient to inhibit BMP-Smad signaling,
we examined the effect of BMP inactivation on the expression of id3 and msx1b. The result
demonstrated that heat-shock activation of DN-Bmpr1aa or DMH1 treatment at 5.3 hpf
inhibited the expression of id3 and msxb at 6, 7, and 9 hpf, confirming that DN-Bmpr1aa
and DMH1 were sufficient to inhibit BMP-Smad signaling (Figure S1).

2.3. Inhibiting BMP Signaling from 8 hpf Bypasses the Effects of BMP Signaling on Dorsoventral
Patterning and Neural Induction

Next, we identified the time point at which BMP signaling was inhibited, without af-
fecting neural induction. Inactivation of BMP signaling during neural induction results in a
reduced surface ectoderm and an expansion of the neuroectoderm [10]. The transgenic line
Tg (hsp70l: dn-bmpr1aa-eGFP) and DMH1 were used to inhibit BMP-BmpR1aa-Smad signal-
ing. We performed heat-shock induction or treatment with DMH1 at 5.3, 8, or 9 hpf for one
hour, and harvested the embryos at 10 hpf for examination. In situ hybridization analysis
for the expression pattern of neuroectoderm markers sox2 and sox3 demonstrated that inacti-
vating BMP-Bmpr1 signaling at 5.3 hpf caused the expansion of sox2 and sox3 expression at
10 hpf (Figure 3A,B, arrowheads). In contrast, blocking BMP-BmpR1 signaling at 8 or 9 hpf
did not alter the expression patterns of sox2 and sox3 at 10 hpf (Figure 3A,B). This result
demonstrates that inhibiting BMP signaling after 8 hpf did not affect neural induction.
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signaling by heatshock-induced DN-Bmpr1aa at 5.3 hpf for one hour disrupted the expression 
pattern and caused ectopic expression of sox2 and sox3 (arrowheads), whereas heat shock treatment 
after 8 hpf did not alter the expression pattern of sox2 and sox3. (B) DMH1 treatment at 5.3 for one 
hour phenocopies the effect of heat-shocked Tg (hsp70l:dnBmpr1aa-GFP), which is the alternating 
pattern and ectopic expression of sox2 and sox3. DMH1 treatment after 8 hpf had no effect on the 
expression pattern of sox2 and sox3. n, total number of embryos analyzed from three independent 
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iting BMP signaling using DN-Bmpr1aa or DMH1 slightly increased sox2-expressing areas; how-
ever, this was not statistically significant. n, total number of embryos analyzed from three independ-

Figure 3. Suppression of BMP signaling after 8 hpf does not affect neural induction. In situ hy-
bridization of heat-shock induced Tg (hsp70l:dnBmpr1aa-GFP) (A) and DMH1-treated (B) embryos
analyzed at 10 hpf. The upper panels in (A,B) indicate anterior part of embryos with dorsal to the
bottom, and the lower panels indicate the lateral view with anterior to the left. (A) Inhibition of
BMP signaling by heatshock-induced DN-Bmpr1aa at 5.3 hpf for one hour disrupted the expression
pattern and caused ectopic expression of sox2 and sox3 (arrowheads), whereas heat shock treatment
after 8 hpf did not alter the expression pattern of sox2 and sox3. (B) DMH1 treatment at 5.3 for one
hour phenocopies the effect of heat-shocked Tg (hsp70l:dnBmpr1aa-GFP), which is the alternating
pattern and ectopic expression of sox2 and sox3. DMH1 treatment after 8 hpf had no effect on the
expression pattern of sox2 and sox3. n, total number of embryos analyzed from three independent
experiments. (C) sox2-expressing areas were measured using ImageJ. It should be noted that inhibit-
ing BMP signaling using DN-Bmpr1aa or DMH1 slightly increased sox2-expressing areas; however,
this was not statistically significant. n, total number of embryos analyzed from three independent
experiments. The percentages in each panel in (A,B) indicate the proportion of embryos displaying
the same phenotype as that shown in the photographs of the total embryos examined. Quantitative
data are presented as mean ± standard deviation (SD). n.s., not significant.

