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Abstract: Screening for pathogenic variants in the diagnosis of rare genetic diseases can now be
performed on all genes thanks to the application of whole exome and genome sequencing (WES, WGS).
Yet the repertoire of gene–disease associations is not complete. Several computer-based algorithms
and databases integrate distinct gene–gene functional networks to accelerate the discovery of gene–
disease associations. We hypothesize that the ability of every type of information to extract relevant
insights is disease-dependent. We compiled 33 functional networks classified into 13 knowledge
categories (KCs) and observed large variability in their ability to recover genes associated with
91 genetic diseases, as measured using efficiency and exclusivity. We developed GLOWgenes, a
network-based algorithm that applies random walk with restart to evaluate KCs’ ability to recover
genes from a given list associated with a phenotype and modulates the prediction of new candidates
accordingly. Comparison with other integration strategies and tools shows that our disease-aware
approach can boost the discovery of new gene–disease associations, especially for the less obvious
ones. KC contribution also varies if obtained using recently discovered genes. Applied to 15 unsolved
WES, GLOWgenes proposed three new genes to be involved in the phenotypes of patients with
syndromic inherited retinal dystrophies.

Keywords: rare diseases; genetic diagnosis; sequencing; candidate gene prediction; variant prioriti-
zation; network biology

1. Introduction

A usual first step in biomedicine is now to use omics to provide a first bunch of
hypotheses on gene or protein associations with phenotypes that are, afterward, prioritized
for further exploration. In this sense, rare diseases (RDs) are probably the paradigm in the
application of bioinformatics tools for the prioritization of gene–disease associations. They
are mainly Mendelian genetic diseases, and, in their diagnosis, it is now possible to screen
the whole coding region or the entire genome using whole exome and genome sequencing
(WES and WGS) in search of causative variants. This extracts, for every patient, a large
number of candidate variants beyond the genes already associated with the disease [1],
including not only pathogenic mutations but also variants of uncertain significance and
variants with conflicting interpretations. Their diagnosis needs to be boosted in order to
increase the low ratio of solved cases [2]. The challenge is to overcome the small cohort
sizes and the low percentage of cases expected to be explained by unknown disease-causing
genes.
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Under this scenario, several computational disease–gene association prediction meth-
ods and databases have been developed to help in the prioritization of candidate genes.
They can be divided into two general classes: (1) seed-based methods, which do not
have a priori information about the interrogated trait but the functional landscape of a set
of genes (seeds) provided by the user [3–7]; and (2) predefined disease methods [8–10],
which initiate the hunt from terms defining the disease. While seed-based algorithms are
more flexible in the phenotype definition, predefined-disease methods take advantage
of the knowledge accumulated for the pathologies. For both, the strategy for extracting
new associations can also vary [11] from using text-mining techniques (DisGeNET [8],
DISEASES [9], ENSEMBLE [12]), network-based methods (ToppNet [4], GUILDify [5],
SNOW [13]), machine learning methods (ProDiGe [14], Phenolyzer [10]), or algorithms
based on functional similarity (Endeavour [3], ToppFun [4]). They have in common the
ability to screen large datasets to extract hidden associations. These sources can be of
different natures, ranging from literature to different flavors of omics data, including their
integration [5,7], which has been reported to increase accuracy [15,16]. On top of this,
resources such as PanelApp [17] provide manually curated candidate genes for genetic
diseases based on community feedback.

A major challenge in the application of this type of resource to the diagnosis of RDs
involves strengthening the discovery in both diseases poorly studied, so, lacking a solid
background of knowledge, as well as in diseases where the missing genes have less obvious
relationships to the known repertoire. With this goal in mind, we compiled several types
of datasets with gene and protein annotation and tested their ability to retrieve relevant
gene–disease associations on many RDs using network biology. With the conclusions,
we developed a seed-based algorithm, called GLOWgenes, which is able to adapt its
performance to every queried phenotype as well as to potentiate the extraction of less
obvious associations. GLOWgenes has been benchmarked against current available tools,
and it has been implemented to work integrated into a variant calling pipeline in the
diagnosis of RDs.

2. Results
2.1. A Compilation of Heterogeneous Gene–Gene Functional Association Networks

We wanted to build a diverse and rich gene functional information framework to be
used for the prediction of new gene–disease associations. Thus, we compiled 33 publicly
available sources with distinct functional information about human genes (Table S1). Of
them, 22 are in a gene–gene network format [18–31], and 11 are gene annotations [32–39]
that were transformed into co-annotation networks, with genes as nodes and pairwise
relationships as edges (see Methods). When available, we coded the strength of the gene–
gene associations using weighted edges (Table S1). We classified the 33 networks into
13 knowledge categories (KCs) covering different aspects of cell regulation and knowl-
edge generation (Figure 1A, Table S1). The KCs include: (i) gene co-citation in literature,
(ii) coessentiality as genetic interactions, (iii) co-expression, (iv) colocalization in cellular
organelles, (v) protein complexes, (vi) targets drug sharing, (vii) shared gene functional
annotation, (viii) features from genomic localization throughout evolution, (ix) shared phe-
notypic annotation from mouse models, (x) participation in molecular pathways, (xi) shared
human gene phenotypes, (xii) protein–protein physical interactions (PPIs), and (xiii) regula-
tion of gene expression. Regarding the number of sources in each KC, co-essentiality with
five datasets is the KC with more contributing sources, and STRING [18], the database that
contributes more datasets spread over five KCs, is in two of them alone (co-citations and
genomic features). The networks have different sizes and shapes as shown by the number
of nodes, edges, and clustering coefficient (Figure 1B). The regulatory database RegNet-
work [30] has the highest number of nodes, while data provided by CRISPR screenings
have the largest number of associations. The co-citation network from STRING stands out
with the second largest number of nodes and edges, having a low clustering coefficient,
which suggests a hub-based connectivity. A grouping based on the overlap coefficients
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recovers the functional associations of the networks fitting quite well with our classification
into KCs (Figure S1).

