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Abstract: Screening for pathogenic variants in the diagnosis of rare genetic diseases can now be 
performed on all genes thanks to the application of whole exome and genome sequencing (WES, 
WGS). Yet the repertoire of gene–disease associations is not complete. Several computer-based al-
gorithms and databases integrate distinct gene–gene functional networks to accelerate the discovery 
of gene–disease associations. We hypothesize that the ability of every type of information to extract 
relevant insights is disease-dependent. We compiled 33 functional networks classified into 13 
knowledge categories (KCs) and observed large variability in their ability to recover genes associ-
ated with 91 genetic diseases, as measured using efficiency and exclusivity. We developed GLOW-
genes, a network-based algorithm that applies random walk with restart to evaluate KCs’ ability to 
recover genes from a given list associated with a phenotype and modulates the prediction of new 
candidates accordingly. Comparison with other integration strategies and tools shows that our dis-
ease-aware approach can boost the discovery of new gene–disease associations, especially for the 
less obvious ones. KC contribution also varies if obtained using recently discovered genes. Applied 
to 15 unsolved WES, GLOWgenes proposed three new genes to be involved in the phenotypes of 
patients with syndromic inherited retinal dystrophies. 
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zation; network biology 
 

1. Introduction 
A usual first step in biomedicine is now to use omics to provide a first bunch of hy-

potheses on gene or protein associations with phenotypes that are, afterward, prioritized 
for further exploration. In this sense, rare diseases (RDs) are probably the paradigm in the 
application of bioinformatics tools for the prioritization of gene–disease associations. They 
are mainly Mendelian genetic diseases, and, in their diagnosis, it is now possible to screen 
the whole coding region or the entire genome using whole exome and genome sequencing 
(WES and WGS) in search of causative variants. This extracts, for every patient, a large 
number of candidate variants beyond the genes already associated with the disease [1], 
including not only pathogenic mutations but also variants of uncertain significance and 
variants with conflicting interpretations. Their diagnosis needs to be boosted in order to 
increase the low ratio of solved cases [2]. The challenge is to overcome the small cohort 
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sizes and the low percentage of cases expected to be explained by unknown disease-caus-
ing genes. 

Under this scenario, several computational disease–gene association prediction 
methods and databases have been developed to help in the prioritization of candidate 
genes. They can be divided into two general classes: (1) seed-based methods, which do 
not have a priori information about the interrogated trait but the functional landscape of a 
set of genes (seeds) provided by the user [3–7]; and (2) predefined disease methods [8–10], 
which initiate the hunt from terms defining the disease. While seed-based algorithms are 
more flexible in the phenotype definition, predefined-disease methods take advantage of 
the knowledge accumulated for the pathologies. For both, the strategy for extracting new 
associations can also vary [11] from using text-mining techniques (DisGeNET [8], DIS-
EASES [9], ENSEMBLE [12]), network-based methods (ToppNet [4], GUILDify [5], SNOW 
[13]), machine learning methods (ProDiGe [14], Phenolyzer [10]), or algorithms based on 
functional similarity (Endeavour [3], ToppFun [4]). They have in common the ability to 
screen large datasets to extract hidden associations. These sources can be of different na-
tures, ranging from literature to different flavors of omics data, including their integration 
[5,7], which has been reported to increase accuracy [15,16]. On top of this, resources such 
as PanelApp [17] provide manually curated candidate genes for genetic diseases based on 
community feedback. 

A major challenge in the application of this type of resource to the diagnosis of RDs 
involves strengthening the discovery in both diseases poorly studied, so, lacking a solid 
background of knowledge, as well as in diseases where the missing genes have less obvi-
ous relationships to the known repertoire. With this goal in mind, we compiled several 
types of datasets with gene and protein annotation and tested their ability to retrieve rel-
evant gene–disease associations on many RDs using network biology. With the conclu-
sions, we developed a seed-based algorithm, called GLOWgenes, which is able to adapt 
its performance to every queried phenotype as well as to potentiate the extraction of less 
obvious associations. GLOWgenes has been benchmarked against current available tools, 
and it has been implemented to work integrated into a variant calling pipeline in the di-
agnosis of RDs. 

2. Results 
2.1. A Compilation of Heterogeneous Gene–Gene Functional Association Networks 

We wanted to build a diverse and rich gene functional information framework to be 
used for the prediction of new gene–disease associations. Thus, we compiled 33 publicly 
available sources with distinct functional information about human genes (Table S1). Of 
them, 22 are in a gene–gene network format [18–31], and 11 are gene annotations [32–39] 
that were transformed into co-annotation networks, with genes as nodes and pairwise 
relationships as edges (see Methods). When available, we coded the strength of the gene–
gene associations using weighted edges (Table S1). We classified the 33 networks into 13 
knowledge categories (KCs) covering different aspects of cell regulation and knowledge 
generation (Figure 1A, Table S1). The KCs include: (i) gene co-citation in literature, (ii) 
coessentiality as genetic interactions, (iii) co-expression, (iv) colocalization in cellular or-
ganelles, (v) protein complexes, (vi) targets drug sharing, (vii) shared gene functional an-
notation, (viii) features from genomic localization throughout evolution, (ix) shared phe-
notypic annotation from mouse models, (x) participation in molecular pathways, (xi) 
shared human gene phenotypes, (xii) protein–protein physical interactions (PPIs), and 
(xiii) regulation of gene expression. Regarding the number of sources in each KC, co-es-
sentiality with five datasets is the KC with more contributing sources, and STRING [18], 
the database that contributes more datasets spread over five KCs, is in two of them alone 
(co-citations and genomic features). The networks have different sizes and shapes as 
shown by the number of nodes, edges, and clustering coefficient (Figure 1B). The regula-
tory database RegNetwork [30] has the highest number of nodes, while data provided by 
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CRISPR screenings have the largest number of associations. The co-citation network from 
STRING stands out with the second largest number of nodes and edges, having a low 
clustering coefficient, which suggests a hub-based connectivity. A grouping based on the 
overlap coefficients recovers the functional associations of the networks fitting quite well 
with our classification into KCs (Figure S1). 