Inhibiting BMP signaling before early gastrulation induces the expansion of the neu-
roectoderm and loss of the epidermal ectoderm ([24], reviewed in [31,32]). We performed
heat-shock activation of DN-Bmpr1aa or DMH1 treatment at 4 hpf, examined the expression
of the surface ectoderm marker tp63 at 50% epiboly (5.3 hpf), and discovered that inhibiting
BMP signaling at this time point was sufficient to inhibit the formation of surface ectoderm,
as evidenced by reduced tp63 expression (Figure S2). Next, we inhibited BMP signaling at
8 or 9 hpf and found that the expression of tp63 was not altered at 10 hpf (Figure 4). Taken
together, these data indicated that inhibiting BMP-Bmpr1aa-Smad signaling from 8 hpf
bypassed the effect of BMP signaling on dorsoventral patterning and neural induction in
zebrafish embryos.
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cause inactivating BMP alters the development of neural progenitors at 8–10 hpf. At this 
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BMP-BmpR1 signaling at 8–10 hpf and examined neural progenitor cell proliferation. In 
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reverse transcriptase PCR (qRT-PCR) to investigate the altered sox2-expression level after 
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Figure 4. Epidermal ectoderm was unaffected after blocking BMP signaling from 8 hpf. Left panels
are lateral views of embryos with ventral to the left. In situ hybridization showed no apparent change
in the tp63-expressing region in BMP signal-depleted embryos from 8 hpf onward. n, total number
of embryos analyzed from three independent experiments. The tp63 signals were measured using
ImageJ and quantified (right panels). n, total number of embryos analyzed from three independent
experiments. The percentages in each panel indicate the proportion of embryos displaying the same
phenotype as that shown in the photographs of the total embryos examined. Quantitative data are
presented as mean ± standard deviation (SD). n.s., not significant.

2.4. BMP Signaling Is Essential for Suppressing Neural Progenitor Proliferation at 8 hpf to 10 hpf

Inactivating BMP signaling after 8 hpf did not affect the gross expression pattern of
sox2 and sox3. However, we noticed that the sox2-expressing areas were slightly increased
(although not statistically significant) by BMP inactivation (Figure 3). This might be because
inactivating BMP alters the development of neural progenitors at 8–10 hpf. At this stage,
neural progenitors increase in number by proliferation. Accordingly, we inactivated BMP-
BmpR1 signaling at 8–10 hpf and examined neural progenitor cell proliferation. In addition
to measuring the sox2-expressing areas (Figure 3C), we conducted quantitative reverse
transcriptase PCR (qRT-PCR) to investigate the altered sox2-expression level after BMP
signaling inactivation. The results demonstrated that inactivation of BMP-Bmpr1aa-Smad
signaling upregulated sox2 expression significantly (Figure 5). In addition, we counter-
stained sox2 with the proliferating marker, phospohryl histone 3 (pH3), and discovered that
pH3-positive neural progenitors were increased in BMP-signaling-inactivated embryos
(Figure 5). This result demonstrated that BMP signaling is essential for suppressing neural
progenitor proliferation. We also examined the apoptosis of neural progenitors in BMP-
signal-inactivated embryos by counterstaining sox2 with the apoptotic marker cleaved
caspase 3 and found no significant alteration in the number of apoptotic cells caused by
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inactivation of BMP signaling (Figure S3). These results demonstrate that inhibiting BMP
signaling induces the proliferation of neural progenitors without affecting cell apoptosis.
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to give a better representation of the double-stained cells (fluorescent yellow). (B,D) The expression 
of sox2 was quantified by qRT-PCR (left panel of (B,D)). pH3-positive cells in the sox2-positive areas 
were manually counted and analyzed, shown on the right panel of (B,D). n, total number of embryos 
analyzed from three independent experiments. The percentages in each panel in (A,C) indicate the 
proportion of embryos displaying the same phenotype as that shown in the photographs of the total 
embryos examined. Quantitative data are presented as mean ± standard deviation (SD). * p < 0.05; 
** p < 0.01. 