Int. J. Mol. Sci. 2023, 24, 1661 3 of 21 
 

 

regulatory database RegNetwork [30] has the highest number of nodes, while data pro-
vided by CRISPR screenings have the largest number of associations. The co-citation net-
work from STRING stands out with the second largest number of nodes and edges, having 
a low clustering coefficient, which suggests a hub-based connectivity. A grouping based 
on the overlap coefficients recovers the functional associations of the networks fitting 
quite well with our classification into KCs (Figure S1). 

 
Figure 1. Composition of knowledge categories (KCs) and their network properties. (A) 13 KCs
grouping 33 datasets. The pie chart indicates the number of source contributors per KC, ranging from
one (drug sharing, co-citation, and mouse models) to five (co-essentiality). (B) Network attributes of
the 33 networks generated from the compiled datasets. Here we present number of nodes, number of
edges, the mean of their clustering coefficient, and whether edges are weighted or not. Color code is
assigned according to their KC.
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2.2. KCs Show Different Capabilities for the Recovery of Gene-Phenotype Associations

In a guilt-by-association approach, functional networks are a useful tool to associate
genes with new functions or phenotypes based on their neighborhood [40]. We aimed to
assess the capability of the different KCs to recover the information from gene–disease
associations. To perform this assessment, we selected 91 gene sets (or panels) used in
the diagnosis of genetic diseases, classified into 20 disease families, from the PanelApp
resource [17] (see Methods, Table S2) and applied a random walk with restart (RWWR)
model [41] to every network using a training subset with 70% of the genes. The remaining
genes of the gene sets (30%) were used to validate the prediction capability of each network
by calculating two parameters: (1) efficiency (recall), reflecting the true associations caught
between genes and phenotype and (2) exclusivity, or capacity to recover genes others cannot,
measured as the mean gene specificity [42]. Both parameters are represented as the average
of a 20-fold performance. For every KC, we select a single individual network as the best
representative based on its area under the precision–recall-gain analysis (AUPRG) [43] (see
Methods). This selection varies for every disease, particularly in the regulation networks
(Figure S2).

To compare KCs, we calculated the efficiency and exclusivity of their best-performing
networks at the n-top, taking n as the number of genes in the input disease panel. In a
general view, KC efficiency varies substantially even within diseases of the same family
(Figure 2A). In Figure 2A, KCs are sorted by their overall performance. Generally, pheno-
type and co-citation KCs achieve the best efficiency, although all KCs show, alternatively, a
high relevance in particular diseases (Figure S3). Some KCs work well in specific disease
families: complexes in ciliopathies (Wilcoxon signed-rank test, WST, p-value < 0.001), drug
sharing in tumor syndromes (WST, p-value < 0.001), or co-essentiality in metabolic disorders
(WST, p-value < 0.001) (Figures 2A and S4). Remarkably, there is a high intrafamily disease
variation with KCs outperforming the general trend for particular diseases (Figure S5). A
focus on the efficiency for four distinct diseases (pilot diseases) accentuates the differential
importance of specific KCs (Figure 2B).

We also calculated the exclusivity of KCs recovering gene–disease associations at n-top
to measure their capacity to detect genes uniquely. The scenario here is much more diverse
than that observed with the efficiency; there are no KCs that concentrate the exclusivity, but
all are important in almost every disease family (Figure 2C and Figure S6). Interestingly,
some KCs with low and medium overall recall, such as regulation or mouse phenotypes
(Figure 2A), increase their importance in exclusivity having third and fourth best general
performance, respectively (Figure 2C). On the other hand, in terms of exclusivity, other
KCs are globally downgraded compared to efficiency performance, as is the case of PPIs,
falling from fourth to 11th place (Figure 2C).

Figure 2D displays a close look at the efficiency and exclusivity of KCs in the recovery
of genes associated with our four pilot diseases. We observe no clear correlation between
efficiency and exclusivity, but instead we found several KCs with very low efficiency but
high exclusivity.
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Figure 2. Disease-dependent performance of heterogeneous knowledge categories (KC) to recover
gene–disease associations. (A) Heatmap representing the efficiency of every KC (x axis) in recovering
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genes in 91 disease gene sets from PanelApp (y axis). Efficiency is measured as the recall at top n
(gene set size). Only genes with high and moderate evidence status at PanelApp (Green and Amber)
were considered. Diseases are classified into families. Disease families with only one gene set were
discarded for plotting purposes (seven gene sets). Diseases within families are sorted according to
their similarity in the efficiency pattern using hierarchical clustering. KCs were also sorted according
to median recall levels across disease gene sets. (B) Ranking of KC efficiency for four selected diseases
(pilot diseases). (C) Heatmap representing the exclusivity of every KC (x axis) in gene recovery in 91
disease gene sets from PanelApp (y axis). Exclusivity is calculated as the normalized value of the
mean gene specificity of genes at top n (gene set size). For representation purposes, disease filtering
and plot layout were performed as in (A). (D) Scatter plot representing KC efficiency versus KC
exclusivity for four selected diseases.

2.3. The History of Acquired Knowledge on a Disease Influences KCs Contribution to the Recovery
of Disease-Associated Genes

Since the discovery rate of gene–disease associations can vary over the years depend-
ing on several factors (disease prevalence, genetic heterogeneity, or scientific/monetary
efforts), we hypothesize that the accumulated knowledge on each disease at the time of
analysis may be also an aspect to be taken into account in the gene discovery process.
Thus, we tested whether the performance of KCs in recovering genes for a particular
disease changes if time is also considered. Thus, using 246 gene sets describing diseases
and phenotypes from DisGeNET [44] (see Methods), we compared KC performance in
recovering genes using: (1) 30% of the genes chosen randomly in a 20-fold cross-validation
and (2) genes recently discovered (time-aware validation) (Figure 3A). Comparisons were
made using an integration score that considers efficiency and exclusivity (see Methods).