 
Figure 1. Composition of knowledge categories (KCs) and their network properties. (A) 13 KCs 
grouping 33 datasets. The pie chart indicates the number of source contributors per KC, ranging 
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from one (drug sharing, co-citation, and mouse models) to five (co-essentiality). (B) Network attrib-
utes of the 33 networks generated from the compiled datasets. Here we present number of nodes, 
number of edges, the mean of their clustering coefficient, and whether edges are weighted or not. 
Color code is assigned according to their KC. 

2.2. KCs Show Different Capabilities for the Recovery of Gene-Phenotype Associations 
In a guilt-by-association approach, functional networks are a useful tool to associate 

genes with new functions or phenotypes based on their neighborhood [40]. We aimed to 
assess the capability of the different KCs to recover the information from gene–disease 
associations. To perform this assessment, we selected 91 gene sets (or panels) used in the 
diagnosis of genetic diseases, classified into 20 disease families, from the PanelApp re-
source [17] (see Methods, Table S2) and applied a random walk with restart (RWWR) 
model [41] to every network using a training subset with 70% of the genes. The remaining 
genes of the gene sets (30%) were used to validate the prediction capability of each net-
work by calculating two parameters: (1) efficiency (recall), reflecting the true associations 
caught between genes and phenotype and (2) exclusivity, or capacity to recover genes 
others cannot, measured as the mean gene specificity [42]. Both parameters are repre-
sented as the average of a 20-fold performance. For every KC, we select a single individual 
network as the best representative based on its area under the precision–recall-gain anal-
ysis (AUPRG) [43] (see Methods). This selection varies for every disease, particularly in 
the regulation networks (Figure S2). 

To compare KCs, we calculated the efficiency and exclusivity of their best-perform-
ing networks at the n-top, taking n as the number of genes in the input disease panel. In a 
general view, KC efficiency varies substantially even within diseases of the same family 
(Figure 2A). In Figure 2A, KCs are sorted by their overall performance. Generally, pheno-
type and co-citation KCs achieve the best efficiency, although all KCs show, alternatively, 
a high relevance in particular diseases (Figure S3). Some KCs work well in specific disease 
families: complexes in ciliopathies (Wilcoxon signed-rank test, WST, p-value < 0.001), drug 
sharing in tumor syndromes (WST, p-value < 0.001), or co-essentiality in metabolic disor-
ders (WST, p-value  < 0.001) (Figures 2A and S4). Remarkably, there is a high intrafamily 
disease variation with KCs outperforming the general trend for particular diseases (Figure 
S5). A focus on the efficiency for four distinct diseases (pilot diseases) accentuates the dif-
ferential importance of specific KCs (Figure 2B). 

We also calculated the exclusivity of KCs recovering gene–disease associations at n-
top to measure their capacity to detect genes uniquely. The scenario here is much more 
diverse than that observed with the efficiency; there are no KCs that concentrate the ex-
clusivity, but all are important in almost every disease family (Figures 2C and S6). Inter-
estingly, some KCs with low and medium overall recall, such as regulation or mouse phe-
notypes (Figure 2A), increase their importance in exclusivity having third and fourth best 
general performance, respectively (Figure 2C). On the other hand, in terms of exclusivity, 
other KCs are globally downgraded compared to efficiency performance, as is the case of 
PPIs, falling from fourth to 11th place (Figure 2C). 

Figure 2D displays a close look at the efficiency and exclusivity of KCs in the recovery 
of genes associated with our four pilot diseases. We observe no clear correlation between 
efficiency and exclusivity, but instead we found several KCs with very low efficiency but 
high exclusivity. 
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Figure 2. Disease-dependent performance of heterogeneous knowledge categories (KC) to recover 
gene–disease associations. (A) Heatmap representing the efficiency of every KC (x axis) in recover-
ing genes in 91 disease gene sets from PanelApp (y axis). Efficiency is measured as the recall at top 
n (gene set size). Only genes with high and moderate evidence status at PanelApp (Green and Am-
ber) were considered. Diseases are classified into families. Disease families with only one gene set 
were discarded for plotting purposes (seven gene sets). Diseases within families are sorted accord-
ing to their similarity in the efficiency pattern using hierarchical clustering. KCs were also sorted 
according to median recall levels across disease gene sets. (B) Ranking of KC efficiency for four 
selected diseases (pilot diseases). (C) Heatmap representing the exclusivity of every KC (x axis) in 
gene recovery in 91 disease gene sets from PanelApp (y axis). Exclusivity is calculated as the nor-
malized value of the mean gene specificity of genes at top n (gene set size). For representation pur-
poses, disease filtering and plot layout were performed as in (A). (D) Scatter plot representing KC 
efficiency versus KC exclusivity for four selected diseases. 

2.3. The History of Acquired Knowledge on a Disease Influences KCs Contribution to the 
Recovery of Disease-Associated Genes 

Since the discovery rate of gene–disease associations can vary over the years depend-
ing on several factors (disease prevalence, genetic heterogeneity, or scientific/monetary 
efforts), we hypothesize that the accumulated knowledge on each disease at the time of 
analysis may be also an aspect to be taken into account in the gene discovery process. 
Thus, we tested whether the performance of KCs in recovering genes for a particular dis-
ease changes if time is also considered. Thus, using 246 gene sets describing diseases and 
phenotypes from DisGeNET [44] (see Methods), we compared KC performance in recov-
ering genes using: (1) 30% of the genes chosen randomly in a 20-fold cross-validation and 
(2) genes recently discovered (time-aware validation) (Figure 3A). Comparisons were 
made using an integration score that considers efficiency and exclusivity (see Methods). 