2.5. BMP Signaling Is Essential for Neuronal Precursor Development between 8 hpf to 10 hpf 
Neuronal precursor cells differentiate from neural progenitors from 10 hpf, as indi-

cated by the onset of expression of many proneural genes, such as neurog1, during 
zebrafish development [21]. Accordingly, we examined the effect of inactivation of BMP-
Bmpr1aa-Smad signaling on the formation of neural progenitors by examining neurog1 
expression. Inhibition of BMP-Bmpr1aa-Smad signaling at 8 to 10 hpf reduced the number 
of neurog1-positive cells (Figure 6), indicating that BMP signaling is essential for the for-
mation of neuronal precursors. These results suggest that BMP-Bmpr1aa-Smad signaling 
is required for repressing neural progenitor proliferation and is essential for neuronal dif-
ferentiation after neural induction. 

Figure 5. Inhibiting BMP signaling induces the proliferation of neural progenitors. (A,C) Dorsal
view of flat-mounted embryos with the anterior on the top. In situ hybridization of 10 hpf embryos
demonstrated increased expression of sox2 by heat shock-induced DN-Bmpr1aa (A) or DMH1 treat-
ment (C) at 8 to 10 hpf. The upper panels in (A,C) are bright-field images and bottom panels are
fluorescent images of the same; the expression of sox2 was pseudo-colored with fluorescent red and
counterstained with proliferating marker phospho-histone H3 (pH3) antibody (fluorescent green) to
give a better representation of the double-stained cells (fluorescent yellow). (B,D) The expression of
sox2 was quantified by qRT-PCR (left panel of (B,D)). pH3-positive cells in the sox2-positive areas
were manually counted and analyzed, shown on the right panel of (B,D). n, total number of embryos
analyzed from three independent experiments. The percentages in each panel in (A,C) indicate the
proportion of embryos displaying the same phenotype as that shown in the photographs of the total
embryos examined. Quantitative data are presented as mean ± standard deviation (SD). * p < 0.05;
** p < 0.01.

2.5. BMP Signaling Is Essential for Neuronal Precursor Development between 8 hpf to 10 hpf

Neuronal precursor cells differentiate from neural progenitors from 10 hpf, as indicated
by the onset of expression of many proneural genes, such as neurog1, during zebrafish
development [21]. Accordingly, we examined the effect of inactivation of BMP-Bmpr1aa-
Smad signaling on the formation of neural progenitors by examining neurog1 expression.
Inhibition of BMP-Bmpr1aa-Smad signaling at 8 to 10 hpf reduced the number of neurog1-
positive cells (Figure 6), indicating that BMP signaling is essential for the formation of
neuronal precursors. These results suggest that BMP-Bmpr1aa-Smad signaling is required
for repressing neural progenitor proliferation and is essential for neuronal differentiation
after neural induction.
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Notch signaling activity using a chemical inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-ala-
nyl]-S-phenylglycine t-butyl ester (DAPT), from 8 hpf to 10 hpf. These embryos were an-
alyzed for sox2 expression using in situ hybridization and qRT-PCR. DAPT treatment 
abolished the upregulation of sox2 expression caused by BMP signal inhibition (Figure 7). 
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Figure 6. Inhibiting BMP signaling reduces the formation of neuronal precursors. All panels show
dorsal views of flat-mounted embryos with the anterior on the top. (A,C) In situ hybridization of
10 hpf embryos focusing on the midbrain and hindbrain regions showing that neurog1-positive cells
were reduced by heat-shock-induced DN-BmpR1aa (A) or DMH1 treatment (C) at 8 to 10 hpf. This
was quantified by the cell-count analysis shown in (B,D), respectively. n, total number of embryos
analyzed from three independent experiments. The percentages in each panel in (A,C) indicate the
proportion of embryos displaying the same phenotype as that shown in the photographs of the total
embryos examined. Quantitative data are presented as mean ± standard deviation (SD). ** p < 0.01;
*** p < 0.001.