Using the time-aware approach, we observe a strong decrease in the performance of the
KC co-citation (WST, p-value = 3.21 × 10−25) (Figure 3B). The same trend is reported for the
KCs’ functional annotation and drug sharing (WST, p-values = 5.22 × 10−5 and 2.71 × 10−9,
respectively). On the other hand, other KCs such as regulation and co-essentiality increase
their capacity to detect recent gene–disease associations (WST, p-values = 4.42 × 10−23

and 1.53 × 10−14, respectively). To illustrate these results, we selected the four DisGeNET
gene sets with the most dramatic changes in KC performance (Figure 3C and Methods).
As shown above, co-citation displays a severe decrease in its performance for all four
diseases using the time-aware validation. For the rest of the KCs, the patterns are highly
variable. Thus, genes recovered for attention deficit hyperactivity disorder seem to be
caught mainly by KCs co-expression, co-essentiality, colocalization, and drug sharing. In
coronary heart disease, with a validation cut-off at year 2012, co-citation continues to play a
predominant role followed by protein complexes and colocalization. In prostate carcinoma,
coessentiality, regulation, and canonical pathways information overtake co-citation, whose
influence using validation on random genes was 50% of the total. The case of toxic hepatitis
is especially striking, with the new pattern conserving the same trend but with a significant
increase in regulation as KC with more potential to detect late insights (Figure S7).
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special capabilities of every KC to recover genes associated with specific phenotypes. 

Figure 3. Time-aware evaluation of the contribution of knowledge categories (KC) in recovering genes
associated with genetic diseases. (A) A time-aware evaluation approach is compared to an evaluation
based on a random partition of the initial gene set in assessing the impact of KC contribution in
the gene recovery associated with genetic diseases. Time-aware evaluation consists of dividing the
gene set into training and testing subsets based on the year in which genes were associated with
disease. The training set is composed by the older genes, and the testing subset by the newer. The
KC importance is measured using the integration score, calculated as the product of efficiency and
exclusivity of KC. (B) Comparison of integration scores when considering random (brown line) and
time-aware (green line) approaches for 246 curated disease/phenotype gene sets extracted from
DisGeNET. Mean recall levels and error bars are represented. KCs are sorted based on median
integration scores at random evaluation. (C) Four disease gene sets ranked in the top 10 when sorted
by additive KC variation. Integration scores for random (brown line) and time-aware (green line)
approaches are shown.

2.4. A Disease-Aware Algorithm to Integrate Several Sources of Knowledge

As the contribution of KCs in the recovery of causing genes is disease-specific, we
developed a novel algorithm, named GLOWgenes, which adapts its performance to the
special capabilities of every KC to recover genes associated with specific phenotypes.
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Thus, given a gene set associated to a particular disease (GAD), or any trait of interest,
GLOWgenes applies two steps in parallel (Figure 4): (1) evaluates performance of each
network (N = 33) in recovering genes from the gene set (step repeated 20 times), where the
algorithm performs a RWWR for all networks using 70% of the genes as seeds, calculates
KC weights based on their efficiency and exclusivity using the rest of the genes from
the gene set (test genes), and chooses the network with best performance of each KC. If
provided, seeds and test genes can also be defined using a cut-off defined by the year of
publication of the gene-disease associations; and (2) for every KC (using the best network
from each selected in step 1), apply RWWR on the whole set of GADs to rank all genes.
Finally, GLOWgenes uses KC weights (step 1) to modulate the gene rankings (step 2) and
produce a single gene ranking, in which genes in the GAD have a value of zero, and the
rest are sorted in descending order with value 1 as the most associated.
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We compared our disease-aware integration strategy with two widely used alterna-
tive approaches for disease candidate gene prediction (Figure 5A): (1) integration of da-
tasets into a composite network prior to gene prioritization [15,45,46] and (2) combination 
of multiple rank lists using order statistics [3,47,48], represented by two methods, data 
fusion [47] and robust rank aggregation [3,48]. We applied these three methods, and ours, 
to disease gene sets from PanelApp. To evaluate the predictive capability in a gene-dis-
covery scenario, we used their collection of candidate genes, called red genes (RGs), as 
validation sets. A total of 63 PanelApp gene sets, with more than 10 RGs, were used. Recall 

Figure 4. General schema of the GLOWgenes algorithm. GLOWgenes takes as input a set of genes
associated with a disease (GAD) and performs two steps in parallel: (1) Step 1, the disease-aware
network evaluation (red arrows), where GADs are randomly sorted into test (green dots) and training
(grey dots). Efficiency (blue) and exclusivity (orange) are calculated for every knowledge category
(KC) and an integration score is calculated. The integration scores merge efficiency and exclusivity
obtained for the best performing KC network; (2) Step 2, gene ranking for each KC (purple arrows),
where GADs are propagated in every best performing network (Step 1) using random walk with
restart (RWWR) algorithm, producing a ranking of all genes for every KC (shown in different colors).
KCs’ integration scores and KCs’ gene rankings are integrated into a GLOWgenes gene ranking as
the KC performance-weighted average of normalized gene scores.

We compared our disease-aware integration strategy with two widely used alternative
approaches for disease candidate gene prediction (Figure 5A): (1) integration of datasets
into a composite network prior to gene prioritization [15,45,46] and (2) combination of
multiple rank lists using order statistics [3,47,48], represented by two methods, data fu-
sion [47] and robust rank aggregation [3,48]. We applied these three methods, and ours, to
disease gene sets from PanelApp. To evaluate the predictive capability in a gene-discovery
scenario, we used their collection of candidate genes, called red genes (RGs), as validation
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sets. A total of 63 PanelApp gene sets, with more than 10 RGs, were used. Recall was
calculated at various n-top genes. Using the same input information for all four algorithms
(see Methods), the results show that our disease-aware integration approach achieves
the best average performance across all disease gene sets, with a mean AUPRG = 0.92
(Figure 5B) outperforming the rest of the data integration approaches together in 52% of the
diseases, looking only at the first 16 predicted genes (n-top = 16), and in 80% of the diseases
considering the first 256 genes (n-top = 256) of the rankings (Figure 5C). The composite
network performed second in the global ranking with 10 and 32 diseases with the best and
second-best recalls, respectively, considering the same number of genes as the validated set
(Figure S8).
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Figure 5. Benchmarking of three data integration approaches for disease candidate gene prediction.
(A) General schema of three approaches for the integration of various datasets applied to the prior-
itization of phenotype-associated genes. In red, the composite network approach first merged the
available networks into a composite network, (1) that is the subject of the modeling and scoring step
(2) to generate the gene ranking. In blue, the data fusion approach applies first modeling and scoring
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in every dataset (1) to merge them into a unique ranking using order statistics (2). In green, GLOW-
genes approach takes two steps, the evaluation of the performance of every network (1) and the
modeling and scoring of the networks producing a ranking for each one (2). In a third step, (1) and
(2) are merged to produce a single gene ranking (3). (B) Recall at various n-top of the performance of
data integration methods. Precision–recall-gain curve associated area (AUPRG) is shown for every
method. Methods are colored based on the types of approaches described in (A). (C) Percentage of
diseases (PanelApp disease gene sets) for which each method performed best, measured at various
n-top. Methods are colored based on the types of approaches described in (A).