Using the time-aware approach, we observe a strong decrease in the performance of 
the KC co-citation (WST, p-value = 3.21 x 10-25) (Figure 3B). The same trend is reported for 
the KCs’ functional annotation and drug sharing (WST, p-values = 5.22 x 10-5 and 2.71 x 
10-9, respectively). On the other hand, other KCs such as regulation and co-essentiality 
increase their capacity to detect recent gene–disease associations (WST, p-values = 4.42 x 
10-23 and 1.53 x 10-14, respectively). To illustrate these results, we selected the four Dis-
GeNET gene sets with the most dramatic changes in KC performance (Figure 3C and 
Methods). As shown above, co-citation displays a severe decrease in its performance for 
all four diseases using the time-aware validation. For the rest of the KCs, the patterns are 
highly variable. Thus, genes recovered for attention deficit hyperactivity disorder seem to 
be caught mainly by KCs co-expression, co-essentiality, colocalization, and drug sharing. 
In coronary heart disease, with a validation cut-off at year 2012, co-citation continues to 
play a predominant role followed by protein complexes and colocalization. In prostate 
carcinoma, coessentiality, regulation, and canonical pathways information overtake co-
citation, whose influence using validation on random genes was 50% of the total. The case 
of toxic hepatitis is especially striking, with the new pattern conserving the same trend 
but with a significant increase in regulation as KC with more potential to detect late in-
sights (Figure S7). 
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Figure 3. Time-aware evaluation of the contribution of knowledge categories (KC) in recovering genes 
associated with genetic diseases. (A) A time-aware evaluation approach is compared to an evaluation 
based on a random partition of the initial gene set in assessing the impact of KC contribution in the 
gene recovery associated with genetic diseases. Time-aware evaluation consists of dividing the gene 
set into training and testing subsets based on the year in which genes were associated with disease. 
The training set is composed by the older genes, and the testing subset by the newer. The KC im-
portance is measured using the integration score, calculated as the product of efficiency and exclusivity 
of KC. (B) Comparison of integration scores when considering random (brown line) and time-aware 
(green line) approaches for 246 curated disease/phenotype gene sets extracted from DisGeNET. Mean 
recall levels and error bars are represented. KCs are sorted based on median integration scores at ran-
dom evaluation. (C). Four disease gene sets ranked in the top 10 when sorted by additive KC variation. 
Integration scores for random (brown line) and time-aware (green line) approaches are shown. 

2.4. A Disease-Aware Algorithm to Integrate Several Sources of Knowledge 
As the contribution of KCs in the recovery of causing genes is disease-specific, we 

developed a novel algorithm, named GLOWgenes, which adapts its performance to the 
special capabilities of every KC to recover genes associated with specific phenotypes. 
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Thus, given a gene set associated to a particular disease (GAD), or any trait of interest, 
GLOWgenes applies two steps in parallel (Figure 4): (1) evaluates performance of each 
network (N = 33) in recovering genes from the gene set (step repeated 20 times), where 
the algorithm performs a RWWR for all networks using 70% of the genes as seeds, calcu-
lates KC weights based on their efficiency and exclusivity using the rest of the genes from 
the gene set (test genes), and chooses the network with best performance of each KC. If 
provided, seeds and test genes can also be defined using a cut-off defined by the year of 
publication of the gene-disease associations; and (2) for every KC (using the best network 
from each selected in step 1), apply RWWR on the whole set of GADs to rank all genes. 
Finally, GLOWgenes uses KC weights (step 1) to modulate the gene rankings (step 2) and 
produce a single gene ranking, in which genes in the GAD have a value of zero, and the 
rest are sorted in descending order with value 1 as the most associated. 

 
Figure 4. General schema of the GLOWgenes algorithm. GLOWgenes takes as input a set of genes 
associated with a disease (GAD) and performs two steps in parallel: (1) Step 1, the disease-aware 
network evaluation (red arrows), where GADs are randomly sorted into test (green dots) and train-
ing (grey dots). Efficiency (blue) and exclusivity (orange) are calculated for every knowledge cate-
gory (KC) and an integration score is calculated. The integration scores merge efficiency and exclu-
sivity obtained for the best performing KC network; (2) Step 2, gene ranking for each KC (purple 
arrows), where GADs are propagated in every best performing network (Step 1) using random walk 
with restart (RWWR) algorithm, producing a ranking of all genes for every KC (shown in different 
colors). KCs’ integration scores and KCs’ gene rankings are integrated into a GLOWgenes gene 
ranking as the KC performance-weighted average of normalized gene scores. 

We compared our disease-aware integration strategy with two widely used alterna-
tive approaches for disease candidate gene prediction (Figure 5A): (1) integration of da-
tasets into a composite network prior to gene prioritization [15,45,46] and (2) combination 
of multiple rank lists using order statistics [3,47,48], represented by two methods, data 
fusion [47] and robust rank aggregation [3,48]. We applied these three methods, and ours, 
to disease gene sets from PanelApp. To evaluate the predictive capability in a gene-dis-
covery scenario, we used their collection of candidate genes, called red genes (RGs), as 
validation sets. A total of 63 PanelApp gene sets, with more than 10 RGs, were used. Recall 
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was calculated at various n-top genes. Using the same input information for all four algo-
rithms (see Methods), the results show that our disease-aware integration approach 
achieves the best average performance across all disease gene sets, with a mean AUPRG 
= 0.92 (Figure 5B) outperforming the rest of the data integration approaches together in 
52% of the diseases, looking only at the first 16 predicted genes (n-top = 16), and in 80% of 
the diseases considering the first 256 genes (n-top = 256) of the rankings (Figure 5C). The 
composite network performed second in the global ranking with 10 and 32 diseases with 
the best and second-best recalls, respectively, considering the same number of genes as 
the validated set (Figure S8). 