2.6. Suppression of Notch Signaling Abolished the Phenotype Caused by BMP-Signaling Inactivation

BMP signaling interacts with other molecular signaling pathways to control diverse
developmental events [33]. Notch signaling is a critical regulator of neural progenitor pro-
liferation and the suppression of neuronal differentiation [34]. A previous study showed
that BMP signaling plays a role opposite to Notch signaling in governing neuronal dif-
ferentiation in the olfactory bulb of developing chick embryos [35]. To evaluate whether
Notch signaling plays a role in BMP-signaling-mediated neural progenitor proliferation and
neuronal differentiation, we inhibited BMP signaling and concomitantly inhibited Notch
signaling activity using a chemical inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-
phenylglycine t-butyl ester (DAPT), from 8 hpf to 10 hpf. These embryos were analyzed
for sox2 expression using in situ hybridization and qRT-PCR. DAPT treatment abolished
the upregulation of sox2 expression caused by BMP signal inhibition (Figure 7). In ad-
dition, blocking Notch signaling reduced neural progenitor proliferation (Figure 7) and
abolished the upregulation of proliferation of neural progenitors caused by inactivation of
BMP-Bmpr1-Smad signaling (Figure 5). This result suggests an interaction between BMP
and Notch signaling in regulating neural progenitor proliferation after neural induction.
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genitors (fluorescent yellow) were subjected for cell counts (B). n, total number of embryos analyzed 
from three independent experiments. The percentages in each panel in (A,C) indicate the proportion 
of embryos displaying the same phenotype as that shown in the photographs of the total embryos 
examined. Quantitative data are presented as mean ± standard deviation (SD). * p < 0.05; ** p < 0.01; 
*** p < 0.001. 
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ing at 8 to10 hpf by activating DN-BmpR1aa or treatment with DMH1, followed by qRT-
PCR analysis for her2 expression at 10 hpf. Expression of her2 was upregulated by inacti-
vation of BMP signaling (Figure 8A,D), indicating that BMP-BmpR1-Smad signaling is 
required for suppressing her2 expression. Knocking down Her2 function by injecting her2 
morpholino at the one-cell stage reduced the proliferation of neural progenitors, as de-
scribed by Cheng et al. (Figure 8B,F), [38], whereas inactivation of BMP signaling in Her2 
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Taken together, although inactivation of BMP signaling induced her2 expression, in em-
bryos lacking Her2 expression, inactivation of BMP signaling could still upregulate the 

Figure 7. Suppressing Notch signaling abolished the upregulation of neural progenitor proliferation
caused by BMP-BmpR1 inactivation (A,C) All panels are dorsal views of flat-mounted embryos at
10 hpf with the anterior on the top analyzed using in situ hybridization for sox2 expression and
immunohistochemistry with phospho-histone H3 (pH3) antibody. Embryos at 8 hpf were treated
with heat-shock-induced DN-BmpR1aa or treated with DHM1 for one hour. The upper panel shows
bright field images and the bottom panel shows fluorescent images taken from identical embryos of
the upper row; the expression of sox2 was pseudo-colored with fluorescent red and counterstained
with proliferating marker pH3 (fluorescent green). (B,D) The results of in situ hybridization were
confirmed by quantitative reverse transcriptase PCR (qRT-PCR) and the proliferating neural progen-
itors (fluorescent yellow) were subjected for cell counts (B). n, total number of embryos analyzed
from three independent experiments. The percentages in each panel in (A,C) indicate the proportion
of embryos displaying the same phenotype as that shown in the photographs of the total embryos
examined. Quantitative data are presented as mean ± standard deviation (SD). * p < 0.05; ** p < 0.01;
*** p < 0.001.