2.5. Comparative Assessment of Disease Candidate Gene Prioritization Methods

To extend the evaluation of GLOWgenes beyond the integration method, we com-
pared its performance against other tools that predict disease–gene associations using
a list of genes as seeds and do not need a preselection of candidates, called here seed-
association (SA) methods. In addition, we introduced as external references, methods
that predict associations using disease terms instead of gene lists, called here predefined
disease (PD) methods [9,44,49]. In total, we selected six SA methods, including: DIA-
MOnD [6], Guildifyv2.0 [5], ToppGenet-net [4,50], ToppGenet-fun [4,51], Endeavour [3],
and GeneMANIA [7], and three PD methods, including: DISEASES database [9], BE-
FREE [44,49] (as extracted from DisGeNET), and predictions from DisGeNET (see Methods,
Tables S3 and S4). First, we tested the ability to recover genes with well-supported evidence
in their association to the disease, represented by the PanelApp Green–Amber validation
genes (GAG) in our four pilot diseases. Figure 6A shows that PD methods overall outper-
form SA methods in all four diseases with better recall levels at a different number of top
genes selected. Only GLOWgenes has similar or better recall (e.g., in cardiomyopathies)
than DisGeNET, BEFREE, and DISEASE predictions, and performs widely better than
its counterpart methods, with only ToppGene [4] reaching similar recall levels in severe
microcephaly (Figure 6A).

Next, we carried out a similar benchmark using PanelApp RGs of the same diseases
as a proxy to test the ability to catch new gene–disease associations beyond the current
knowledge. We observe a general decrease in the recall obtained by all methods, with SA
and PD methods performing similarly (Figure 6B). In this scenario, GLOWgenes outper-
forms all other methods in three out of four evaluated diseases and achieves similar recall
levels for hearing loss. After GLOWgenes, BEFREE, DisGeNET, GeneMANIA, ToppGene,
and Endeavour ranked in alternate positions. GLOWgenes is also the method that captures
more unique genes (Figure S9). Among all SA tools considered, only three of them provide
programmatic access options for automatic task execution (NetCombo from GUILDIFY2.0,
DIAMOnD, and GeneMANIA). We compared their performance using RG validation sets
for 63 PanelApp disease gene sets, with GLOWgenes obtaining the best recall across all
diseases globally (Figure S10).



Int. J. Mol. Sci. 2023, 24, 1661 11 of 21Int. J. Mol. Sci. 2023, 24, 1661 11 of 21 
 

 

 
Figure 6. Benchmarking of tools for disease candidate genes prioritization. (A) Comparative evalu-
ation of 10 tools for the prioritization of gene disease candidates using Green–Amber genes from 
PanelApp (GAGs, high evidence disease-associated genes) for validation in four selected diseases 
(pilot diseases). Recall levels at different n-top genes are represented. (B) Same to A, but using red 
genes from PanelApp (RGs, low-evidence disease-associated genes) as validation sets. 

2.6. Gene Discovery in Undiagnosed Cases with Syndromic Inherited Retinal Dystrophy Using 
GLOWgenes 

A major application of gene-phenotype discovery methods is to propose candidate 
genes to be implicated in RDs. GLOWgenes is adapted to annotate a list of variants pro-
vided in a table format as it is coupled to our reanalysis pipeline [52]. Here, we have ap-
plied GLOWgenes for the discovery of candidate genes involved in syndromic forms of 
inherited retinal dystrophies (sIRD). As a proof of concept, 15 unsolved cases with sIRD 
and WES data available from the cohort of the Fundación Jiménez Díaz University Hos-
pital (FJD-UH, Madrid, Spain) [2] were analyzed. These samples were previously ana-
lyzed at the FJD-UH with no variants found fitting the phenotype in known sIRD-associ-
ated genes (sIRD-virtual-panel with 198 genes used in the diagnostic protocol for sIRD, 
Table S5). After variant calling [52] and filtering by: (i) quality (Q = 100, DP = 10), (ii) pre-
dicted pathogenicity (CADD > 15), and (iii) allele frequency (gnomADg_AF_POPMAX < 
0.05/NA), we obtained an average of 1562 variants per sample in around 1000 genes with-
out previous association to sIRDs. GLOWgenes was run using the sIRD-virtual-panel as 
seeds to provide a gene ranking that was used to prioritize the filtered variants of each 
case. 

Figure 6. Benchmarking of tools for disease candidate genes prioritization. (A) Comparative eval-
uation of 10 tools for the prioritization of gene disease candidates using Green–Amber genes from
PanelApp (GAGs, high evidence disease-associated genes) for validation in four selected diseases
(pilot diseases). Recall levels at different n-top genes are represented. (B) Same to A, but using red
genes from PanelApp (RGs, low-evidence disease-associated genes) as validation sets.

2.6. Gene Discovery in Undiagnosed Cases with Syndromic Inherited Retinal Dystrophy Using
GLOWgenes

A major application of gene-phenotype discovery methods is to propose candidate
genes to be implicated in RDs. GLOWgenes is adapted to annotate a list of variants
provided in a table format as it is coupled to our reanalysis pipeline [52]. Here, we have
applied GLOWgenes for the discovery of candidate genes involved in syndromic forms of
inherited retinal dystrophies (sIRD). As a proof of concept, 15 unsolved cases with sIRD
and WES data available from the cohort of the Fundación Jiménez Díaz University Hospital
(FJD-UH, Madrid, Spain) [2] were analyzed. These samples were previously analyzed at
the FJD-UH with no variants found fitting the phenotype in known sIRD-associated genes
(sIRD-virtual-panel with 198 genes used in the diagnostic protocol for sIRD, Table S5). After
variant calling [52] and filtering by: (i) quality (Q = 100, DP = 10), (ii) predicted pathogenicity
(CADD > 15), and (iii) allele frequency (gnomADg_AF_POPMAX < 0.05/NA), we obtained
an average of 1562 variants per sample in around 1000 genes without previous association
to sIRDs. GLOWgenes was run using the sIRD-virtual-panel as seeds to provide a gene
ranking that was used to prioritize the filtered variants of each case.