 
Figure 5. Benchmarking of three data integration approaches for disease candidate gene prediction. 
(A) General schema of three approaches for the integration of various datasets applied to the prior-
itization of phenotype-associated genes. In red, the composite network approach first merged the 
available networks into a composite network, (1) that is the subject of the modeling and scoring step 
(2) to generate the gene ranking. In blue, the data fusion approach applies first modeling and scoring 
in every dataset (1) to merge them into a unique ranking using order statistics (2). In green, GLOW-
genes approach takes two steps, the evaluation of the performance of every network (1) and the 
modeling and scoring of the networks producing a ranking for each one (2). In a third step, (1) and 
(2) are merged to produce a single gene ranking (3). (B) Recall at various n-top of the performance 
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of data integration methods. Precision–recall-gain curve associated area (AUPRG) is shown for 
every method. Methods are colored based on the types of approaches described in (A). (C) Percent-
age of diseases (PanelApp disease gene sets) for which each method performed best, measured at 
various n-top. Methods are colored based on the types of approaches described in (A). 

2.5. Comparative Assessment of Disease Candidate Gene Prioritization Methods 
To extend the evaluation of GLOWgenes beyond the integration method, we com-

pared its performance against other tools that predict disease–gene associations using a 
list of genes as seeds and do not need a preselection of candidates, called here seed-asso-
ciation (SA) methods. In addition, we introduced as external references, methods that pre-
dict associations using disease terms instead of gene lists, called here predefined disease 
(PD) methods [9,44,49]. In total, we selected six SA methods, including: DIAMOnD [6], 
Guildifyv2.0 [5], ToppGenet-net [4,50], ToppGenet-fun [4,51], Endeavour [3], and Gene-
MANIA [7], and three PD methods, including: DISEASES database [9], BEFREE [44,49] 
(as extracted from DisGeNET), and predictions from DisGeNET (see Methods, Tables S3 
and S4). First, we tested the ability to recover genes with well-supported evidence in their 
association to the disease, represented by the PanelApp Green–Amber validation genes 
(GAG) in our four pilot diseases. Figure 6A shows that PD methods overall outperform 
SA methods in all four diseases with better recall levels at a different number of top genes 
selected. Only GLOWgenes has similar or better recall (e.g., in cardiomyopathies) than 
DisGeNET, BEFREE, and DISEASE predictions, and performs widely better than its coun-
terpart methods, with only ToppGene [4] reaching similar recall levels in severe micro-
cephaly (Figure 6A). 

Next, we carried out a similar benchmark using PanelApp RGs of the same diseases 
as a proxy to test the ability to catch new gene–disease associations beyond the current 
knowledge. We observe a general decrease in the recall obtained by all methods, with SA 
and PD methods performing similarly (Figure 6B). In this scenario, GLOWgenes outper-
forms all other methods in three out of four evaluated diseases and achieves similar recall 
levels for hearing loss. After GLOWgenes, BEFREE, DisGeNET, GeneMANIA, ToppGene, 
and Endeavour ranked in alternate positions. GLOWgenes is also the method that cap-
tures more unique genes (Figure S9). Among all SA tools considered, only three of them 
provide programmatic access options for automatic task execution (NetCombo from 
GUILDIFY2.0, DIAMOnD, and GeneMANIA). We compared their performance using RG 
validation sets for 63 PanelApp disease gene sets, with GLOWgenes obtaining the best 
recall across all diseases globally (Figure S10). 
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Figure 6. Benchmarking of tools for disease candidate genes prioritization. (A) Comparative evalu-
ation of 10 tools for the prioritization of gene disease candidates using Green–Amber genes from 
PanelApp (GAGs, high evidence disease-associated genes) for validation in four selected diseases 
(pilot diseases). Recall levels at different n-top genes are represented. (B) Same to A, but using red 
genes from PanelApp (RGs, low-evidence disease-associated genes) as validation sets. 

2.6. Gene Discovery in Undiagnosed Cases with Syndromic Inherited Retinal Dystrophy Using 
GLOWgenes 

A major application of gene-phenotype discovery methods is to propose candidate 
genes to be implicated in RDs. GLOWgenes is adapted to annotate a list of variants pro-
vided in a table format as it is coupled to our reanalysis pipeline [52]. Here, we have ap-
plied GLOWgenes for the discovery of candidate genes involved in syndromic forms of 
inherited retinal dystrophies (sIRD). As a proof of concept, 15 unsolved cases with sIRD 
and WES data available from the cohort of the Fundación Jiménez Díaz University Hos-
pital (FJD-UH, Madrid, Spain) [2] were analyzed. These samples were previously ana-
lyzed at the FJD-UH with no variants found fitting the phenotype in known sIRD-associ-
ated genes (sIRD-virtual-panel with 198 genes used in the diagnostic protocol for sIRD, 
Table S5). After variant calling [52] and filtering by: (i) quality (Q = 100, DP = 10), (ii) pre-
dicted pathogenicity (CADD > 15), and (iii) allele frequency (gnomADg_AF_POPMAX < 
0.05/NA), we obtained an average of 1562 variants per sample in around 1000 genes with-
out previous association to sIRDs. GLOWgenes was run using the sIRD-virtual-panel as 
seeds to provide a gene ranking that was used to prioritize the filtered variants of each 
case. 
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Thus, by interrogating the top 300 predicted gene list (Table 1), we yielded a total of 
three candidate genes with pathogenic variants that fitted the phenotype in two patients 
with sIRD. We found two heterozygous variants in Case 1 (Table 1). First, we found a 
pathogenic missense variant in the SHH gene previously reported to cause holoprosen-
cephaly type 3 (MIM:142945), microphthalmia with coloboma type 5 (MIM:611638), 
schizencephaly (MIM:269160), or single median maxillary central incisor (MIM:147250) 
and with no clear mode of inheritance. Second, we found a heterozygous pathogenic stop-
gain variant in the DNAH5 gene, a dynein involved in primary ciliary dyskinesia type 3, 
with or without situs inversus (MIM:608644) and reported as autosomal recessive. 

In a second case (Case 2, Table 1), we found a heterozygous likely pathogenic variant 
in the GLI1 gene that has been associated with two types of polydactyly (phenotype pre-
sent in our patient) and reported as autosomal recessive (source: OMIM database). 