2.7. BMP and Notch-Her2 Signaling Regulate the Proliferation of Neural Progenitor Cells

Our results demonstrated that inactivating BMP signaling promoted the proliferation
of neural progenitors, whereas inactivation of Notch signaling reduced the proliferation
of neural progenitors. Although inactivation of Notch signaling could abolish the effect
of inactivation of BMP signaling on neural progenitors, the action of these two signaling
pathways could be interactive or parallel. BMP signaling has been reported to antagonize
Notch signaling by inhibiting the expression of downstream transcription factors to bal-
ance the proliferation and differentiation of neural progenitor cells [35–37]. To analyze
the interaction between BMP and Notch signaling in the proliferation of neural progen-
itors, we examined the function of hairy/E(spl)-related 2 (Her2), which is a homologue
of mammalian Hes5 and is a downstream target of Notch signaling. It has been shown to
promote neural progenitor proliferation and is essential for inhibiting neuronal differen-
tiation [38,39] in BMP-signaling-inactivated embryos. We inactivated BMP-Bmpr1-Smad
signaling at 8 to10 hpf by activating DN-BmpR1aa or treatment with DMH1, followed by
qRT-PCR analysis for her2 expression at 10 hpf. Expression of her2 was upregulated by
inactivation of BMP signaling (Figure 8A,D), indicating that BMP-BmpR1-Smad signaling
is required for suppressing her2 expression. Knocking down Her2 function by injecting
her2 morpholino at the one-cell stage reduced the proliferation of neural progenitors, as
described by Cheng et al. (Figure 8B,F), [38], whereas inactivation of BMP signaling
in Her2 knockdown embryos recovered the number of proliferating neural progenitors
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(Figure 8). Taken together, although inactivation of BMP signaling induced her2 expression,
in embryos lacking Her2 expression, inactivation of BMP signaling could still upregulate
the proliferation of neural progenitors. This result indicated that BMP and Notch signaling
regulate the proliferation of neural progenitors in both a parallel and an interactive manner,
and a fine balance between BMP and Notch signaling pathways is essential for the proper
proliferation of neural progenitors.
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Figure 8. Inactivating BMP signaling upregulates neural progenitor proliferation in response to
Her2 knockdown. Heat-shock treatment of Tg (hsp70l:dnBmpr1aa-GFP) or DMH1 was performed
at 8–10 hpf embryos and harvested at 10 hpf. (A,D) qRT-PCR analysis demonstrated increased her2
expression by activating DN-Bmpr1aa (A) and DMH1 treatment (D). (B,E) In situ hybridization of
sox2 expression demonstrating BMP inactivation by activating DN-Bmpr1aa or DMH1 treatment
upregulated sox2 expression and the number of proliferating neural progenitors revealed by sox2
expression and pH3 counterstaining. Injection of her2 morpholino at the one-cell stage significantly
reduced sox2 expression and the number of proliferating neural progenitors in embryos with or
without BMP inactivation. (C,F) The results of in situ hybridization were confirmed by qRT-PCR, and
the number of pH3-positive cells in sox2-expressing areas was counted manually. n, total number of
embryos analyzed from three independent experiments. The percentages in each panel in B and E
indicate the proportion of embryos displaying the same phenotype as that shown in the photographs
of the total embryos examined. Quantitative data are presented as mean ± standard deviation (SD).
* p < 0.05; ** p < 0.01.

3. Discussion

Precisely controlled proliferation and differentiation of neural stem/progenitor cells
ensures the proper number and type of neurons to be generated in the brain. Impaired
development of neural stem/progenitor cells can cause defective brain size, neurological
disorders, and brain tumors. Understanding the proliferation and differentiation of neural
stem/progenitor cells could provide a potential therapeutic approach for stem-cell-based
therapies. The coordination of many molecular signaling pathways with precise spatial
and temporal control is essential for the development of neural stem/progenitor cells.
However, the time window of a given molecular signaling pathway in regulating this event
has not been fully defined. In the present study, we discovered a critical time window for
BMP signaling in the regulation of neural progenitor proliferation in zebrafish. Inactiva-
tion of BMP-Bmpr1a-Smad signaling from mid-gastrulation (8 hpf) to end-gastrulation
(10 hpf) promotes the proliferation of neural progenitor cells and inhibits the differentiation
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of neuronal precursors. To our knowledge, this is the first in vivo study to define the
time window of BMP-Bmpr1a-Smad signaling in regulating embryonic neural progenitor
cell proliferation.