Thus, by interrogating the top 300 predicted gene list (Table 1), we yielded a total
of three candidate genes with pathogenic variants that fitted the phenotype in two pa-
tients with sIRD. We found two heterozygous variants in Case 1 (Table 1). First, we found
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a pathogenic missense variant in the SHH gene previously reported to cause holopros-
encephaly type 3 (MIM:142945), microphthalmia with coloboma type 5 (MIM:611638),
schizencephaly (MIM:269160), or single median maxillary central incisor (MIM:147250) and
with no clear mode of inheritance. Second, we found a heterozygous pathogenic stop-gain
variant in the DNAH5 gene, a dynein involved in primary ciliary dyskinesia type 3, with or
without situs inversus (MIM:608644) and reported as autosomal recessive.

Table 1. Syndromic inherited retinal dystrophy candidate genes captured by GLOWgenes that hold
pathogenic/likely pathogenic variants and fulfill phenotype in cases analyzed by WES. Variant
pathogenicity is coded according to ACMG guidelines as: 1 (benign), 2 (likely benign), 3 (uncertain
significance), 4 (likely pathogenic), and 5 (pathogenic).

Family Gene Variant Consequence CADD Max POP
Freq Pathogenicity Genotype Inheritance

Case 1 SHH NM_000193.2:c.676G>A Missense
variant 27.3 8.8 × 10−05 5 0/1 AD

Case 1 DNAH5 NM_001369.2:c.13486C>T Stop gained 59 1.34 × 10−04 5 0/1 AR

Case 2 GLI1 NM_005269.2:c.762C>T Splice region
variant 15.05 6.67 × 10−05 4 0/1 NA

In a second case (Case 2, Table 1), we found a heterozygous likely pathogenic variant
in the GLI1 gene that has been associated with two types of polydactyly (phenotype present
in our patient) and reported as autosomal recessive (source: OMIM database).

Regarding the contribution of KCs in the prioritization of the three genes proposed,
reporting only those reaching >50% of the total score (Figure S11), SHH was found mainly
by the signal provided by co-citation (46%) and mouse models (22%) networks, DNAH1 by
the co-citation (33%), co-expression (29%), and mouse models (19%) networks, and GLI1 by
the co-citation (26%), PPIs (19%), and regulation (10%) networks.

3. Discussion

Around 50% of patients with RDs do not have an accurate diagnosis [53], and there
is an urgent need to reduce this gap [54]. One limitation is the lack of certainty about the
clinical significance of the genomic variation data [1], with 40% of the variants annotated
as having uncertain significance in the ClinVar database [54]. If all genes were suspicious, a
regular WES analysis may detect around 20,000 single nucleotide variants [55], 200 of them
very rare (MAF < 0.1%), and an average of 30 not detected in any other individual [56].
All these numbers describe a scenario in which the use of WES and WGS to diagnose RD
patients with causative variants outside the current knowledge needs the application of
prioritization algorithms. Current major national and international initiatives focus on the
use of these two sequencing techniques (WES and WGS) to assume discovery [56].

Methods for the prediction of new gene–disease associations evolved from those
developed for predicting gene and protein function [57,58] with social network [59] and
data integration at the foundations [60]. The needs are now focused on the development of
specific and accurate resources that overcome the limitations of every area of application.
Here, RDs represent a rather particular challenge. There are over 7000 diseases with
different levels of genetic and phenotype heterogeneity. They are mainly Mendelian, so if
the variant is in the coding DNA, we search for a single gene. Moreover, they generally
have small cohorts available, so a clear genotype–phenotype correlation can be difficult
to find. Thus, RD diagnosis can become a “needle in a haystack” task where the solution
is still far connected to current knowledge. In consequence, to increase their efficiency in
difficult cases, gene–disease prediction methods are encouraged to use new and various
types of functional annotations and combine them accurately [15,16,61,62]. In this study,
we first confirmed that different types of gene–gene functional association networks had
different capabilities in recovering known genes associated with a large collection of
RDs. In terms of efficiency, the co-annotation network using phenotypes, as well as the
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co-citation network using STRING text-mining data, are the best performing sources in
general, with particular diseases having alternative important sources. The high accuracy
of the phenotype-based networks was expected as HPO terms are close in definition to rare
diseases. However, differences are especially evident when considering genes detected
uniquely by one source, which we called exclusivity (Figure 2). This fact might be of
essential importance considering its application to Mendelian diseases.

With needs, limitations, and preliminary results in hand, we developed GLOWgenes
(www.glowgenes.org), a seeds-based algorithm to prioritize candidate genes with the
main application in the diagnosis of RDs using WES and WGS. GLOWgenes applies the
guilt-by-association principle using the RWWR method on multiple networks as different
layers of functional information [62–64], preserving not only the nature of the associations
but also the topology of the networks. GLOWgenes is unique in the sense of evaluating
the performance of different sources in every case to assign weights that are afterward
integrated. We tested our integration method using well-known representatives of this
kind of approach with good results (Figure 3).

A second benchmark was performed comparing GLOWgenes with state-of-the-art
tools to predict gene–disease associations based on seeds. Here, popular PD tools were used
as external references. Using well-known gene–disease associations as testers (GAGs), PD
methods achieved more prediction power than SA algorithms, with GLOWgenes behaving
better than SA tools and similarly to PD tools (Figure 6A). When considering a more
realistic discovery scenario, that is, testing the ability to recover candidate genes (RGs), the
difference in the performance of SA and PD methods is less evident, with GLOWgenes
also at the top of performers (Figure 6B). The main difference between PD and SA tools
is that PD methods cannot be easily adapted to new, or a combination of, phenotypes as
required in genetic syndromes, for instance [65]. In fact, most PD algorithms are based on
text-mining approaches that reward with a good recall but limit their ability to go beyond
current knowledge. In this work, we provide two results that suggest that text-mining
may mask interesting RD candidate genes. First, we observed a dramatic reduction in
the importance of text-mining when trying to highlight recently discovered genes, using
our time-aware partitioning strategy compared to recovering randomly selected genes
(Figure 3). Second, if efficiency is measured in RGs, the methods based on text-mining,
mainly PD methods, reduce their performance (Figure 6B).