Regarding the contribution of KCs in the prioritization of the three genes proposed, 
reporting only those reaching >50% of the total score (Figure S11), SHH was found mainly 
by the signal provided by co-citation (46%) and mouse models (22%) networks, DNAH1 
by the co-citation (33%), co-expression (29%), and mouse models (19%) networks, and 
GLI1 by the co-citation (26%), PPIs (19%), and regulation (10%) networks. 

Table 1. Syndromic inherited retinal dystrophy candidate genes captured by GLOWgenes that hold 
pathogenic/likely pathogenic variants and fulfill phenotype in cases analyzed by WES. Variant path-
ogenicity is coded according to ACMG guidelines as: 1 (benign), 2 (likely benign), 3 (uncertain sig-
nificance), 4 (likely pathogenic), and 5 (pathogenic). 

Family Gene Variant Consequence CADD 
Max POP 

Freq 
Pathogenicity Genotype Inheritance 

Case 1 SHH NM_000193.2:c.676G>A Missense variant 27.3 8.8 x 10-05 5 0/1 AD 

Case 1 DNAH5 NM_001369.2:c.13486C>T Stop gained 59 1.34 x 10-04 5 0/1 AR 

Case 2 GLI1 NM_005269.2:c.762C>T Splice region variant 15.05 6.67 x 10-05 4 0/1 NA 

3. Discussion 
Around 50% of patients with RDs do not have an accurate diagnosis [53], and there 

is an urgent need to reduce this gap [54]. One limitation is the lack of certainty about the 
clinical significance of the genomic variation data [1], with 40% of the variants annotated 
as having uncertain significance in the ClinVar database [54]. If all genes were suspicious, 
a regular WES analysis may detect around 20,000 single nucleotide variants [55], 200 of 
them very rare (MAF < 0.1%), and an average of 30 not detected in any other individual 
[56]. All these numbers describe a scenario in which the use of WES and WGS to diagnose 
RD patients with causative variants outside the current knowledge needs the application 
of prioritization algorithms. Current major national and international initiatives focus on 
the use of these two sequencing techniques (WES and WGS) to assume discovery [56]. 

Methods for the prediction of new gene–disease associations evolved from those de-
veloped for predicting gene and protein function [57,58] with social network [59] and data 
integration at the foundations [60]. The needs are now focused on the development of 
specific and accurate resources that overcome the limitations of every area of application. 
Here, RDs represent a rather particular challenge. There are over 7000 diseases with dif-
ferent levels of genetic and phenotype heterogeneity. They are mainly Mendelian, so if 
the variant is in the coding DNA, we search for a single gene. Moreover, they generally 
have small cohorts available, so a clear genotype–phenotype correlation can be difficult 
to find. Thus, RD diagnosis can become a “needle in a haystack” task where the solution 
is still far connected to current knowledge. In consequence, to increase their efficiency in 
difficult cases, gene–disease prediction methods are encouraged to use new and various 
types of functional annotations and combine them accurately [15,16,61,62]. In this study, 
we first confirmed that different types of gene–gene functional association networks had 
different capabilities in recovering known genes associated with a large collection of RDs. 
In terms of efficiency, the co-annotation network using phenotypes, as well as the co-
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citation network using STRING text-mining data, are the best performing sources in gen-
eral, with particular diseases having alternative important sources. The high accuracy of 
the phenotype-based networks was expected as HPO terms are close in definition to rare 
diseases. However, differences are especially evident when considering genes detected 
uniquely by one source, which we called exclusivity (Figure 2). This fact might be of es-
sential importance considering its application to Mendelian diseases. 

With needs, limitations, and preliminary results in hand, we developed GLOWgenes 
(www.glowgenes.org), a seeds-based algorithm to prioritize candidate genes with the 
main application in the diagnosis of RDs using WES and WGS. GLOWgenes applies the 
guilt-by-association principle using the RWWR method on multiple networks as different 
layers of functional information [62–64], preserving not only the nature of the associations 
but also the topology of the networks. GLOWgenes is unique in the sense of evaluating 
the performance of different sources in every case to assign weights that are afterward 
integrated. We tested our integration method using well-known representatives of this 
kind of approach with good results (Figure 3). 

A second benchmark was performed comparing GLOWgenes with state-of-the-art 
tools to predict gene–disease associations based on seeds. Here, popular PD tools were 
used as external references. Using well-known gene–disease associations as testers 
(GAGs), PD methods achieved more prediction power than SA algorithms, with GLOW-
genes behaving better than SA tools and similarly to PD tools (Figure 6A). When consid-
ering a more realistic discovery scenario, that is, testing the ability to recover candidate 
genes (RGs), the difference in the performance of SA and PD methods is less evident, with 
GLOWgenes also at the top of performers (Figure 6B). The main difference between PD 
and SA tools is that PD methods cannot be easily adapted to new, or a combination of, 
phenotypes as required in genetic syndromes, for instance [65]. In fact, most PD algo-
rithms are based on text-mining approaches that reward with a good recall but limit their 
ability to go beyond current knowledge. In this work, we provide two results that suggest 
that text-mining may mask interesting RD candidate genes. First, we observed a dramatic 
reduction in the importance of text-mining when trying to highlight recently discovered 
genes, using our time-aware partitioning strategy compared to recovering randomly se-
lected genes (Figure 3). Second, if efficiency is measured in RGs, the methods based on 
text-mining, mainly PD methods, reduce their performance (Figure 6B). 

Another interesting finding is that, in most cases, SA methods aggregating several 
functional sources (GLOWgenes, GeneMANIA, ToppGene, and Endeveour) performed 
better than network-based approaches using only PPI information (Guildifyv2.0, DIA-
MonD, ToppNet) (Table S4). In general, we observe that GLOWgenes behaves well under 
any scenario tested, being also the method catching more genes uniquely. Caveats specific 
to these types of approaches include the low overall recall of the algorithms and the accu-
racy, variety, and level of coverage of the available functional gene and protein associa-
tions. In their application to the diagnosis of RDs, it must be taken into account that the 
causal variants may not be in the coding DNA. 