We also discovered that BMP-Bmpr1a-Smad and Notch-Her2 signaling regulate the
proliferation of neural progenitors in an opposite manner—inhibiting BMP-Bmpr1a-Smad
signaling promotes neural progenitor proliferation, whereas inactivating Notch-Her2 sig-
naling reduces neural progenitor proliferation. Although inactivating BMP signaling
upregulates her2 expression, suggesting an interaction between these two signaling path-
ways in regulating neural progenitor proliferation, inactivating BMP signaling upregulates
neural progenitor proliferation in Her2 knockdown embryos, suggesting that these two
signaling pathways may also regulate neural progenitor proliferation in a parallel manner.
Taken together, a proper balance between BMP and Notch signaling is essential for the
development of neural progenitors.

4. Materials and Methods
4.1. Ethics Statement

All experiments were performed in strict accordance with the standard guidelines for
zebrafish work and were approved by the Institutional Animal Care and Use Committee of
Chang Gung University (IACUC approval numbers: CGU07-74, CGU11-118, and CGU12-118).

4.2. Fish Maintenance and Transgenic Lines

AB (wild-type) zebrafish and transgenic line Tg (hsp70l:dnBmpr1aa-GFP) [23] were
purchased from the Zebrafish International Resource Center (Eugene, OR, USA) and raised,
maintained, and paired under standard conditions. Embryos were staged according to the
hours post-fertilization [40].

4.3. Heat Shock and DMH1 Treatment

Batches of wild-type and transgenic embryos were strictly staged, as previously
described [40] to ensure minimal developmental asynchrony. Wild-type and transgenic
embryos were treated with DMH1 (Merck, Taipei, Taiwan) or induced by heat shock
at 37 ◦C.

4.4. Morpholinos

her2 morpholino (CTGGAAAGAGAAGGTAAAAGTTTGG) was purchased from Gene
Tools LLC. (Gene Tools, LLC., Philomath, OR, USA). Morpholinos with a random sequence
that does not bind to the zebrafish genome (CCTCTTACCTCAGTTACAATTTATA) and
with 5 mismatched bases to the her2 morpholino (CTaGAAAaAGAAGaTAAAAaTTTaG;
mismatches are displayed by lowercase letters) were used as controls. Microinjection of
morpholinos into zebrafish blastomeres was performed during the one- to two-cell stages.
A detailed procedure of her2 knockdown has been described by Cheng et al. [38].

4.5. Histological Analysis

Digoxigenin-UTP-labeled riboprobes were synthesized according to the manufac-
turer’s instructions (Roche, Taipei, Taiwan) and in situ hybridization was performed as
described previously. Color reactions were conducted using NBT/BCIP substrate (Roche,
Taipei, Taiwan). To minimize variation between the control and experimental groups, we
used embryos produced by a single pair of parents and used the same number of embryos
for the control and experimental groups. The groups were compared under the same
experimental conditions at the same time, and color reactions were initiated and stopped at
precisely the same time. For immunohistochemistry, zebrafish embryos were blocked in
5% goat serum and incubated with a rabbit phospho-histone H3 antibody (1:200, Merck
Millipore, distributed by Level Biotechnology Inc., Taipei, Taiwan). Phosphorylated histone
H3 was detected using red-fluorochrome-conjugated secondary antibodies (Invitrogen,
distributed by Level Biotechnology Inc., Taipei, Taiwan). Embryos were mounted in the
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Vectashield mounting medium (Vector Laboratories, Inc., distributed by Asia Bioscience
Co., LTD., Taipei, Taiwan). Phospho-histone H3-positive cells were manually counted. To
quantify sox2 expression by in situ hybridization, sox2-positive areas were selected and
measured using ImageJ software. To detect apoptotic cells in the neuroectoderm, immuno-
histochemistry using rabbit monoclonal anti-active caspase-3 antibody (Abcam, distributed
by Blossom Biotechnologies, Inc., Taipei, Taiwan) was applied to samples already stained
with sox2 riboprobe using in situ hybridization. The caspase-3 antibody was detected
using goat anti-rabbit IgG HRP (Invitrogen, distributed by Level Biotechnology Inc., Taipei,
Taiwan), and 3, 3′-diaminobenzidine was used as a substrate for secondary antibody-
conjugated HRP (Amresco, distributed by Protech Technology Enterprise Co., Ltd., Taipei,
Taiwan). Phospho-histone H3- and caspase-3-positive cells were manually counted.