Another interesting finding is that, in most cases, SA methods aggregating several
functional sources (GLOWgenes, GeneMANIA, ToppGene, and Endeveour) performed
better than network-based approaches using only PPI information (Guildifyv2.0, DIAMonD,
ToppNet) (Table S4). In general, we observe that GLOWgenes behaves well under any
scenario tested, being also the method catching more genes uniquely. Caveats specific to
these types of approaches include the low overall recall of the algorithms and the accuracy,
variety, and level of coverage of the available functional gene and protein associations.
In their application to the diagnosis of RDs, it must be taken into account that the causal
variants may not be in the coding DNA.

The initial implementation of GLOWgenes that we present here is designed to be
coupled to a pipeline of variant calling and annotation of DNASeq data. GLOWgenes is
now serving candidate genes in the research of RDs in the FJD-UH annotating variants
using our reanalysis FJD-pipeline [52]. Although its first motivation is to contribute to the
genetic diagnosis of RDs, GLOWgenes is a predictor of new gene–disease associations that
can help in other discovery scenarios. For instance, it has also been used in the search for
genomic variants that provide susceptibility to COVID-19 [66]. As a proof of concept, we
provide here the results of the analysis of 15 WES of patients with sIRD. Three genes are
reported here to provide new insights in two sIRD cases. In the first case, we found two
pathogenic variants in heterozygosis involving two genes: SHH and DNAH5. Regarding
the SHH gene, mutations produce a related phenotype, and it has a role in the neurogenesis
of the zebrafish retina [52]. Although the proband’s father carries the same variant, SHH
mutations are described to have a high variability of expression [67]. On the other hand,

www.glowgenes.org
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DNAH5 has been proposed as a candidate gene for retinal dystrophies using a different
method based on the aggregation of variants in unsolved cases compared to controls [1]. In
a second case, we found a monoallelic variant in the recessive gene GLI1, which explains
partially the patient’s phenotype [68]. Further analyses are needed to reach a conclusive
diagnostic in both cases.

In conclusion, this work describes the special needs and limitations in the prioritization
of candidate genes in the diagnosis of RDs using WES and WGS and presents a method
that is hopefully useful to reduce the diagnostic gap of this type of patient.

4. Materials and Methods
4.1. Compilation of Gene-Gene Functional Associations from Public Sources

We gathered functional gene or protein information from various sources [18–39]
to build 33 networks of functional gene–gene interactions (Table S1). The sources with
protein information had no isoform resolution, so a one-to-one correspondence with the
genes can be assumed. Networks were classified into 13 classes, named here as knowledge
categories (KCs) according to the nature of the functional information that they contain
(Table S1). Gene identifiers from sources were all mapped into HGNC gene symbols,
excluding interactions involving genes without HGNC mapping. Weighted edges were
kept and normalized. If unavailable, edge weights were all set up to 1 (Table S1). The
network named HPOext is the resultant network of imputing genes to HPO ancestors from
their more specific annotations as provided by HPO. Gene annotations not represented as
gene or protein relationships were transformed into gene–gene co-annotation networks,
describing genes (nodes) and their functional relationship (edges). Thus, for networks
describing human gene–phenotype similarity using Human Phenotype Ontology (HPO)
terms [32] and phenotype similarity using mouse orthologs from the Mouse Genome
Informatics (MGI) [16], we calculated Jaccard similarity for each pair of genes sharing
at least one HPO term and constructed a null distribution of Jaccard values to compute
z-scores. Significant gene interactions (z-score > 1.96; p-values < 0.05) were selected to
generate the network of phenotypes. Z-score values were used as edge weights. Direct
linkage between genes sharing annotations was used for network construction for the
drug–gene interaction database (DGIdb) [34] and complexes from CORUM [36]. The co-
expression network from COXPRESdb [19] was created considering gene pairs with mutual
rank (MR) co-expression correlations under 2000. The inverse of the MR was used as edge
weights. The ProteomeHD [24] co-expression network was filtered to contain only the top-
scoring 0.5% pairwise gene co-regulations, as recommended. Co-essentiality networks were
derived from: (i) inferred genetic interactions from CRISPR screens by Rauscher et al. [27],
(ii) weighted co-essentiality gene interactions obtained by Kim et al. [29] using CRISPR
essentiality screens from the Avana Project [31]; (iii) gene fitness rank correlation coefficients
calculated using two different RNAi- and CRISPR-Cas9-based screening datasets and
following Pan et al. [35] processing pipeline (rank threshold = 1024; inverse rank threshold
as edge weights); and (iv) genetic interactions from the BIOGRID database [25]. Networks
derived from GO annotation were constructed using semantic similarity from GOGO [37]
for gene pairs sharing at least one GO term. Semantic similarity scores were used as edge
weights. DoRoThea evidence levels were transformed into numeric values for regulatory
network weighting normalized to 0–1 range.

4.2. Comparison of Network Topology and Similarity Measurement

Attributes from each compiled network (node size, number of edges, average cluster-
ing coefficient) were calculated using the python package NetworkX.

To compare the different networks, we computed edge-wise network similarity using
the overlap coefficient (OC), also known as the Szymkiewicz–Simpson coefficient. OC is
defined as the edge size of the union of two graphs (G1 and G2) over the size of the smaller
set between G1 and G2.
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4.3. Disease-Associated Gene Sets Used in the Evaluation of KCs and Benchmarks

Assessment of KCs’ importance in gene recovery was performed using disease-
associated gene sets with high and moderate evidence (Green and Amber genes, GAGs)
from the Genomics England PanelApp [17]. Disease-associated genomic regions not fitted
to genes such as copy number variations (CNVs) and short tandem repeats were filtered
out from the panels. We grouped the panels into disease families using the level 2 provided
in the disease classification by PanelApp. Panels lacking classification were manually cu-
rated by clinicians at FJD-UH. Although we observed that disease families might partially
overlap in their definition, for instance with ciliopathies and ophthalmological disorders,
we kept the PanelApp definition.