The initial implementation of GLOWgenes that we present here is designed to be 
coupled to a pipeline of variant calling and annotation of DNASeq data. GLOWgenes is 
now serving candidate genes in the research of RDs in the FJD-UH annotating variants 
using our reanalysis FJD-pipeline [52]. Although its first motivation is to contribute to the 
genetic diagnosis of RDs, GLOWgenes is a predictor of new gene–disease associations that 
can help in other discovery scenarios. For instance, it has also been used in the search for 
genomic variants that provide susceptibility to COVID-19 [66]. As a proof of concept, we 
provide here the results of the analysis of 15 WES of patients with sIRD. Three genes are 
reported here to provide new insights in two sIRD cases. In the first case, we found two 
pathogenic variants in heterozygosis involving two genes: SHH and DNAH5. Regarding 
the SHH gene, mutations produce a related phenotype, and it has a role in the neurogen-
esis of the zebrafish retina [52]. Although the proband’s father carries the same variant, 
SHH mutations are described to have a high variability of expression [67]. On the other 
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hand, DNAH5 has been proposed as a candidate gene for retinal dystrophies using a dif-
ferent method based on the aggregation of variants in unsolved cases compared to con-
trols [1]. In a second case, we found a monoallelic variant in the recessive gene GLI1, which 
explains partially the patient’s phenotype [68]. Further analyses are needed to reach a 
conclusive diagnostic in both cases. 

In conclusion, this work describes the special needs and limitations in the prioritiza-
tion of candidate genes in the diagnosis of RDs using WES and WGS and presents a 
method that is hopefully useful to reduce the diagnostic gap of this type of patient. 

4. Materials and Methods 
4.1. Compilation of Gene-Gene Functional Associations from Public Sources 

We gathered functional gene or protein information from various sources [18–39] to 
build 33 networks of functional gene–gene interactions (Table S1). The sources with pro-
tein information had no isoform resolution, so a one-to-one correspondence with the 
genes can be assumed. Networks were classified into 13 classes, named here as knowledge 
categories (KCs) according to the nature of the functional information that they contain 
(Table S1). Gene identifiers from sources were all mapped into HGNC gene symbols, ex-
cluding interactions involving genes without HGNC mapping. Weighted edges were kept 
and normalized. If unavailable, edge weights were all set up to 1 (Table S1). The network 
named HPOext is the resultant network of imputing genes to HPO ancestors from their 
more specific annotations as provided by HPO. Gene annotations not represented as gene 
or protein relationships were transformed into gene–gene co-annotation networks, de-
scribing genes (nodes) and their functional relationship (edges). Thus, for networks de-
scribing human gene–phenotype similarity using Human Phenotype Ontology (HPO) 
terms [32] and phenotype similarity using mouse orthologs from the Mouse Genome In-
formatics (MGI) [16], we calculated Jaccard similarity for each pair of genes sharing at 
least one HPO term and constructed a null distribution of Jaccard values to compute z-
scores. Significant gene interactions (z-score > 1.96; p-values < 0.05) were selected to gen-
erate the network of phenotypes. Z-score values were used as edge weights. Direct linkage 
between genes sharing annotations was used for network construction for the drug–gene 
interaction database (DGIdb) [34] and complexes from CORUM [36]. The co-expression 
network from COXPRESdb [19] was created considering gene pairs with mutual rank 
(MR) co-expression correlations under 2000. The inverse of the MR was used as edge 
weights. The ProteomeHD [24] co-expression network was filtered to contain only the top-
scoring 0.5% pairwise gene co-regulations, as recommended. Co-essentiality networks 
were derived from: (i) inferred genetic interactions from CRISPR screens by Rauscher et 
al. [27], (ii) weighted co-essentiality gene interactions obtained by Kim et al. [29] using 
CRISPR essentiality screens from the Avana Project [31]; (iii) gene fitness rank correlation 
coefficients calculated using two different RNAi- and CRISPR-Cas9-based screening da-
tasets and following Pan et al. [35] processing pipeline (rank threshold = 1024; inverse 
rank threshold as edge weights); and (iv) genetic interactions from the BIOGRID database 
[25]. Networks derived from GO annotation were constructed using semantic similarity 
from GOGO [37] for gene pairs sharing at least one GO term. Semantic similarity scores 
were used as edge weights. DoRoThea evidence levels were transformed into numeric 
values for regulatory network weighting normalized to 0–1 range. 

4.2. Comparison of Network Topology and Similarity Measurement 
Attributes from each compiled network (node size, number of edges, average clus-

tering coefficient) were calculated using the python package NetworkX. 
To compare the different networks, we computed edge-wise network similarity us-

ing the overlap coefficient (OC), also known as the Szymkiewicz–Simpson coefficient. OC 
is defined as the edge size of the union of two graphs (G1 and G2) over the size of the 
smaller set between G1 and G2. 
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4.3. Disease-Associated Gene Sets Used in the Evaluation of KCs and Benchmarks 
Assessment of KCs’ importance in gene recovery was performed using disease-asso-

ciated gene sets with high and moderate evidence (Green and Amber genes, GAGs) from 
the Genomics England PanelApp [17]. Disease-associated genomic regions not fitted to 
genes such as copy number variations (CNVs) and short tandem repeats were filtered out 
from the panels. We grouped the panels into disease families using the level 2 provided 
in the disease classification by PanelApp. Panels lacking classification were manually cu-
rated by clinicians at FJD-UH. Although we observed that disease families might partially 
overlap in their definition, for instance with ciliopathies and ophthalmological disorders, 
we kept the PanelApp definition. 

Alternative integration strategies were benchmarked using PanelApp red genes 
(RGs), defined as disease-promising genes that need further evidence for clinical disease 
diagnosis. Gene–disease prediction tools were benchmarked using both GAGs and RGs. 

When PanelApp gene sets were used, super panels (involving a mix of phenotypes) 
were excluded. In the case of using GAGs, only panels with at least 40 GAGs were selected 
(91 panels). When RGs were used, only panels with at least 10 RGs were considered (70 
panels). 