4.6. RNA Isolation and cDNA Synthesis

RNA was isolated from 20 embryos in each experiment. Samples collected from each
experiment were suspended in 500 µL TRIzol reagent (Invitrogen, distributed by Level
Biotechnology Inc., Taipei, Taiwan) and homogenized using a 25-gauge needle, followed
by the addition of 250 µL chloroform and centrifugation to separate the aqueous phase.
The aqueous solution was mixed with a half-volume of acid phenol and chloroform and
subjected to centrifugation for 15 min at 4 ◦C. The phenol-chloroform extraction was
repeated twice. RNA was extracted using 250 µL isopropanol and 70% ethanol, and the
mixture was centrifuged for 30 min at 4 ◦C. The ethanol was then removed, and the
RNA pellet was resuspended in 12 µL DEPC H2O. The first strand of cDNA was reverse-
transcribed using the SuperScript III First-Strand Synthesis System (Applied Biosystems,
distributed by Creative LifeSciences, Taipei, Taiwan).

4.7. Quantitative Analysis

For quantitative reverse transcriptase PCR (qRT-PCR), embryos were homogenized
in TRIzol reagent (Invitrogen, distributed by Level Biotechnology Inc., Taipei, Taiwan),
and total RNA was extracted using a standard method. cDNA was synthesized from
total RNA through oligo(dT) priming using RevertAid First Strand cDNA synthesis kit
(Bionovas, distributed by Scientific Biotech Corp., Taipei, Taiwan). qPCR was performed on
an ABI StepOneTM Real-Time PCR System (Applied Biosystems, distributed by Creative
LifeSciences, Taipei, Taiwan) using SYBR Green (ABclonal Technology, distributed by
Interlab Co., LTD., Taipei, Taiwan). Primers for sox2 (F:5’-CACCAACTCCTCGGG AAACA-
3′; R:5′-AATGGTCGCTTCTCGCTCTC-3′), her2 (F:5′-GAGATGGCTGTTATTTACCT-3′;
R:5′-TTGGGTTTGTTTGTGAGC-3′), and GAPDH (F:5′-ACCCGTGCTGCTTTCTTGAC-3′;
R:5′-GACCAGTTTGCCGCCTTCT-3′) were used. Gene expression levels were normalized
to GAPDH and assessed using comparative Ct (40 cycles), according to the manufacturer’s
instructions (7500 Real-Time PCR System, Applied Biosystems, distributed by Creative
LifeSciences, Taipei, Taiwan).

Statistical analysis was performed using Student’s t-test with Microsoft Excel 2016.
The significance level was set at p < 0.05. All reactions were performed in triplicate for
each sample.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24021733/s1, Figure S1, DN-Bmpr1aa and DMH1
are sufficient to inhibit the expression of id3 and msx1b; Figure S2, Blocking BMP signaling from 4 hpf
inhibits the development of epidermal ectoderm; Figure S3, Inactivation of BMP-Smad signaling does
not affect cell apoptosis.
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