Alternative integration strategies were benchmarked using PanelApp red genes (RGs),
defined as disease-promising genes that need further evidence for clinical disease diagnosis.
Gene–disease prediction tools were benchmarked using both GAGs and RGs.

When PanelApp gene sets were used, super panels (involving a mix of phenotypes)
were excluded. In the case of using GAGs, only panels with at least 40 GAGs were selected
(91 panels). When RGs were used, only panels with at least 10 RGs were considered
(70 panels).

4.4. Network Signal Propagation

Network propagation of signal (trait or disease annotated) provided by gene sets
was performed using the random walk with restart (RWWR) model proposed by Kohler
et al. [41] as implemented in python software NetworkX and modified to generate a
degree weighted adjacency matrix for subsequent propagation in order to minimize node
degree bias (avoid bias towards highly connected genes). The modification was performed
following the edge weight transformation proposed by Vanunu et al. [69] and used by
others [70,71]. Restarting walk probability (rwp) was set up to 0.75, as suggested by
Vanunu et al. [69]. Convergence is decided when the probability difference between two
consecutive time steps is less than 10−6. Upon convergence, the frequency with which each
node (gene) in the network has been visited is returned as a propagation score vector (S),
which represents the probability of genes being associated with the input gene set. All
networks were treated as weighted, if information was available, so adjacency matrices
were defined providing edge weight attributes.

4.5. Systematic Evaluation of Evidence Networks Representing Heterogeneous
Knowledge Categories

To assess the performance of a network to prioritize phenotype-associated genes,
we performed a 20-fold random sub-sampling validation. Each phenotypic gene set was
randomly split into 70%/30% training/test subsets. Training genes (seeds) were then
propagated in each individual network using the RWWR model, and the resulting gene
ranking was evaluated on test genes. The validation results were averaged over the 20 cross-
validation rounds. Several metrics were calculated to assess the performance of a given
network in a particular disease. Given the high imbalance nature of our dataset (high
negative/positive instance ratio), the overall ranking was evaluated using the precision–
recall analysis. We calculated the Precision–recall-gain [43] curve and its associated area
(AUPRG). The network with the highest AUPRG in each KC is selected as the representative
KC network and used for further analysis. To emphasize the top-ranked genes, instead
of testing true/false separation in the total gene ranking, we also computed recall and
gene specificity at different top-k thresholds. Recall evaluates the efficiency of networks to
prioritize disease genes, while gene specificity is informative of their degree of detection by
particular KCs. Gene specificity was calculated for every true positive gene captured as in
Martinez et al. 2008 [42]. High specificity genes represent genes captured by a single KC
while low specificity genes refer to genes detected by all KCs. The overall KC specificity
level was calculated by averaging gene specificity scores and summarizes the ability of a
KC to detect disease-specific genes, named here as exclusivity.
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4.6. Time-Aware Network Evaluation

The time-aware network evaluation analyses whether the contribution of KCs in
gene recovery for a particular phenotype changes if time is also considered. As input, the
publication year for each gene associated with the phenotype under study must be provided.
GLOWgenes takes that time-sorted list of genes and evaluates each individual source of
evidence (network) using a time-aware validation, which relies on gene publication year to
split gene sets into 70/30 train/test partitions. The oldest genes are used as the training
set to determine the ability of each network to recover the most recently discovered genes
(test set). Partition publication time, metrics, and overall gene prioritization rank using
time-aware mode are provided. Moreover, random vs time-aware network evaluation
statistics are also computed in time-aware mode.

Gene–disease associations from DisGeNET [44] were used in the evaluation of the
time-aware approach. The publication year was recovered from DisGeNET SQLite database,
and time-aware disease gene sets were generated based on the UMLS Concept ID (CUI)
disease classification, comprising phenotype and disease categories. We only considered
gene–disease associations from curated sources (CGI, CLINGEN, GENOMICS_ENGLAND,
CTD_human, PSYGENET, ORPHANET, UNIPROT, GWASCAT, GWASDB, CLINVAR) and
limited the analysis to gene sets with at least 70 genes, with a total of 246 disease gene sets
remaining for time-aware disease candidate gene discovery.

4.7. GLOWgenes Algorithm

GLOWgenes is based on the integration of gene prioritization results from k het-
erogeneous knowledge categories (KCs), called here disease-aware prioritization. Gene
prioritization results from each KC representative network i are integrated into a unified
ranking by incorporating ad-hoc information about their individual performance on the
particular phenotype/disease under study.

The strategy involves three main steps: Step 1. RWWR propagation of n phenotype/
disease-related genes on each individual network result in a gene ranking representing
their association strength to the input gene set. Step 2. Network evaluation and selection
follow the steps listed in the previous section:

• For each network out of the 33 considered in this analysis, we performed a 20×
random cross-validation of phenotype-associated input genes (70/30 training/test).
For each partition:

• The training subset is propagated using a RWWR model.
• The area under the precision/recall gain curve is calculated.
• Networks with the highest mean AUPRG at each KC are selected as KC representative

networks and used for further analysis.
• KC exclusivity and efficiency (recall) are calculated at different top-k for each repre-

sentative KC network.
• Integration scores are calculated as the product of efficiency and exclusivity for each

KC as a measure of the ability to recover input disease-associated genes.