4.4. Network Signal Propagation 
Network propagation of signal (trait or disease annotated) provided by gene sets was 

performed using the random walk with restart (RWWR) model proposed by Kohler et al. 
[41] as implemented in python software NetworkX and modified to generate a degree 
weighted adjacency matrix for subsequent propagation in order to minimize node degree 
bias (avoid bias towards highly connected genes). The modification was performed fol-
lowing the edge weight transformation proposed by Vanunu et al. [69] and used by others 
[70,71]. Restarting walk probability (rwp) was set up to 0.75, as suggested by Vanunu et 
al. [69]. Convergence is decided when the probability difference between two consecutive 
time steps is less than 10-6. Upon convergence, the frequency with which each node (gene) 
in the network has been visited is returned as a propagation score vector (S), which rep-
resents the probability of genes being associated with the input gene set. All networks 
were treated as weighted, if information was available, so adjacency matrices were de-
fined providing edge weight attributes. 

4.5. Systematic Evaluation of Evidence Networks Representing Heterogeneous Knowledge 
Categories 

To assess the performance of a network to prioritize phenotype-associated genes, we 
performed a 20-fold random sub-sampling validation. Each phenotypic gene set was ran-
domly split into 70%/30% training/test subsets. Training genes (seeds) were then propa-
gated in each individual network using the RWWR model, and the resulting gene ranking 
was evaluated on test genes. The validation results were averaged over the 20 cross-vali-
dation rounds. Several metrics were calculated to assess the performance of a given net-
work in a particular disease. Given the high imbalance nature of our dataset (high nega-
tive/positive instance ratio), the overall ranking was evaluated using the precision–recall 
analysis. We calculated the Precision–recall-gain [43] curve and its associated area 
(AUPRG). The network with the highest AUPRG in each KC is selected as the representa-
tive KC network and used for further analysis. To emphasize the top-ranked genes, in-
stead of testing true/false separation in the total gene ranking, we also computed recall 
and gene specificity at different top-k thresholds. Recall evaluates the efficiency of net-
works to prioritize disease genes, while gene specificity is informative of their degree of 
detection by particular KCs. Gene specificity was calculated for every true positive gene 
captured as in Martinez et al. 2008 [42]. High specificity genes represent genes captured 
by a single KC while low specificity genes refer to genes detected by all KCs. The overall 
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KC specificity level was calculated by averaging gene specificity scores and summarizes 
the ability of a KC to detect disease-specific genes, named here as exclusivity. 

4.6. Time-Aware Network Evaluation 
The time-aware network evaluation analyses whether the contribution of KCs in 

gene recovery for a particular phenotype changes if time is also considered. As input, the 
publication year for each gene associated with the phenotype under study must be pro-
vided. GLOWgenes takes that time-sorted list of genes and evaluates each individual 
source of evidence (network) using a time-aware validation, which relies on gene publi-
cation year to split gene sets into 70/30 train/test partitions. The oldest genes are used as 
the training set to determine the ability of each network to recover the most recently dis-
covered genes (test set). Partition publication time, metrics, and overall gene prioritization 
rank using time-aware mode are provided. Moreover, random vs time-aware network 
evaluation statistics are also computed in time-aware mode. 

Gene–disease associations from DisGeNET [44] were used in the evaluation of the 
time-aware approach. The publication year was recovered from DisGeNET SQLite data-
base, and time-aware disease gene sets were generated based on the UMLS Concept ID 
(CUI) disease classification, comprising phenotype and disease categories. We only con-
sidered gene–disease associations from curated sources (CGI, CLINGEN, GE-
NOMICS_ENGLAND, CTD_human, PSYGENET, ORPHANET, UNIPROT, GWASCAT, 
GWASDB, CLINVAR) and limited the analysis to gene sets with at least 70 genes, with a 
total of 246 disease gene sets remaining for time-aware disease candidate gene discovery. 

4.7. GLOWgenes Algorithm 
GLOWgenes is based on the integration of gene prioritization results from k hetero-

geneous knowledge categories (KCs), called here disease-aware prioritization. Gene pri-
oritization results from each KC representative network i are integrated into a unified 
ranking by incorporating ad-hoc information about their individual performance on the 
particular phenotype/disease under study. 

The strategy involves three main steps: Step 1. RWWR propagation of n pheno-
type/disease-related genes on each individual network result in a gene ranking represent-
ing their association strength to the input gene set. Step 2. Network evaluation and selec-
tion follow the steps listed in the previous section: 
• For each network out of the 33 considered in this analysis, we performed a 20× ran-

dom cross-validation of phenotype-associated input genes (70/30 training/test). For 
each partition: 

• The training subset is propagated using a RWWR model. 
• The area under the precision/recall gain curve is calculated. 
• Networks with the highest mean AUPRG at each KC are selected as KC representa-

tive networks and used for further analysis. 
• KC exclusivity and efficiency (recall) are calculated at different top-k for each repre-

sentative KC network. 
• Integration scores are calculated as the product of efficiency and exclusivity for each 

KC as a measure of the ability to recover input disease-associated genes. 
Step 3. RWWR Scores (step 1) of representative KC networks (step 2) are integrated 

using the integration scores (step 2). In order to allow for unbiased integration of multiple 
networks, gene scores from network i are normalized by subtracting the mean of the 
scores of all nodes from the score of node n and then dividing by the standard deviation 
of the distribution. The normalized z-scores for representative KC networks are then 
merged in a k-n matrix (k = KCs; n = genes) and score imputation is applied for missing 
values. Regarding imputation, a gene missing in the evaluation of a KC takes the mini-
mum normalized score observed for a gene in that KC. Disease-aware integration of the k 
KC representative networks is performed by weighing the gene z-scores in each network 
using the performance factor obtained from the evaluation of i network and subsequent 
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combination of ranks by averaging these weighted scores. A final overall gene ranking is 
generated. GLOWgenes is available at www.glowgenes.org. 

4.8. Evaluation of Alternative Approaches for Data Integration in Gene Discovery 
We compared the integration approach used by GLOWgenes (disease-aware integra-

tion) to two common strategies for network-based data integration in gene discovery: the 
fusion of rankings generated by individual modeling of datasets by order statistics 
[3,47,48] and the construction of a composite network for subsequent modeling [15,45,46]. 
Regarding the first, we evaluated two rank aggregation algorithms based on order statis-
tics: (a) the optimization of the Stuart algorithm [72] by Aerts [47,63] and implemented in 
Endeavour [3] and (b) the Robust Rank Aggregation (RRA) algorithm [48]. We ran the 
implementations of both algorithms using the R package RobustRankAggreg. For the net-
work integration strategy, we constructed a composite network using our 33 defined net-
works by adapting the most optimal configuration of a composite network described by 
Huang et al. [15]. Selection of edges supported by at least two sources from different KCs 
generated a composite network containing 4,509,215 edges and 19,302 nodes. Alternative 
strategies were run across 63 PanelApp GAG gene sets and validated in RG genes. Recall-
at-k was measured to quantify what fraction of all the disease genes are ranked within the 
first k predicted genes (k = 8, 16, 32, 64, 128, 256, 512). The best integration methods are 
selected at recall-at-n (validation set size). The mean area under the precision–recall curve 
(AUPRG) across gene sets was also calculated for each approach. 

4.9. Benchmark of Tools for the Prioritization of New Disease-Related Genes 
For benchmarking, we selected tools that met four criteria: (a) accessible, (b) updated 

since 2016, (c) predicting gene–disease associations from a user-input set of genes previ-
ously linked to a phenotype (seeds), (d) no need for an implicit set of user-input candidate 
genes to operate. A total of six seed-association tools were selected and run on four pilot 
disease gene panels (described before) using their default parameters: Endeavour, which 
uses a whole-genome approach [3], ToppNet algorithm, which uses ToppGenet for selec-
tion of the first neighboring genes in PPI as candidates (ToppGenet—network based, 
ToppGenet-net) [4,50], ToppGene algorithm, which uses also ToppGenet for candidate 
selection (ToppGenet—functional similarity, ToppGenet-fun) [4,50], NetComb-GUILDIfy 
[5], the DIAMOnD [6] version implemented in GUILDIFY2.0 web server, and Gene-
MANIA using its own API [73]. In all cases, a ranked list of candidate genes was derived 
to evaluate their performance on GAGs and RGs validation sets. 

We included as external references in the benchmark, pre-defined disease methods 
integrating gene–disease associations: DISEASES [9] and DisGeNET [44]. In the case of 
DisGeNET, we separate predictions/inferences from curated sources in order to avoid 
knowledge bias during benchmarking. We performed a recalculation of gene–disease as-
sociation scores from pre-computed DisGeNET data by removing the proportional score 
associated to curated evidence, generating our DisGeNET-noncurated dataset. Moreover, 
we evaluated just DisGeNET predictions by considering only associations derived from 
biomedical literature using BEFREE (DisGeNET-BEFREE). DISEASES, DisGeNET-noncu-
rated, and DisGeNET-BEFREE pre-computed datasets were interrogated for each evalu-
ated PanelApp disease by selecting the gene–disease associations involving disease terms 
enriched in the corresponding PanelApp gene set (FDR Fisher-test < 2 x 10-16). To make 
the seed-association and pre-defined disease comparable, we also filtered out the com-
puted rank list by removing genes contained in the PanelApp gene set under study (used 
as seeds for seed-associated methods). 

The main characteristics and sources of evidence for both seed-association and pre-
defined disease methods are listed in Tables S2 and S3. All methods were evaluated and 
compared across four selected diseases using both GAG and RG genes as validation sets. 
The selected diseases were cardiomyopathies including childhood onset, hearing loss, 
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retinal disorders, and severe microcephaly. It was not feasible to use the full set of dis-
eases, since most tools do not provide programmatic access. 

Three SA methods (GeneMANIA, DIAMOnD, and NetCombo-GUILDIfy) provide 
programmatic access, so they were run on 63 PanelApp disease gene sets using RGs as 
validation sets. Mean recall and error at different top-k were calculated for each approach. 
The mean area under the precision–recall curve (AUPRG) was computed for GLOWgenes 
and GeneMANIA, but not for DIAMOnD and NetCombo-GUILDIfy, since they just re-
turned the 500-top rank list of candidate genes. 

4.10. Detection of Variants Fitting Patient Phenotype in GLOWgenes Candidates Using WES 
We considered a total of 15 WES tests from patients with syndromic inherited retinal 

dystrophy (sIRD) phenotypes for clinical application of GLOWgenes. All cases have an 
inconclusive genetic diagnosis after clinical analysis of pathogenic variants at known 
sIRD-associated genes. We used an in-house pipeline for the detection and annotation of 
germline variants [52], available at https://github.com/TBLabFJD/VariantCallingFJD. Var-
iants were filtered by quality (Q = 100, DP = 10), predicted pathogenicity (CADD > 15), 
and low allele frequency (gnomADg_AF_POPMAX < 0.05 or NA). Selected pathogenic 
WES variants were prioritized using GLOWgenes sIRD ranking of candidate genes. To 
generate this sIRD ranking of candidate genes, we ran GLOWgenes using as seeds the 
sIRD virtual gene panel used for diagnosis at FJD-UH, which contained 198 genes. Clinical 
diagnosis was re-assessed by analyzing GLOWgenes detected sIRD candidate genes that 
contained pathogenic variants in WES cases and considering information on the familiar 
phenotypic pattern and variant segregation, when available. Genes detected by GLOW-
genes that overlapped sIRD phenotype were classified as phenotype-matched candidates 
and selected for further studies. 

4.11. Relative Contribution of each KC to the Association to Known sIRD Genes 
The relative contribution of each KC to the association with known sIRD genes was 

calculated for each WES-supported novel sIRD candidate and represented in pie charts 
using the GLOWgenes-normalized RWWR integration score for each KC representative 
network before KC integration by GLOWgenes. 
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