Step 3. RWWR Scores (step 1) of representative KC networks (step 2) are integrated
using the integration scores (step 2). In order to allow for unbiased integration of multiple
networks, gene scores from network i are normalized by subtracting the mean of the
scores of all nodes from the score of node n and then dividing by the standard deviation
of the distribution. The normalized z-scores for representative KC networks are then
merged in a k-n matrix (k = KCs; n = genes) and score imputation is applied for missing
values. Regarding imputation, a gene missing in the evaluation of a KC takes the minimum
normalized score observed for a gene in that KC. Disease-aware integration of the k KC
representative networks is performed by weighing the gene z-scores in each network
using the performance factor obtained from the evaluation of i network and subsequent
combination of ranks by averaging these weighted scores. A final overall gene ranking is
generated. GLOWgenes is available at www.glowgenes.org.

www.glowgenes.org
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4.8. Evaluation of Alternative Approaches for Data Integration in Gene Discovery

We compared the integration approach used by GLOWgenes (disease-aware integra-
tion) to two common strategies for network-based data integration in gene discovery: the
fusion of rankings generated by individual modeling of datasets by order statistics [3,47,48]
and the construction of a composite network for subsequent modeling [15,45,46]. Regarding
the first, we evaluated two rank aggregation algorithms based on order statistics: (a) the op-
timization of the Stuart algorithm [72] by Aerts [47,63] and implemented in Endeavour [3]
and (b) the Robust Rank Aggregation (RRA) algorithm [48]. We ran the implementations
of both algorithms using the R package RobustRankAggreg. For the network integration
strategy, we constructed a composite network using our 33 defined networks by adapting
the most optimal configuration of a composite network described by Huang et al. [15].
Selection of edges supported by at least two sources from different KCs generated a compos-
ite network containing 4,509,215 edges and 19,302 nodes. Alternative strategies were run
across 63 PanelApp GAG gene sets and validated in RG genes. Recall-at-k was measured to
quantify what fraction of all the disease genes are ranked within the first k predicted genes
(k = 8, 16, 32, 64, 128, 256, 512). The best integration methods are selected at recall-at-n
(validation set size). The mean area under the precision–recall curve (AUPRG) across gene
sets was also calculated for each approach.

4.9. Benchmark of Tools for the Prioritization of New Disease-Related Genes

For benchmarking, we selected tools that met four criteria: (a) accessible, (b) updated
since 2016, (c) predicting gene–disease associations from a user-input set of genes previously
linked to a phenotype (seeds), (d) no need for an implicit set of user-input candidate genes to
operate. A total of six seed-association tools were selected and run on four pilot disease gene
panels (described before) using their default parameters: Endeavour, which uses a whole-
genome approach [3], ToppNet algorithm, which uses ToppGenet for selection of the first
neighboring genes in PPI as candidates (ToppGenet—network based, ToppGenet-net) [4,50],
ToppGene algorithm, which uses also ToppGenet for candidate selection (ToppGenet—
functional similarity, ToppGenet-fun) [4,50], NetComb-GUILDIfy [5], the DIAMOnD [6]
version implemented in GUILDIFY2.0 web server, and GeneMANIA using its own API [73].
In all cases, a ranked list of candidate genes was derived to evaluate their performance on
GAGs and RGs validation sets.

We included as external references in the benchmark, pre-defined disease methods
integrating gene–disease associations: DISEASES [9] and DisGeNET [44]. In the case of
DisGeNET, we separate predictions/inferences from curated sources in order to avoid
knowledge bias during benchmarking. We performed a recalculation of gene–disease
association scores from pre-computed DisGeNET data by removing the proportional score
associated to curated evidence, generating our DisGeNET-noncurated dataset. More-
over, we evaluated just DisGeNET predictions by considering only associations derived
from biomedical literature using BEFREE (DisGeNET-BEFREE). DISEASES, DisGeNET-
noncurated, and DisGeNET-BEFREE pre-computed datasets were interrogated for each
evaluated PanelApp disease by selecting the gene–disease associations involving disease
terms enriched in the corresponding PanelApp gene set (FDR Fisher-test < 2 × 10−16). To
make the seed-association and pre-defined disease comparable, we also filtered out the
computed rank list by removing genes contained in the PanelApp gene set under study
(used as seeds for seed-associated methods).

The main characteristics and sources of evidence for both seed-association and pre-
defined disease methods are listed in Tables S2 and S3. All methods were evaluated and
compared across four selected diseases using both GAG and RG genes as validation sets.
The selected diseases were cardiomyopathies including childhood onset, hearing loss,
retinal disorders, and severe microcephaly. It was not feasible to use the full set of diseases,
since most tools do not provide programmatic access.

Three SA methods (GeneMANIA, DIAMOnD, and NetCombo-GUILDIfy) provide
programmatic access, so they were run on 63 PanelApp disease gene sets using RGs as vali-
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dation sets. Mean recall and error at different top-k were calculated for each approach. The
mean area under the precision–recall curve (AUPRG) was computed for GLOWgenes and
GeneMANIA, but not for DIAMOnD and NetCombo-GUILDIfy, since they just returned
the 500-top rank list of candidate genes.

4.10. Detection of Variants Fitting Patient Phenotype in GLOWgenes Candidates Using WES

We considered a total of 15 WES tests from patients with syndromic inherited retinal
dystrophy (sIRD) phenotypes for clinical application of GLOWgenes. All cases have an
inconclusive genetic diagnosis after clinical analysis of pathogenic variants at known
sIRD-associated genes. We used an in-house pipeline for the detection and annotation
of germline variants [52], available at https://github.com/TBLabFJD/VariantCallingFJD.
Variants were filtered by quality (Q = 100, DP = 10), predicted pathogenicity (CADD > 15),
and low allele frequency (gnomADg_AF_POPMAX < 0.05 or NA). Selected pathogenic WES
variants were prioritized using GLOWgenes sIRD ranking of candidate genes. To generate
this sIRD ranking of candidate genes, we ran GLOWgenes using as seeds the sIRD virtual
gene panel used for diagnosis at FJD-UH, which contained 198 genes. Clinical diagnosis
was re-assessed by analyzing GLOWgenes detected sIRD candidate genes that contained
pathogenic variants in WES cases and considering information on the familiar phenotypic
pattern and variant segregation, when available. Genes detected by GLOWgenes that
overlapped sIRD phenotype were classified as phenotype-matched candidates and selected
for further studies.

4.11. Relative Contribution of Each KC to the Association to Known sIRD Genes

The relative contribution of each KC to the association with known sIRD genes was
calculated for each WES-supported novel sIRD candidate and represented in pie charts
using the GLOWgenes-normalized RWWR integration score for each KC representative
network before KC integration by GLOWgenes.
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